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introduction
The concept of adaptive radiation therapy was introduced 
more than 20 years ago for photons.1 However only recently 
patients can be treated with an online adaptive workflow2–9 
and first clinical results showed a promising increase of 
tumour control for inoperable pancreatic patients.10

Although most research in adaptive radiation therapy 
was performed for photon treatments, for proton therapy 
the necessity for plan adaptation is even more important. 
Indeed, the precision in proton radiotherapy strongly 
depends on the accuracy of the position of the Bragg peaks 
in vivo, and any density change along the beam direction 
can deteriorate the dose distribution. A change in the 
patient anatomy occurring through the course of radio-
therapy is probably the most significant source of range 
uncertainty. It is well recognized that for most indications 
planning on a patient image acquired some time before the 
start of the therapy and use the same plan for the whole 
treatment is suboptimal.11–16 Therefore, several centres 
have started to regularly monitor the anatomy of the patient 
during the course of the treatment to trigger adaptation if 
necessary.17–19 However, due to the complexity of the labor 
and time- intensive workflow, and the lack of automatiza-
tion, for proton therapy it is not yet possible to adapt the 
dose online.

The adaptive proton therapy (APT) process is therefore 
currently performed offline. Typically, it takes a few days 

from the acquisition of a new three- dimensional (3D) 
image to the delivery of the clinically approved adapted 
plan. Such an adaptive approach, although improving the 
delivered dose especially in case of slow inter fractional 
changes such as weight gain or loss, is inadequate in pres-
ence of faster changes (e.g. organs fillings). Indeed, to fully 
profit from the APT approach, the whole process needs to 
be established within the time span of the anatomy changes. 
Therefore, an online daily plan adaptation is necessary to 
deal with daily interfractional changes, as for example vari-
ation of the nasal cavity- or rectal fillings (see examples in 
Figure 1).

Due to the time- and resource- consuming nature of 
such adaptive interventions, some authors have recently 
proposed alternative ways to include, in addition to range 
and setup uncertainties, also anatomical changes directly in 
the optimization process, with the aim to reduce the need 
of adaptation.20–23 Although these pioneering works report 
promising improvement in the plan robustness against 
anatomical changes, the extra advantage of using an adap-
tive proton therapy approach, in particular to reduce the 
dose to the normal tissue is acknowledged.21

Therefore, there is a growing interest also in the proton 
therapy community to clinically implement an online daily 
adaptive proton therapy (DAPT) workflow, to properly 
cope with interfractional changes.24–27 For intrafractional 
changes, an even more frequent imaging acquisition and 
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abstract

It is recognized that the use of a single plan calculated on an image acquired some time before the treatment is gener-
ally insufficient to accurately represent the daily dose to the target and to the organs at risk. This is particularly true for 
protons, due to the physical finite range. Although this characteristic enables the generation of steep dose gradients, 
which is essential for highly conformal radiotherapy, it also tightens the dependency of the delivered dose to the range 
accuracy. In particular, the use of an outdated patient anatomy is one of the most significant sources of range inaccu-
racy, thus affecting the quality of the planned dose distribution. A plan should be ideally adapted as soon as anatomical 
variations occur, ideally online. In this review, we describe in detail the different steps of the adaptive workflow and 
discuss the challenges and corresponding state- of- the art developments in particular for an online adaptive strategy.
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a faster plan adaptation procedure (in real time) is needed.28–30 
Since the latter is an interesting research topic but still farther 
from clinical implementation, in this review we focus on the 
ongoing research of online DAPT.

One possible workflow for the online adaptive approach is 
depicted in Figure 2. The workflow before the treatment start is 
the standard workflow typically followed in every radiotherapy 
unit. A 3D image (typically a CT) of the patient is acquired and 
used to optimize a plan satisfying the clinical requirements. After 
the clinical approval of the calculated plan, a physical check, 
which for most proton centres includes measurements of the 
plan, is performed. For the daily online process, which lasts as 
long as a patient appointment, a daily 3D image has to be acquired 
with the patient in the treatment position. The pre- defined struc-
tures have to be transferred to the new image. Optionally, the 
need of a plan adaptation has to be assessed online. Successively, 
the adapted plan has to be optimized on the new geometry. Due 
to the time restriction a pre- delivery measurement based patient 
specific verification cannot be performed. Thus, the adapted 
plan has to follow an automated, calculation- based physical and 
clinical quality assurance check before it can be delivered to the 
patient. During (or immediately after) the delivery, the verifi-
cation of the delivered plan can be performed. Finally, after the 
completion of the patient appointment, the delivered dose can 
be transformed and accumulated on a reference image (e.g. the 
pre- treatment CT), to record the cumulative dose.

This review is organized following the DAPT process as proposed 
in Figure 2. For each step, a summary of the problem and of the 
relevant ongoing research is highlighted.

daily 3d iMaging in treatMent Position
Generally, in radiotherapy, there are three modalities currently 
available to acquire a 3D image of the patient in the treatment 
position: in- room CT, cone beam CT (CBCT) and integrated 
MR imaging.

CT- based planning is the current standard in proton therapy, 
as it allows to best calculate the range of protons in the patient 
anatomy (see the review of Richter in the same journal). The 
same imaging methods can be applied for plan adaptation. 
However, the necessity to acquire frequent or even daily CTs 
inevitably increases the imaging dose to the patient. Neverthe-
less, with the rapid development of new acquisition protocols 
aimed at reducing the imaging dose (e.g. low- dose CT protocols 
for lung cancer screening reach values of only 0.3 mGy31), it is 
foreseen that the extra imaging dose might become insignificant 
compared to the expected reduction in the integral dose achieved 
with the DAPT.24 In order to optimize the DAPT workflow, 
the CT image has to be acquired with the patient in treatment 
position such that not only anatomical changes but also daily 
misalignment can be mitigated, thus reducing the importance of 
considering set- up uncertainties in the planning process. This, 
together with the possibility to use innovative, less anatomically 

Figure 1. Examples of possible anatomical changes are shown by overlaying CTs acquired at different instance during the therapy. 
(a) Shrinkage of target volume between the planning CT and the end of the treatment (can be dealt with offline adaptive process), 
(b) Changes in the nasal cavity filling between two consecutive treatment days (can be dealt with online adaptive) (c) difference 
in the tumor position between two phases of the same 4D- CT (can be dealt with real- time adaptive). 4D, four- dimensional.

Figure 2. Workflow for an online adaptive process
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robust, beam arrangements result in the delivery of less dose to 
the normal tissue, at least for some indications.24

The acquisition of a CT in treatment position is possible with 
an in- room CT (Figure 3). Although the acquisition of a daily 
out- of- room CT is sufficient to mitigate anatomical changes, it 
might limit the advantage of using a DAPT workflow, as daily 
misalignments have to be dealt with by the standard positioning 
procedure or a shuttle- based workflow has to be defined ad hoc, 
as for example the one described by Bolsi et al.33

CBCTs are widespread in conventional therapy and recently 
became available also for proton therapy machines. The avail-
ability of 3D images acquired daily with the patient in treatment 
position, makes the CBCT a desirable modality for a daily adap-
tive workflow. However, the low image quality of CBCTs and 
the difficulty to accurately convert grey levels to relative stop-
ping power are nowadays still the major limitations for applying 
CBCT images for proton dose calculation. Promising methods 
to correct the intensity of CBCT images and reducing acqui-
sition artefacts, by either deforming the planning CT34–36 or 
using alternative, e.g. machine learning based algorithms37,38 
have been recently developed. However, although much work is 
being pursued in this direction, to our knowledge the extraction 
of accurate stopping power information from CBCT to the 
same level of accuracy as with diagnostic CT images is still in a 
research stage. This, together with the limited field of view avail-
able for CBCT, limit their benefit for the APT process.39–41

Finally, MR images have a high resolution and are dose free. 
Therefore, an integrated MRI system would be the ideal modality 
for daily plan adaption. Promising research is ongoing into gener-
ating pseudo- CTs based on daily MRI either using atlas- based 
conversions42–45 or employing deep learning approaches46,47 and 
recently it has been shown that a proton dose can be calculated 
with a sufficiently high accuracy using these pseudo- CTs, at least 
for certain indications.48

Contour definition
Before generating the newly adapted plan, it is necessary to have 
new contours available in the 3D image of the day. These could be 
obtained either by propagating the reference volumes through a 
rigid or deformable registration or by auto- segmenting the daily 
image. Unfortunately, with both approaches it is still necessary, 

for most of the cases, that a clinician correct the contours, thus 
extending the treatment time. The manual editing of these 
volumes is currently one of the bottleneck of most common 
online photon ART workflow3,6,49,50 and it is the step most prone 
to error.51 The development of robust segmentation algorithm 
is not only important for the ART workflow but also for radio-
therapy in general and it is outside the scope of this review to 
cover all the developments in this field52,53.. Important develop-
ments of advanced segmentation algorithms have been proposed 
by considering the prior information of the anatomical structure 
or organ appearances, such as single or multiatlas in combina-
tion of deformable registration,54 or shape modelling based on 
principle component analysis.55–57 Additionally, segmentation 
algorithms based on machine learning58 and deep learning 
concepts59–62 are foreseen to transcend the limitations from both 
aspects of speed and accuracy, by exploiting large prior knowl-
edge of the correlation of multimodality images and annotated 
volume segmentation.

In spite of these developments, residual uncertainties on the 
volume definition will nonetheless be present. Therefore, more 
research to understand their clinical impact is highly encouraged.

Need of adaptation
As there is currently no online adaptive proton therapy workflow 
clinically available, most literature describing DAPT strategies 
include the use of the daily image to trigger adaption. With this 
approach, time and resources can be saved, when choosing the 
nominal plan over adaption. Although no consensus regarding 
the threshold to trigger adaptation exists, for photons, a semi- 
quantitative traffic light protocol has been described.63

Recently, several methods to reduce the need of daily adaptation 
have been proposed. Some authors suggested to include anatom-
ical changes directly in the optimization algorithm by including 
multiple CT scenarios during the initial process of plan optimi-
zation.21,64,65 Others proposed to adjust daily patient positioning 
to reduce the differences between planned and daily dose in the 
presence of anatomical changes.66 Another approach suggests to 
rely on a library of pre- calculated plans and to select daily the 
plan most resembling the current anatomy.67

However, it has been shown that even though using an anatom-
ical robust optimization is a valid strategy to mitigate the effect of 

Figure 3. Examples of in- room CTs from: left side, PSI Gantry 2 32 , on the right side Oncoray, Dresden right side (with permission)
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anatomical changes, the use of a DAPT approach has the advan-
tage of reducing integral dose and improving dose conformity.21 
Additionally, the use of an online DAPT approach was shown to 
be the key for enabling the use of alternative, more conformal 
field arrangements that would normally be considered unrobust, 
thus resulting in a further integral dose reduction.24 It is there-
fore expected that as soon as an online adaptation workflow is 
clinically available, this will become the standard treatment 
modality, at least for selected indications.

generation of daily-adaPted Plan
The generation of the adapted plan and the subsequent phys-
ical plan acceptance need to be fast to limit the chance of slow 
intra fraction motion (e.g. bladder filling) and to limit the overall 
treatment time.

To achieve the speed requirements for DAPT, the process must 
be highly automated. Once this is fulfilled, time for plan gener-
ation is dominated by the computation. Graphical processing 
units (GPUs) have been widely deployed for speeding up this 
computationally demanding task. GPUs have been employed 
for subsecond analytical dose calculations,68 fast Monte 
Carlo (MC) dose calculations (down to 1–15 min)40,69 and 
pencil beam fluence optimization in only few seconds.40,69,70 
Approaches for complete adaptive plan generation with a MC 
dose calculation were achieved in 5 min for standard indica-
tions40 and with an analytical dose calculation in below 10 s.70 
It has recently been shown that the uncertainties in the dose 
distribution due to anatomical changes outweigh differences 
between analytical and MC dose calculations,71 legitimizing 
the use of analytical algorithms for DAPT if no fast MC is 
available.

Automation of adaptive plan generation with limited user inputs 
has been a strong focus in recent research. Described methods 
are based on restoring the position of the Bragg peaks in the daily 
patient geometry and/or reoptimizing the pencil beam fluences 
to restore the dose distribution of the nominal plan.72,73 The 
benefit of these approaches is that the adapted treatment plan 
is similar to the nominal plan, facilitating its clinical validation. 
On the other hand, optimizing the plan on the daily anatomy, 
without any restriction including the placement of additional 
Bragg peaks, could also help to exploit daily anatomies that are 
more favourable for treatment. For example, the relative position 
of the tumour and organs at risk (OARs) can be different on a 
daily basis, thus allowing a better sparing of the OAR with the 
increasing of its distance to the target volume.24 Examples of 
re- optimization methods on the daily anatomy, which includes 
new Bragg peak placement and an optimization following DVH 
prescription parameters are described.40,70,74 Clearly, the devel-
opment of an automated and simplified plan approval process 
is required. Modern optimization techniques to generate Pareto 
optimal plans might also facilitate this fast plan approval. A 
reference point method to reduce the adapted plan generation 
time for a Pareto optimal plan down to 3 min compared to a full 
multicriteria optimization, which takes 25 min, is described in a 
recent publication.74

Qa of the adaPted Plan
Clinical plan approval
The adapted plan can be highly similar to the nominal one, but 
being a new plan it has to follow some, ideally automatized, 
quality assurance steps before it can be delivered. Although 
this is a key point for the successful implementation of a DAPT 
workflow in the clinic, not much research has been conducted in 
the direction of fast plan acceptance. Some tools to assess plan 
quality using machine learning approaches and compare the 
plan under evaluation to a database are proposed for fast plan 
acceptance in photon therapy.75,76 Additionally, the daily plan 
can be assessed taking into account the dose accumulated on the 
reference image (see Dose accumulation section). However, due 
to inaccuracies of the dose summation especially around sliding 
tissues and in case of mass changes caution is recommended.77 
In photon therapy, conservative approaches such as a parameter 
adding approach, in which the maximum point dose of organs at 
risk are summed over all the fractions; or a iso- toxicity approach, 
for which the previously delivered dose is neglected and each 
daily plan is evaluated de novo, are commonly used for the daily 
clinical evaluation.50

Physical plan approval
Physical QA of the adapted plan needs to guarantee the deliver-
ability of the new plan. In the DAPT workflow, as the patient is 
imaged in the treatment position shortly before the start of the 
delivery, the adapted plan is applied for the first time directly to 
the patient and there is no time for standard measurement based 
QA beforehand. This is an obvious challenge of online adap-
tive therapy. For photon therapy, research has been conducted 
addressing this challenge3,78 and many of the issues are translat-
able for particle therapy. It is recognized that an independent dose 
calculation is compulsory to double- check the otherwise untested 
initial dose calculation.79–81 Preferably, one of the two calcula-
tions should be a MC simulation. However, MC simulations, 
which are fast enough to meet the ambitions time restriction of 
DAPT, are just recently emerging.40 Once the dose calculation 
is double- checked, as much of the pre- delivery data transfer and 
conversion steps as possible should be examined. One proposed 
method is to tap into the data stream of the delivery machine and 
use this data to check delivery integrity by reconstructing the 
dose based on this data into the patient anatomy.79 Recently, it has 
been proven that reconstructing the dose in the patient anatomy 
based on the delivery machine file is more sensitive in detecting 
errors in the planning process or the delivery than conventional 
water phantom verification measurements.82 Conceptually this 
approach is similar to the ones proposing to rely on log- files for 
patient specific verification, rather than water phantom measure-
ments (see Log file reconstructed dose section), with the differ-
ence that it can be completed before the delivery, when the 
log- files are not yet available. The machine file method is there-
fore limited to checking the delivery machine input data. Such an 
independent check of data conversion and transfer, together with 
a comprehensive daily delivery machine QA program, provides a 
redundant and safe quality assurance procedure for DAPT.

delivery and Plan “in-vivo” verification
As discussed above, the time restrictions imposed by DAPT 
make a full patient specific verification including water phantom 
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measurements impossible. Therefore, in addition to the pre- 
delivery QA described in QA of the adapted plan, it is suggested 
for a safe DAPT workflow to check the delivered dose distribu-
tion extensively.27,82,83 This could be done either with an in- di-
rect range measurement in the patient or by reconstructing the 
dose recorded by the log- files on the daily anatomy. These two 
approaches could potentially complement each other.

In-vivo range measurements
Direct dose measurements in the patient during therapy are chal-
lenging, invasive and limited to certain anatomical regions.84–86 
As such, alternative ways to verify the Bragg peak position in 
the patient anatomy (i.e. the proton range), during (or imme-
diately after) the therapy have been suggested and previously 
reviewed87–89 : reported methods include the use of in- beam 
positron emission tomography (PET) scanner, online prompt γ, 
proton radiography (and range probe) and ionoacuoustic detec-
tors. Although PET imaging hold the promise to verify addi-
tionally the delivered dose distribution, due to several limiting 
factors, including the low accuracy in the range detection, its 
clinical usefulness for proton therapy is still unclear.90–92 On the 
other hand, the detection of prompt- gamma rays emitted during 
the proton therapy has a higher range prediction accuracy (in 
general less than 2 mm)93,94 and has been recently introduced in 

the clinic.95 Moreover, the radiographic (or tomographic) trans-
mission of highly energetic beam through the body enables the 
possibility to image the patient with the same beam quality as the 
one used for treatment.96–100 Along this line and to reduce the 
imaging dose, it has been suggested to use a (limited number of) 
single highly energetic Bragg peak shooting through the patient 
(the so called “range probes”), as alternative to measure the inte-
gral range crossed by the beam.101,102 In spite of the promising 
results, neither proton radiography nor the range probe have yet 
reached the stage of clinical application.87 Finally, in contrast to 
range verification using nuclear imaging techniques, it is also 
possible to detect the thermoacoustic signals that are generated 
due to localized energy loss of ion beams in tissue (ionoacous-
tics).103,104 More details on the latest developments for in- vivo 
range measurements are summarized in the review of Parodi [in 
same journal]. None of these in- vivo imaging methods could be 
used as direct input for plan adaptation, but all of them could be 
used to trigger the necessity of a new 3D image acquisition for 
plan adaption.

Log file reconstructed dose
During the delivery, beam parameters like Bragg peak position 
and number of monitor units are usually recorded in a so- called 
log file. In the last years, there have been several publications 

Figure 4. An example of the dose accumulation workflow, using the planning CT as reference image. Deformable vector fields for 
the three fractions are displayed on the reference CT. DVF, displacement vectorfield.
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proposing to use the measured beam parameters to recon-
struct the delivered dose in the patient.27,79,80,82,83,105–108 This 
approach has been firstly introduced clinically at PSI to retro-
spectively analyze the delivered dose for all patients treated 
from 2013 onward.105,106 It was shown to be a valid approach 
to detect both delivery errors, as for example an unplanned 
systematic shift of the Bragg peak position105,106 and also of 
artificially introduced errors in the machine files.82 Addition-
ally, such an approach has been recently implemented, as a 
proof of principle, in a clinical treatment planning system to 
allow for the assessment of the conformity between planned 
and delivered dose distribution for a four- dimensional treat-
ment.83 Of course, the accuracy of the reconstructed dose is 
limited by the accuracy of the dose and Bragg peak position 
monitors.107 A log- file based dose reconstruction calculated 
with a MC algorithm108 allows to access the delivered dose 
distribution without expected errors due to the analytical algo-
rithm or machine delivery inaccuracies. Such a reconstruction 
of the delivered dose directly on the daily patient anatomy, 
allows for an unprecedented accuracy in the delivered dose 
recording. This can be exploited for dose accumulation, as 
discussed in Dose accumulation section. However, if used for 
dose accumulation, the measured parameters and the dose 
reconstruction need to be carefully validated.

dose accuMulation
To accurately record the treatment dose over the course of 
any fractionated radiotherapy, it is necessary to accumulate 
the daily delivered dose on a common anatomy.109 To accom-
plish this task, the daily image has to be registered to the refer-
ence image either by a rigid or deformable registration (DIR) 
process. The daily dose is then deformed by applying the same 
displacement vector field (DVF) generated during the image 
registration (see example in Figure 4). The accuracy of deform-
able dose accumulation is dependent on the integrity of the 
DVF vector and any uncertainties in the DVF propagate then 
to the accumulated dose. Comprehensive reviews on image 
registration110–112 and on deformable dose accumulation113 
have been published in the last years. Challenges are indepen-
dent on the treatment modalities and most of the reported 
clinical experience is based on photon treatment. Here, only 
the basic concepts are presented.

As, finding the optimal displacement that maximizes the 
alignment between two pair of deformed images is a degen-
erate problem, the application of different DIR methods to 
the same image pair could result in different DVF.110–112 The 
problem is especially important around low contrast regions 
and in the presence of mass alterations. Deformation vectors 
in these regions depend directly on the transformation model 
and regularization of the selected algorithm and it is unavoid-
able that ambiguity between different algorithms is present.

Although several authors have proposed different approaches 
to estimate the impact of these uncertainties in the accumu-
lated dose distribution,114–120 results presented are often patient 

and indication specific and research on this topic is highly 
encouraged. Additionally, debates on the appropriateness of 
deforming dose along with deformable image registration are 
still ongoing, especially in the case of mass alterations.113,121,122

Nonetheless, it is suggested that the use of deformable dose accu-
mulation is a powerful tool to report the cumulative dose and to 
perform outcome analysis based on correlation of the treatment 
dose with tumour control, local recurrences and toxicities.109 On 
the other hand, for the daily assessment, clinical decisions are 
mostly taken neglecting the previously accumulated dose and 
the use of more conservative methods are advisable (see Clinical 
plan approval section).50

outlook
Thanks to the successful introduction of the MRI- linac into the 
clinic, it is expected that this will speed- up the clinical imple-
mentation of an online adaptive workflow also for protons. 
Clearly, it would require a strong collaboration between treat-
ment planning system and proton system vendors such that all 
the steps outlined in Figure 2 can be fully integrated.

However, as we are just entering in a new era, where the patient 
will be treated with a plan optimized on the daily anatomy, there 
are several aspects, common to both photon and proton therapy, 
that need further research.

One key aspect of the new workflow is speeding up and 
increasing the accuracy of the contouring process on the daily 
image. The current experience from MRI- Linac users is that 
this step is one of the bottlenecks of the adaptive workflow3 
as it requires substantial manual intervention. It is foreseen 
that with the use of artificial intelligence,58–62 the accuracy and 
the speed of the segmentation process will improve. However, 
more research in understanding the clinical impact of residual 
uncertainties on the volume definition is beneficial.

Moreover, with a better knowledge of the daily delivered—and 
the cumulative dose a more accurate patient outcome can be 
modelled.109 However, substantial developments in terms of 
understanding the uncertainties in the accumulated dose are still 
necessary.113–120

With the advent of daily adaptive therapy, new planning strat-
egies will also become available. For example, it will become 
possible to adapt plan according to the target volume evolution 
along the whole treatment session. However, before changing 
treatment approaches, the definition of clinical trials are 
advisable.77

Finally, some authors have already envisioned the combination 
of MRI with proton therapy.123–125 This holds the promise to 
be the future for real- time adaptive therapy as it combines the 
advantage of a better imaging modality with proton therapy, 
superior in terms of reducing normal tissue integral dose.
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