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ABSTRACT: The paper deals with the quantification of probabilities for human failures in the radio-
therapy domain. The probabilities are used as input for the development of a Human Reliability Analysis 
(HRA) method specific for radiotherapy. Quantification is based on expert judgment, in view of the lack 
of relevant data. A Bayesian aggregation model is used to aggregate the judgments collected during elici-
tation sessions with domain experts. A qualitative scale is first used; then the judgments are interpreted as 
information on the order of magnitude of the error likelihood and aggregated under the Bayesian scheme. 
Besides for the specific domain of interest, this work is relevant for novel HRA applications outside typi-
cal domains, for which the need to incorporate expert judgment in traceable and defendable ways is key.

magnitude of the error likelihood and aggregated 
under the Bayesian scheme. The paper presents the 
results of the aggregation. The application shows 
the ability of the aggregation approach to formally 
represent the variability of the experts’ estimates.

Besides for the radiotherapy domain, the work 
presented in this paper is relevant for the various 
efforts recently done to extend HRA methods 
for application beyond their most typical appli-
cations, i.e. nuclear power plant operation. Lack 
of relevant data is a major issue for these novel 
applications (Bye et al. 2017, NASA 2012, Gibson 
2012, Mkrtchyan et al. 2015, NUREG 2016) and 
methods to elicit expert judgment in a formal and 
defendable way are needed along with specific data 
collection initiatives.

The paper is organized as follows. The next Sec-
tion provides the background on the HRA method 
under development, for which probability values 
are sought for in this paper. Section 3 presents the 
design of the elicitation sessions and the concepts 
underlying the Bayesian approach for process-
ing and aggregation of the judgments. Section  4 
presents the application to two Decision Trees part 
of the framework of the HRA method under devel-
opment. Concluding remarks close the paper.

2 BACKGROUND INFORMATION

The framework for the HRA method consists of 
eighteen decision trees, one for each failure mode 

1 INTRODUCTION

Human failures are important contributors to near 
misses, incidents, and accidents in radiotherapy 
(WHO 2008), as in many other domains. Efforts are 
undertaken to systematically address the potential 
for failures and continuously improve the patient 
treatment process, e.g. Huq et al. (2016). In this 
context, the Risk and Human Reliability research 
group at the Paul Scherrer Institute (Switzerland), 
in collaboration with the institute’s Center for 
Proton Therapy, is developing a method to sup-
port Human Reliability Analysis (HRA), specific 
for external beam radiotherapy. Previous work by 
the authors identified the personnel tasks critical 
to patient safety and possibly influencing factors 
(Pandya et al. 2017). Current work is addressing 
the quantification of the corresponding human 
failure probabilities.

In particular, the present paper focusses on 
the quantification of the failure probabilities for 
representative tasks, given a set of Performance 
Influencing Factors (PIFs). Given the shortage of 
directly usable experience data, the quantification 
resorts to expert judgment. The paper presents 
the application of a Bayesian aggregation model 
 (Podofillini and Dang, 2013) to the judgments 
collected during elicitation sessions with domain 
experts. To avoid direct elicitation of probability 
values, the experts are asked to provide their judg-
ments on a qualitative scale. The judgments are 
then interpreted as information on the order of 
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corresponding to a different Generic Task Type 
(GTT, Table  1). The concept behind the GTTs 
is taken from the Human Error Assessment and 
Reduction Technique (HEART, Williams 2017), 
and is intended to define a set of task types, each 
with similar characteristics as it relates to the fac-
tors influencing performance and to the corre-
sponding failure probabilities. The definition of 
the GTTs and of the influencing factors is based 
on GTTs- Performance influencing Factors (PIFs) 
structures developed in (Pandya et al. 2017): these 
structures link each GTT to the set of PIFs that 
influence the failure probability. These structures 
have been developed via a systematic and traceable 
process which, for each GTT, progressively identi-
fies the involved cognitive functions, their failure 
modes and causes, failure mechanisms and PIFs.

The DT framework is well suited to represent the 
cause-based influences on failures identified by the 

GTT-PIF structures: the DTs identify the causes 
possibly leading to the GTT failure; in a similar way 
as done in other HRA methods (e.g. NUREG 2016, 
Moieni et al. 1994), each decision tree addresses a 
failure mode, with branching points representing 
the effects of PIFs. Two examples of DTs are pre-
sented in Figure 1. The decision trees develop from 
eight branching points, e.g. “Problematic interface”, 
“Information content unclear”, “Low vigilance 
due to expectations”. As shown in Figure  1, each 
DT includes a subset of the eight branching points, 
three or four in most cases. The same branching 
point heading may appear across different DTs, e.g. 
“Problematic interface” in Figure  1; however, the 
influence of the branch on the failure probability 
may not necessarily be the same. This aspect will 
be returned to in the result Section 4. Each branch 
point is specified in terms of negative conditions: if  
any of the negative conditions is verified, then the 
lower branch applies. Example negative conditions 
are given in Table 2. The presentation of the devel-
opment of the DTs from the GTT-PIF framework 
and of the negative conditions for each branching 
point is outside the scope of the present paper and 
will be presented in a separate publication (Pandya 
et al., working paper).

To assess the failure probability of a specific 
radiotherapy task, an analyst would have to select 
the applicable DTs based on the relevant type of 
task and failure mode. Then, for each branching 
point, the analyst would have to select the appro-
priate branch based on the negative conditions 
proposed for each branch, in a similar way as 
done with other HRA methods involving DTs, e.g. 
NUREG (2016), Moieni et al. (1994).

The present paper focuses on the quantifica-
tion of the DTs, i.e. on the assessment of the fail-
ure probabilities in correspondence of each path 
defined by the combination of the branching 
points.

3 EXPERT JUDGMENT ELICITATION 
AND AGGREGATION APPROACH

3.1 Expert judgment elicitation

As mentioned in the Introduction, due to the lack 
of relevant data, quantification is made via expert 
judgment. In particular, the expert elicitation ses-
sions were designed with two aims. First, to sup-
port the identification of the negative conditions 
underlying each branch point. Second, to assess 
the impact of each branching point on the failure 
probability. Only the effects of single branch points 
were addressed (i.e. determining failure probabili-
ties 1, 2, and 4 in Figure 1, top part). The combina-
tion effects will be addressed in future work.

Table 1. Set of Generic Task Types (GTTs) and corre-
sponding failure modes identified in Pandya et al. (2017). 
DTs are developed for each failure mode of the GTTs.

# GTT Failure mode

1 Identification of  
patient or patient  
related items

Patient information  
incorrectly matched

Identification check not  
performed (decision based)

Failure to execute desired  
action

2 Quality Check Deviation from requirement  
not recognized

Inappropriate understanding  
of underlying principles

Check not performed  
(decision based)

Execute desired action  
incorrectly

Failure to execute desired  
action

Coordination failure
3 Complex  

interaction with  
software or tool

Misinterpretation of data
Execute desired action 

incorrectly
Mismatch or inconsistency  

not recognized
4 Simple interaction  

with software  
or tool

Execute desired action  
incorrectly

Failure to execute desired  
action

5 Iterative  
determination  
of optimum  
parameters

Misinterpretation of  
information

Inappropriate decision on  
strategy selection

6 Verbal  
communication

Communication failure
Not communicated  

(decision based)



503

Six failure scenarios were developed for the elici-
tation, Table 3 gives two examples. The idea is to 
elicit the impact of the branching point on these fail-
ure scenarios, which would then be representative 
of the overall GTT. The selection aimed at address-
ing the largest set of GTT failure modes, as well as 
prioritizing failure scenarios with the most critical 
consequences on patient safety. As shown for the 
examples in Table 3, each failure scenario is associ-
ated to a different GTT. Indeed as again shown in 
Table 3 and by the negative conditions in Table 2, 
the elicitation of the branching point impact was 
conducted on specific tasks and situations. This 
has been made to help experts to contextualize their 
judgments to the real tasks they perform and link 
their assessments to the daily experience. Alterna-
tively, judgments may have been elicited directly 
for the GTTs and branching point categories. The 
former approach was chosen to avoid that experts 
would need to deal with abstract categories such as 
GTTs and the branch point labels. The focus of this 
paper is on the part of the elicitation session aimed 
at eliciting the impact of each branching point on 
the failure probability. The details of the overall 
elicitation design and its results will be presented in 
a different paper (Pandya et al., working paper).

Table  2. Examples of negative conditions for two 
branching points in two different DTs.

DT Branch point Negative conditions

GTT:  
Identification  
of patient or  
patient related  
items; Failure  
mode: patient  
information  
incorrectly  
matched

Problematic  
interface

The written values  
look alike  
(e.g. 111, 117)

The value on the  
label or file not  
easily readable

There is no ID  
number on the  
patient item

GTT: Complex  
interaction with  
software or  
tool; Failure  
mode:  
Misinterpretation  
of data

Lack of  
adequate  
training or  
experience

Lack of familiarity  
with the  
tumor case

Lack of training or  
experience on  
treating special  
tumor locations  
(e.g. close to  
multiple artefacts)

Lack of experience  
or training to  
distinguish  
healthy  
and tumor tissues

Figure 1. Two examples of decision tree; above: GTT “Identification of patient and patient related items”, Failure 
mode “Patient information incorrectly matched”; below: GTT “GTT: Complex interaction with software or tool”, 
Failure mode “Misinterpretation of data”. The focus of the present paper is on quantification of the failure probabili-
ties at each tree branch (only single branch effects elicited).
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Indeed, the elicitation addressed directly only 
part of the DTs required for quantification, i.e. six 
out of the eighteen from Table 1. However, some 
branching points may be thought of having very 
similar impact across different DTs; therefore the 
results from the elicitation for one DT may be used 
for others. It was assessed that the selected tasks 
may allow to quantify about two thirds of the 
whole set of branching points (recall only single 
branch point effects are considered here). Indeed 
future work may address the quantification of 
the remaining DTs and develop an approach to 
address multiple branch points as well.

Twelve experts were interviewed: medical phys-
icists, medical doctors, dosimetrists and radiation 
technologists. Each expert dealt with tasks part 
of  his/her daily job. Three tasks were elicited at 
most per expert. Each expert took part in the 
exercise alone. For each of  the assigned tasks and 
each of  the negative conditions corresponding to 
the branching points, the experts were asked to 
assess the impact of  the negative condition on the 
failure probability when performing the task. The 
impact is elicited on a qualitative scale (Table 4), 
to avoid the known shortcomings of  directly 
eliciting probability values, see e.g. Meyer and 
Booker (2001), Tversky and Kahneman (1974).

3.2 Aggregation of expert assessments

The approach to process the expert assessments has 
been as follows. The qualitative scale in Table 4 is 
first anchored to quantitative values, as shown in 
Table  5. The basis for the anchoring is the scale 

Table 4. Qualitative scale used to elicit impact of nega-
tive conditions on the personnel tasks.

Impact Descriptor Meaning

Low  
impact

Failure is not  
expected  
to happen,  
although  
I see  
how it could  
happen.

Given the negative  
condition, the  
desired task is  
still so easy  
that it is  
inconceivable  
that any  
personnel would  
fail if  they were  
to experience  
this condition.

Moderate  
impact

Failures  
happen  
occasionally/ 
sometimes  
with such  
conditions

Given the  
negative  
condition, the  
desired task  
becomes  
moderately  
difficult that it is  
possible so that  
personnel would  
occasionally/  
sometimes fail  
if  they were to  
experience this  
condition.

High  
impact

Failures  
happen often  
with such  
conditions

Given the  
negative  
condition, the  
desired task  
becomes highly  
difficult that  
is expected so  
that personnel  
would often 
 fail if  they  
were to expe-
rience this 
condition. 

Extreme 
impact

Failure is  
almost  
unavoidable

Failure is almost  
unavoidable.  
Almost all  
personnel would  
not be able to  
perform the  
desired task.

Table 3. Example of failure situations used to elicit the 
impact of the branch points on the failure probability.

Failure situations Failure mode
Generic task  
type

Failure to identify  
correct ID from  
control document  
on the bite-block,  
couch or file etc.  
such that incorrect  
item is  
picked up

Patient  
information  
incorrectly  
matched

Identification  
of patient  
or patient  
related  
items

Draw suboptimal  
(incorrect or  
incomplete)  
contours  
around volumes of  
interest for every  
slice due to  
misunderstanding  
of the data

Misinterpretation  
of data

Complex  
interaction  
with  
software  
or tool

Table  5. Anchoring of the qualitative impact scale to 
probability values (adapted from NUREG 2007).

Impact Order of magnitude of failure probability

Low 1e-3
Moderate 1e-2
High 1e-1
Extreme 1
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presented as part of the ATHEANA human reli-
ability analysis method (NUREG 2007). Note the 
values on the scale are to be interpreted as refer-
ence orders of magnitude for the failure probability 
value. The value representative for low impact (1e-3) 
is confirmed in the studies by Wahi et al. (2008) and 
Salinas et al. (2013), from which it can be inferred 
that nominal error rates in patient identification 
and data entry in healthcare lie around 1e-3 and 
3e-3. These are interpreted as lower bounds for 
error probabilities for the sector. Low impact of the 
branching point is not expected to change the order 
of magnitude of the probability so that the refer-
ence lower bound value still remains in the same 
order of magnitude.

The scale allows converting each assessment by 
the experts into a statement on the order of mag-
nitude where the probability value would lie. It is 
interpreted as evidence of the relevant order of 
magnitude, and used to update the belief  on that 
quantity in a Bayesian framework.

The process for aggregation of  the judgments 
comprises two steps. First, for each negative con-
dition, the judgments by the experts are aggre-
gated: a distribution of  the applicable probability 
for each condition is obtained. Then, these distri-
butions are themselves aggregated into the final 
distribution of  the corresponding branch. The 
aggregation approach is based on the Bayesian 
model presented in Podofillini & Dang (2013). 
The model represents the human error probabil-
ity as an inherently variable quantity, resulting 
from the inherent variability of  people perform-
ance as well as of  the specific manifestations of 
the type of  tasks and of  the influencing factors. 
More specifically, the combination of  GTTs and 
branch point conditions envelop specific tasks 
and specific performance conditions that are 
assumed to be characterized by inherently dif-
ferent failure probability values. The elicitation 
carried out in this work addressed specific mani-
festations of  the combination (see Table  3 and 
Table 2): the Bayesian model is intended to con-
sider the expert assessments on these manifesta-
tions (a specific task affected by specific negative 
performance conditions) and determine the orig-
inal variability distribution of  interest. Mathe-
matically, the failure probability is assumed to be 
lognormally distributed, with unknown median 
to be determined based on the expert input. The 
error factor (square root of  95th and 5th per-
centile) is assumed to be known, equal to 3. The 
latter assumption of  known error factor is not a 
requirement of  the approach, but largely simpli-
fies the calculations and decreases the amount of 
data required to be elicited. It is indeed a typi-
cally used and accepted value in HRA. The prior 
distribution of  the median is assumed uniform 

for the four orders of  magnitude in Table 5 (all 
impact levels are equally likely).

For the first part of the aggregation process, the 
expert assessments are used to update the degree 
of belief  on the correct order of magnitude for 
the median of the probability distribution. The 
model requires as well assumptions on the confi-
dence that the experts would be able to provide the 
correct value of the probability. The confidence 
is expressed in terms of a conditional probabil-
ity that, given the real order of magnitude of the 
probability is one of the four in Table 5, the experts 
would assess the correct one or be off  by one or 
more orders of magnitude. This conditional prob-
ability can be defined to model biases and depend-
ence across experts, indeed provided that adequate 
information on the distribution is available (these 
are not modeled in the present work). In this work, 
it is assumed that experts have about 80% prob-
ability to provide the correct order of magnitude, 
10% of being one order of magnitude off, 5% of 
being two or more orders of magnitude off. The 
exact values of these probabilities depend on the 
position of the interval with respect to the lower 
and upper bounds to have them normalized to a 
probability distribution. These values have been 
assumed by the authors of the paper; they appear 
to represent reasonable assumptions on the ability 
of the experts to provide correct estimates in this 
context. It is anyway important to mention that as 
more than a few experts are available (say five or 
more), the specific assumptions on the confidence 
to each expert do not play a significant role any-
more in the final probability distribution. The out-
put of this step is a distribution of the degree of 
belief  on which of the levels in Table 5 represents 
the real value of the median of the probability 
distribution, for each negative condition possibly 
affecting each branch point.

The second part of the aggregation entails com-
bining the degrees of belief  obtained for each neg-
ative condition underlying each branch points. As 
the negative conditions are assumed equally likely, 
the final distribution is simply obtained as the 
average distribution across the negative conditions. 
In particular, for each of the levels in Table 5, the 
final degree of belief  is the average degree of belief  
across the corresponding negative conditions. 
Applications of the approach will be presented in 
the next section.

4 AGGREGATION OF EXPERT 
ASSESSMENT: RESULTS AND 
DISCUSSION

This paper presents the result obtained for two 
DTs:
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•	 GTT “Identification of patient and patient 
related items”, failure mode “Patient informa-
tion incorrectly matched”;

•	 GTT “GTT: Complex interaction with software 
or tool”, failure mode “Misinterpretation of 
data”.

These are the two DTs shown in Figure  1. The 
results obtained from the whole elicitation are planned 
to be presented in Pandya et al. (Working paper).

The first part of this Section presents an over-
view of the aggregated results for the two DTs. The 
aim is to discuss how the quantitative results relate 
to the justification provided by the experts on their 
assessments. In other words, the goal is to check 
if  the different values of error probability reflect 
in corresponding differences in the assessments by 
the experts. The second part of the Section pro-
vides details on how the expert assessments are 
aggregated.

Figure  2 shows the aggregated results from the 
expert assessments. The largest impact on failure 
probability corresponds to the branch point “Lack 
of training or experience” branching point affect-
ing GTT “Complex interaction with software/tool”. 
This is a complex task, related to defining an optimal 
therapy plan and requiring knowledge and expertise. 
As shown by the expert assessments, the influence of 
inadequacies in this respect can have high impact on 
the failure probability. Indeed, the resulting median 
probability is around 0.01, corresponding to the 
“high” impact level on the adopted scale. Branch-
ing point “Time pressure” was also assessed among 
the most influencing ones: it was felt that the need to 
complete the task with urgency would highly impact 
the quality of the therapy plan. On the other hand, 
two branching points were assessed to have generally 
low impact. In particular, interface issues (branching 
point “Problematic interface”) were not felt to affect 
much the performance when identifying patients: 
identification of patients is made with diverse 
means; besides checking the patient ID, identifica-

tion is checked verbally (calling patient name) and by 
the patient picture. Additionally the interface to deal 
with is extremely simple so that there is little possibil-
ity for confusion. Also, the complexity, in shape, size 
and location of the tumor was not felt to increase 
much the probability of errors in the development of 
the therapy plan. Typically, complex tumor cases are 
discussed in larger groups and the treatment details 
are thoroughly defined.

It is interesting to see in Figure 2 how the same 
type of branching point may affect GTTs differ-
ently. For example, the assessed probability for 
“Problematic interface” affecting GTT “Complex 
interaction with software/tool” is more than one 
order of magnitude larger than when affecting 
GTT “Identification of patient or patient-related 
tools”. Again, this is the result of the expert opin-
ions on the importance of the respective influ-
ences. The reasoning underlying the low impact 
according to the experts of the branch point on 
the latter GTT has already been discussed. On 
the other hand, the former GTT involves com-
plex interactions with multiple software interfaces, 
dialog boxes, figures, etc: the impact of interface 
issues for this task was considered to have impor-
tant effects on the failure probability.

The length of the error bars reflects differences 
in the expert assessments both for each negative 
condition and across the different conditions. 
The larger the bar, the larger the differences. This 
aspect will be returned to later in this Section.

Figures  3 and 4 show how the expert assess-
ments are progressively processed to obtain 
the final probability distributions presented in  
Figure 2. The left side of the figures gives the assess-
ments of the experts provided on the scale for each 
of the negative conditions. The middle shows the 
distribution results aggregated across the experts 
for each negative condition. The right side gives 
the final distribution, aggregating across the condi-
tions. Specifically, Figure  3 addresses the effect of 
branching point “Problematic interface” on GTT 

Figure 2. Aggregated results for the two considered GTTs; Symbols identify the median failure probability affected by 
each branch point (acting one at a time, presented on the right of the figure), error bars the 5th and the 95th percentiles.
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“ Identification of patient or patient-related items”. 
It is interesting to see in the Figure how different 
assessments from the experts result in different dis-
tributions. For the first negative conditions, three 
experts provided the assessments of “low” (thus 
corresponding to an error probability of about 
0.001) and two of “moderate”. Correspondingly, 
the aggregated distribution in the middle of Figure 3 
presents larger degree of belief for the latter level on 
the scale compared to the former. Degrees of belief  
for the other levels are in practice negligible. For the 
second condition, there is strong agreement for low 
impact: the peak in the degree of belief for the latter 
value is accordingly higher than in the previous case. 

A very different situation is present for the last con-
dition, where the three experts provided three differ-
ent assessments. The effect to spread the degree of 
belief for the latter condition is evident.

Another interesting case is presented in Figure 4, 
related to the effect of “Lack of adequate training 
or experience” for the GTT “Complex interaction 
with software/tool”. There is general consistency 
across the expert on the effect of each condition, 
as reflected in the distributions in the middle part 
of the figure. The large span in the expert assess-
ments, from “low” to “extreme”, results then in the 
large spread in the final aggregated distribution on 
the right.

Figure 3. Processing and aggregation of judgments (GTT “Identification of patient and patient related items”, failure 
mode “Patient information incorrectly matched”): Left: judgements from experts, Middle: expert-aggregated posterior dis-
tribution of median HEP for each condition, Right: posterior probability distribution of median HEP for the branch point.

Figure  4. Processing and aggregation of judgments (GTT: “Complex interaction with software or tool”, failure 
mode “Misinterpretation of data”) Left: judgements from experts, Middle: expert-aggregated posterior distribution 
of median HEP for each condition, Right: posterior probability distribution of median HEP for the branch point.
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5 CONCLUSIONS

The paper has presented the work performed to 
quantify the human failure probabilities to be 
used as input to a novel HRA method. Elicita-
tion sessions were designed, with the following two 
main features. First, information on probabilities 
is asked to experts on a qualitative scale, with the 
goal of getting evidence on the order of magnitude 
for the probability. Second, specific situations are 
presented to the expert, i.e. specific failure scenar-
ios influences by specific negative conditions. The 
latter feature was incorporated to avoid that the 
expert deal with abstract categories such as tasks 
types and influencing factors.

The expert statements are processed and aggre-
gated to determine degrees of belief on the correct 
values of the failure probability. The latte is assumed 
as an inherently variable quantity so that the main 
parameter of its distribution is the subject of the 
elicitation. The Bayesian model used to aggregate 
the assessments was found to represent well the dif-
ferences in the experts statements, providing a cred-
ible approach to process the expert input.

As a next step of the work, comparison of the 
obtained values with values from existing HRA 
methods is envisioned. Indeed, although HRA 
methods are sector-specific, some of the underly-
ing data can be thought of being general, e.g. data 
regarding dealing with indicators, simple execution 
tasks. This comparison may provide some valida-
tion to the elicitation process.

With broader perspective, future work will 
apply the developed HRA method to hypotheti-
cal accident scenarios at the institute’s Center for 
Proton Therapy.
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