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Abstract: A main challenge in x-ray µCT with laboratory radiation derives from the broad
spectral content, which in contrast to monochromatic synchrotron radiation gives rise to
reconstruction artifacts and impedes quantitative reconstruction. Due to the low spectral
brightness of these sources, monochromatization is unfavorable and parallel recording of a broad
bandpath is practically indispensable. While conventional CT sums up all spectral components
into a single detector value, spectral CT discriminates the data in several spectral bins. Here we
show that a new generation of charge integrating and interpolating pixel detectors is ideally suited
to implement spectral CT with a resolution in the range of 10 µm. We find that the information
contained in several photon energy bins largely facilitates automated classification of materials,
as demonstrated for of a mouse cochlea. Bones, soft tissues, background and metal implant
materials are discriminated automatically. Importantly, this includes taking a better account of
phase contrast effects, based on tailoring reconstruction parameters to specific energy bins.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spectral x-ray computed tomography (CT), also known as color-CT, extends conventional
‘grayscale’ x-ray imaging representing the x-ray attenuation coefficient at a single photon energy
E, by two or more energy bins up to an entire spectral dimension [1–3]. Energy-binned x-ray
data recorded for each projection angle can be reconstructed independently or jointly using
advanced regularized iterative reconstruction methods [4], in order to gather more information
about the material composition. The simplest case of dual energy recordings can be implemented
either with two sources and detection devices operated in parallel (dual-source), with two voltage
settings (dual-kVp) or with energy-resolving detectors, which is the preferred option for multi-E
recordings. While dual energy CT and color-CT is rather advanced in medical CT and to some
extent also in macroscopic non-destructive testing, it has not yet fully reached the realm of µCT,
i.e. high resolution CT with voxel sizes in the range of a few microns or below. This may be
due to the fact that many µCT applications are carried out with monochromatic synchrotron
radiation, and that imaging an object at several E, i.e. full field x-ray spectro-microscopy is well
established in a sequential recording mode [5]. In translating spectro-microscopy and hence
‘chemical contrast’ to laboratory µCT, and thereby make it more broadly accessible, one of the
main challenges is the development of suitable energy-resolving detectors, recording several
energy bins in parallel. Due to the smaller pixel size required, this problem is accentuated with
respect to macroscopic CT, and due to the notoriously low brilliance of laboratory sources,
sequential measurements with monochromatic radiation is highly unfavorable.
The advent of direct conversion hybrid pixel detectors with Charge Integrating (CI) readout

has created unique opportunities to implement spectral CT, with photon energy resolution limited
only by their electronic noise. Unfortunately, charge sharing, due to the diffusion of the charge
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cloud produced by x-rays drifting to the collection electrode under the influence of the applied
electric field, imposes a physical limit to the minimal useful pixel size to a few tens of microns
[6], which is particularly detrimental for µCT applications. However, CI pixel detectors operated
in the single photon regime, i.e. with single detected photons separated in time and space, can
overcome this limit since the charge collected by neighbouring pixels can be summed up to
obtain the photon energy (clustering) and its distribution can be analyzed to extract the point
of incidence with a resolution better or equal to the pixel pitch. This has been exploited by the
MÖNCH detector [7,8], a CI pixel detector with 25 µm pixel pitch, developed at the Paul-Scherrer
institute. With the parameters of the MÖNCH, photons with energies between 10 keV and 20 keV
will generally produce charge clouds larger than a single pixel but contained in 2×2 pixels.
From these 4 charge-values, not only the photon energy (total charge) and the interaction pixel
(maximum charge) can be extracted, but the interaction point of the photon can even be extracted
with sub-pixel resolution of easily a factor of 5 in both dimensions by exploiting centroiding
methods (interpolation).

In this work, we demonstrate that the MÖNCH detector, or more generally equivalent detector
technology, can enhance laboratory µCT applications, in particular of biological specimen
relevant for pre-clinical research. By providing simultaneous energy-resolved detection on a
single-photon level, material identification and image segmentation is significantly improved and
facilitated. We illustrate this with a tomography example at the scale of small animal organs,
notably a mouse cochlea [9,10], which we have studied before by conventional grayscale CT.
As in [9], in this work we use a liquid-metal jet anode [11] to reach sufficient resolution. The
cochlea with its intricate three dimensional (3d) structure is indeed a perfect example for the
benefits of virtual 3d histology. µCT can be instrumental in studies of malformations caused
by genetic defects, in guiding new treatments, and for the development of cochlear implants
[12,13], including novel optogenetic implants [14]. For this purpose, implant materials have to
be distinguished from soft tissues (nerve, membranes) as well as from surrounding bone, which
is a tedious task when performed manually. We show that spectral CT can not only be used to
attribute certain features of the object, from a set of pre-defined materials, but that it can also
serve to distinguish regions in the object by classification in a higher dimensional contrast space,
without prior knowledge. Based on the experimental measurements we demonstrate the benefit
of spectral imaging for automatic segmentation.

2. Sub-pixel sensitivity of the MÖNCH

For sub-pixel resolution and photon-energy information, the detector has to be operated in
single-photon mode such that the detected photons are spatially or temporally well separated.
The photon flux must be low enough such that no more than a single photon is absorbed per
3×3-cluster of the sensor per frame. Hence, the number of photons that can be detected per time
interval ∆t per pixel must not exceed

npx ≤ f∆t/9, (1)

where f is the detector frame rate. However, due to the stochastic nature of photon detection,
pileup of more than one photon per 3×3-cluster and frame is likely to happen if the mean flux is
close to the threshold on the right hand side of (1). This should be avoided by using a factor
of 10 lower flux than the one given in (1). Note that interpolation further decreases the photon
statistics per interpolated pixel since all the available photons have to be distributed amongst the
pixels of the interpolated image.
Here we give a brief overview of the sub-pixel photon position finding algorithm which is

used to interpolate the images. In this study, we use an improved version of the position finding
algorithm described in Ref. [15], which is based on a two-dimensional generalization of the
η-algorithm [16]. For a model of the charge diffusion inside the sensor see Ref. [17] and the
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references therein. The first step is to identify charge clusters caused by photon hits as described
in [18], producing a list of 2×2-clusters. Each cluster is further analyzed separately to find the
center of the charge cloud with sub-pixel resolution in the following way.

Let p be the pixel pitch and let (x, y) be a Cartesian coordinate system centered in the center of
the 2×2-cluster and let (x0, y0) denote the center of the charge distribution. Clearly (x0, y0) lies
within |x0 | ≤ p/2, |y0 | ≤ p/2 (black dashed square in Fig. 1), otherwise a different 2×2-cluster
would have been identified. Let Q1,1,Q1,2,Q2,1, and Q2,2 be the charges in the 4 pixels (see
Fig. 1) and let Q =

∑
i,j Qi,j be the total charge. Define

ηx :=
Q1,2 + Q2,2

Q
∈ [0, 1], ηy :=

Q2,1 + Q2,2

Q
∈ [0, 1]. (2)

It is easy to see that ηx ≥ 0.5 if and only if x0 ≥ 0 and likewise ηy ≥ 0.5 if and only if y0 ≥ 0. Thus
(ηx, ηy) can be used without further steps for two-fold interpolation. Higher resolution requires
more information about the functional dependence of (ηx, ηy) on (x0, y0) or, more formally, on
the map

Ψ
−1 : (x0, y0) 7→ (ηx, ηy). (3)

The properties and shape of Ψ−1 depend on the shape of the charge distribution and on the local
charge collection efficiency within the pixels. Depending on the spatial diameter of the charge
distribution with respect to the pixel pitch p, the map Ψ−1 will either be surjective, injective, or
both. Difficulties arise from the fact that there is no simple way to measure Ψ−1.
Assume that Ψ−1 is invertible and define Ψ :=

(
Ψ−1

)−1 to be its inverse. Such a map Ψ can
also be defined for non-invertible Ψ−1 but we omit this here for brevity. Information about
Ψ can be inferred by measuring a flat-field, i.e. shining light uniformly onto the sensor, and
computing a 2-dimensional histogram of (ηx, ηy) to estimate the probability density f0(ηx, ηy).
Using that (x0, y0) is distributed uniformly within [−p/2, p/2]2, i.e. its probability density is
ρ(x0, y0) = 1/p2, it follows that

f0 = (ρ ◦ Ψ) |DΨ| =
1
p2
|DΨ| , (4)

where
|DΨ| =

∂Ψ1
∂ηx

∂Ψ2
∂ηy
−
∂Ψ2
∂ηx

∂Ψ1
∂ηy

(5)

denotes the Jacobian determinant in terms of the two components (Ψ1,Ψ2) = Ψ. The key problem
is to estimate the map Ψ from a known probability density f0. More formally, it comes down to
finding a continuously differentiable map Ψ : [0, 1]2 → [−p/2, p/2]2, that solves

|DΨ| = f0, (6)

where we absorbed the constant factor p2 into f0. Such a solution always exists (given f0 is
sufficiently well-behaved) but is generally not unique [19]. In the simplest case Ψ1 is independent
of ηy and likewise Ψ2 is independent of ηx. In this case the second term on the right hand
side of (5) vanishes and a (unique) solution can be found using the marginal distributions
f0X(ηx) :=

∫
f0(ηx, ηy) dηy, f0Y (ηy) :=

∫
f0(ηx, ηy) dηx and solving the first order ODEs Ψ′1 = f0X

and Ψ′2 = f0Y . However, the function f0 does not factorize in general as can also be seen from the
measured f0 shown in Fig. 1(b,c). This non-factorizability can be caused by "dead regions" in the
local charge-collection efficiency as well as by some charge-clouds having tails that extend beyond
the 2×2-cluster. The simple approach can nevertheless be used to obtain an approximate solution
for reasonable results [18]. A more involved approach using a custom iterative optimization
procedure was proposed in Ref. [15]. However, their method is computationally very expensive.
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Fig. 1. (a) Sketch of the sub-pixel position finding method. A photon incident at (x0, y0)
generates a charge cloud (blue) that is shared among the pixels in a 2×2-cluster size. These
4 charges Qi,j are used to compute coordinates (ηx, ηy). A non-linear transformation Ψ
is used to reconstruct the spatial coordinates (x0, y0) from (ηx, ηy). (b,c) Histogram of
(ηx, ηy) measured by homogeneous illumination with photons of energies 7 keV to 11.2 keV
and 22 keV to 26.5 keV, respectively. The lines indicate the corresponding coordinate
transformationΨ (iso-lines in the image) calculated with the algorithm described in appendix
A.

In this work, we propose to use a method described in Ref. [19], which greatly simplifies
for the problem at hand. It consists of first computing a special solution of (6) and (optionally)
refining this solution in an iterative procedure to obtain a unique "optimal" solution. The solution
is optimal in the sense that it minimizes the integral∫

‖Ψ(x) − x‖2 f0(x) dx, (7)

and thus penalizes the distance the map Ψ moves each bit of material. Such a map is hence called
an optimal transport map. The method is described in appendix A. Each iteration step consists
only of a few fast Fourier transforms and point-wise operations. The method usually converges
in less than 50 iterations on a 100×100 grid. Note however, that an optimal transport map is
curl-free, while the physical solution will not necessarily be curl-free. Nevertheless, since the
curl-free solution inherits the symmetries from the probability density f0 it should be a good
approximation to the physical solution for the purpose of interpolation.

3. Experiment

The experiments were performed at the Institut fär Röntgenphysik, Göttingen, using the JuLiA
µCT facility and the local computing infrastructure. A sketch of the laboratory setup is shown in
Fig. 2(a). The liquid-metal jet X-ray source (Excillum, Sweden) with a Galinstan (GaInZn alloy)
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anode was operated at 70 kV acceleration voltage, 18W electron power, and a source spot of
≈10 µm in diameter. A 12.5 µm-thick iron filter was used to attenuate the lower energies that
dominate the spectrum. Sample and detector were placed at z01 = 134 cm and z02 = 171 cm
downstream from the source, respectively, resulting in a geometric magnification of M = 1.28
and a maximum divergence of 3mrad.

Fig. 2. Experimental setting. (a) Sketch of the JuLiA liquid metal jet X-ray laboratory setup.
(b) Energy spectra of the empty beam as measured with the MÖNCH03 and an AmpTek
X-123 CdTe MCA. The colors indicate the energy bins that were used to generate the
energy-resolved images. (c-g) Empty-beam corrected images of one tomographic projection
for the different interpolation factors and energy bins: (c) 4-fold interpolation, energy range
between 7 keV to 30 keV; The inset shows a magnified region (black rectangle) containing a
thin hair that spans 1-2 pixels; (d-g) 2-fold interpolation, energy range as sketched in (b).
The black grains on the left are caused by dead pixels. The images clearly show an edge
enhancement due to phase-contrast. The gray-values encode the normalized intensity. Scale
bars: 300 µm.

A dry cochlea of a mouse with an optical implant [20] that has been imaged previously with
other methods was used as sample. The implant consists of GaN µLEDs (62×62×4.5 µm3)
arranged on a 230 µm-wide polyimide-strip and connected with AuTi and Pt tracks. The whole
implant is dip-coated in silicone.

The MÖNCH03 detector was operated with 0.5ms counting time and, including the read-out
(dead) time of 0.25ms, a total frame period of 0.75ms. In total 721 tomographic projection
(angles) with 3.5×105 frames each were acquired.

The reconstruction of the 3d-volumes from the detector data was performed in a multi-step
process. First, several hitmaps for different pixel-resolutions and photon energy windows were
computed for each tomographic projection using in-house C++-code, making significant use of
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the Eigen library [21]. More information about this procedure is given in appendix A. The result
of this first step are several independent tomographic data sets for different energies (colors) and
resolutions. One high-resolution data set with an interpolation factor 4 and photon energy range
7 keV to 30 keV, and 4 energy-resolved data sets with a smaller interpolation factor 2 and energy
ranges 7 keV to 11.2 keV, 11.2 keV to 16.6 keV, 16.6 keV to 22 keV, and 22 keV to 26.5 keV, were
generated. The energy ranges and resolutions were chosen such that the photon statistics for each
data set are approximately the same, resulting in 100 to 200 photons per pixel and tomographic
angle. Then, these data sets are fed independently into the well-established data processing
pipeline (see for example Ref. [22]) using the HoloTomoToolbox [23]. After empty-beam
correction, the dead pixels were treated by replacing them with the corresponding values of
the 180°-rotated sample. To utilize the strong "edge enhancement" due to phase contrast, the
corrected images were then filtered with the BAC-algorithm [24]. The FDK-algorithm provided
by the ASTRA-Toolbox [25] was used for tomographic reconstruction.

The high-resolution reconstruction (full photon energy bandwidth) was segmented manually in
Avizo. Independently automatic segmentations were computed using the Fuzzy Local Information
C-Means (FLICM) algorithm [26]. These segmentations were benchmarked with the manual
segmentation, which was considered "ground truth". More details are given in section 5.

4. Results

Figure 2(b) shows the photon energy spectra of the empty beam detected by the MÖNCH03 and
an Amptek X-123 CdTe spectrometer, respectively. The CdTe spectrometer clearly resolves the 3
main pairs of emission lines of the Galinstan anode: the gallium Kα and Kβ lines at 9.2 keV and
10.3 keV, respectively, the indium Kα at 24.2 keV and tin Kα at 25.2 keV, as well as the indium
Kβ at 27.3 keV and tin Kβ and 28.5 keV. The individual Kα1 and Kα2 lines are not resolved.
On the other hand, the MÖNCH03 shows peaks for the three pairs, not resolving the individual
lines within the pairs. Due to the rapidly decreasing absorption cross section of the 300 µm-thick
silicon sensor for higher energies, the second peak is significantly lower than the first and the
third peak is barely visible. The energy resolution of the MÖNCH03 was determined to be
approximately 1.3 keV FWHM by convolving the AmpTek spectrum with Gaussians of varying
widths and optimizing for the best agreement of the peak shapes with the MÖNCH03 spectrum.
Due to 2×2 clustering, this value should ideally be a factor of two larger than the electronic noise
of a single pixel (2 × 425 eV = 850 eV FWHM). Additionally, gain mismatches between pixels,
Fano noise, and the Compton background due to the high-energy tail of the bremsstrahlung
spectrum impair the energy resolution. The plot also shows the different energy bins (colors)
which were used for the interpolation – labeled here as red, yellow, green, and blue.

Figure 2(c) shows an empty-beam corrected image from the high-resolution data set. The black
dots on the left are the result of dead pixels in the MÖNCH03 prototype. Similarly, (d-g) show the
same image for the 4 different energy ranges. The absorption rapidly decreases with increasing
photon energy, as expected, but most regions of the cochlea are always in a transmission range
between ∼80% and ∼10%. For the given geometric magnification of image recording, the
effective pixel size due to the demagnification of the (physical) pixels is approximately 20 µm;
thus the two-fold and 4-fold interpolated images result in effective pixel sizes of 10 µm and 5 µm,
respectively. The source diameter of10 µm (again for the given M) results in an effective diameter
of the source below 3 µm and should hence have negligible impact on the system resolution. In
the inset of Fig. 2(c) a thin hair spanning 1-2 pixels in diameter is visible, giving an upper bound
for the resolved feature size. The Fourier-ring-correlation (FRC) [27] of 2 independent images of
the same tomographic projection, each having 2/5 of the photon fluence of the full image, puts
all spatial frequencies well above the 1/2-bit-threshold [28], indicating in fact a pixel-limited
resolution even in the 4-fold interpolated images. It should be noted however, that we can not
exclude that the FRC-result is affected by the interpolation procedure itself (resulting in spurious
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correlations at high spatial frequencies). A closer look (high-resolution images online) to the
inset of Fig. 2(c) in fact reveals a faint checkerboard pattern at the base of the sample, that is
neither present in the background nor in the 2-times interpolated images.
Figure 3(b-f) shows slices through the reconstructed volumes (attenuation coefficients) for

different photon energy ranges. The change of contrast and decrease of overall absorption with
increasing photon energy is evident.

Fig. 3. Manual segmentation, rendering and reconstruction slices. (a) 3d rendering of the
different materials (bone-colored: bone, green and violet: membranes, red: silicone, gold:
conducting tracks/wire, blue: µLED-chips), segmented manually from the high-resolution
(full photon energy bandwidth) data. (b-f) Tomographic slices through the reconstructed
volumes from the different data sets: (b) 4-fold interpolation; 7 keV to 30 keV photon energy
range; (c-f) 2-fold interpolation, photon energy range as shown in Fig. 2(a). The gray-values
encode the effective attenuation coefficient per voxel in the corresponding photon energy
range.

Next, we explore the capability to classify different materials based on multi-E channels. To
this end, we first performed manual segmentation in the high-resolution data set. We segmented
background, bone, membrane (representative of all soft unmineralized tissue), silicone, and
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implant, distinguishing between conducting tracks/wires and the bulk µLED consisting mainly of
GaN [20]. A 3d rendering of the segmented volume is shown in Fig. 3(a).
The manual segmentation was used to extract the attenuation coefficients of the different

materials for the used energy ranges. Figure 4(a) shows the measured mean attenuation coefficient
for membrane (green diamonds) and bone (light gray triangles) together with the theoretical
curves [29] (dashed lines) for Compact Bone (ICRU) and Soft Tissue (IRCP). The vertical error
bars mark 1σ of the experimental values. The experimental values follow the expected decay
without absorption edges and are quantitatively in good agreement.

Fig. 4. Photon energy dependency of attenuation coefficients for different materials. The
material labels frommanual segmentation were used to extract distributions of the attenuation
coefficients at different photon energies (points with error bars). The error bar in the energy
range indicates the width of the photon energy bin, the error bar in the attenuation coefficient
marks 1σ of the distribution. (a) The experimental values are compared to simulated [29]
attenuation curves (dashed lines) for "Bone, Compact (ICRU)" and "Tissue, Soft (IRCP)".
(b) Simulated curves (dashed lines) for a voxel with 1/10 (volume density) GaN and a voxel
with 1/100 gold.

Figure 4(b) shows the the corresponding values for the voxels classified as LED-chip (blue
disks) and wire (golden stars), respectively. The attenuation coefficient of the chip shows a
slight decrease in the lowest energy bin. This can be partially attributed to the fact that the
gallium Kα and Kβ emission lines (which make up the majority of this lowest energy bin)
are below the gallium K absorption edge (blue dashed line) at 10.37 keV. Thus the gallium
emission is less attenuated in the chip than photon energies above the edge. The blue dashed
line corresponds to the attenuation expected for GaN with 1/10 volume density within the
voxels. This fractional volume density qualitatively reflects that the 4.5 µm-thick GaN chips
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are significantly thinner than a voxel. The conducting tracks consist mainly of gold, having 3
L absorption edges between 11.29 keV and 14.35 keV. This could explain that the attenuation
coefficient of the voxels containing the wire decreases only slowly with increasing energy. The
tracks are however significantly thinner than the voxel edge length and thus only occupy a fraction
of the voxel volume. The plotted curve for gold corresponds to 1/100 volume filling (golden
dashed line), and may serve as a reference.
Figure 5 shows the distribution functions of the attenuation coefficients as violin plots for

the different manually segmented components (material classes), namely for (a) bone, soft
tissue and implant wire, and for (b) the implant chip. Conventional µCT measures the summed
distribution functions without energy separation. The summed distribution functions are shown
on the right of the vertical dashed line. While the mean clearly differs between material classes,
the substantial width of the distribution and their tails result in significant overlap impeding
unambiguous segmentation only based on gray value. This situation is considerably improved if
the information of all E-bins is taken into account, providing a higher diversity in the data and
hence a better starting point to differentiate material components. Interestingly, even the means
of the different components vary non-monotonously with respect to each other with E, clearly
showing that the classes have different elemental compositions.

Fig. 5. Distribution functions of segmented materials, showing (a) bone (light gray), soft
tissue (green), and wire (gold), and (b) the GaN-rich chip of the cochlear implant for
different photon energies. The bars indicate the mean of each distribution. The means
vary non-monotonously with E, indicating the presence of different absorption edges in the
materials.

The width of the distribution of the attenuation coefficients within each channel is still
considerably large. For biological materials, this can be expected due to the native spread in
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mass density and composition within each material class. This intrinsic distribution of values is
highly interesting as a result. However, while ‘bone’ may be a rather well defined class, we may
question the validity of the chosen class, for example for ‘membrane’, which regroups several
distinct soft tissues resulting in an artificial spread. Further, the sampling and statistical errors
broaden the measured histograms. The attenuation values of boundary voxels, for example or all
other poorly sampled structures represent (in the best case) averages of partial volumes. Also, the
segmentation was done by hand and is not perfect such that some voxels may have been falsely
classified. We believe the partial volume effect to be dominant for the classes ‘chip’ and ‘wire’.
Finally, photon noise limits the achievable accuracy, however, at values much smaller than the
measured width of the histograms.

5. Automatic segmentation

A variation of "Fuzzy c-means clustering" called FLICM [26] was employed to automatically
segment the reconstructed volume into classes of different materials. Further information about
the algorithm is given in appendix B. The number of clusters c = 4 corresponds to the number of
materials in the reconstructed volume that could be reliably distinguished by the algorithm. The
algorithm was applied independently to 2 data sets: a 1-channel volume using all photons in
the E-range 7 keV to 30 keV, and a 3-channel volume with the E-ranges 7 keV to 11 keV, 11 keV
to 20 keV, and 20 keV to 30 keV, respectively. In both cases the total number of photons were
identical and the interpolation factor was 2.
Three bins instead of four bins were used, because the relative positions of the distribution

functions in the bins 11.2 keV to 16.6 keV and 16.6 keV to 22 keV (see Fig. 5) was found to be
quite similar. Furthermore, the number of bins n had to be compromised against the noise level
in each energy-channel which of course increases with n. For practical reasons, it should also be
noted that computational time for the FLICM algorithms also increases with n.
As pre-processing, each of the n features (multi-channel gray values) were normalized to

have zero mean and unit variance. Afterwards the cluster centroids were initialized with a
random voxel of each class defined in the manual segmentation. The parameter m (fuzziness)
was optimized in the interval [1.5, 3.0].

Figures 6 and 7 show a slice of the automated segmentation in a region of interest around the
implant. Comparing the pixels classified as bone (blue) and soft tissue (green) for the 1-channel
and the 3-channel segmentation in Fig. 6(c) and (d), respectively, one immediately appreciates
the benefits of a vector of gray levels based on E discrimination. In particular, the number of
background pixels which are falsely classified as soft tissue is significantly higher without E
discrimination. This is also the case for the region of-interest around the implant, see Fig. 7,
where the success of the classification is illustrated. Comparing the upper row for the 3-channel
dataset with conventional single-channel gray value in the lower row, one again clearly can
appreciate the advantage of photon energy discrimination.
Figure 7 shows a high amount of false positives for membrane and silicone segmentation.

This is likely caused by the high degree of noise in the data and the low overall gray values for
membrane and silicone in all E-channels (see 5). However Fig. 7(b,e) shows clear improvements
using the 3-channel data set. Correct segmentation of the chip is challenging due to its small
dimensions, very high absorption, and the (sub-voxel) layer structure of its internal compounds
leading to inconsistent absorption values. Beam hardening (over-proportional absorption of
lower energy photons) causes additional artifacts in particular in the full energy reconstruction.
Automatic segmentation of chip and wire material is still inaccurate, as shown in Fig. 7(c,f).
Using three energy channels improves the segmentation of the chip nevertheless. Note that the
classification shown in Fig. 7 should be taken with caution, since the manual segmentation that is
used as a reference is not perfect and generated only from the full-energy data set. In particular
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Fig. 6. The reconstructions were segmented using FLICM clustering algorithm in 3D. (a-d)
show a slice of the reconstruction of the data set using full photon energy bandwidth: (a)
original slice; the positions of the image details in Fig. 7 are indicated by the red and the blue
rectangle. (b-d) are overlayed by different segmentation masks: (b) manual segmentation; (c)
automatic segmentation of reconstruction using full photon energy bandwidth; (d) automatic
segmentation of reconstruction with 3 energy channels. Scale bars: 300 µm
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Fig. 7. Details of the segmentations using the full energy bandwidth dataset (a-c) compared
to the three energy bin dataset (d-f). The positions of the image details are indicated by the
red (a,b,d,e) and the blue (c,f) rectangle in Fig. 6(a). True positives (green), false positives
(red) and false negatives (orange) were identified using our ground truth. Three classes are
shown in detail: (a,d) bone; (b,e) membrane and silicone; (c,f) chip. Scale bars: 300 µm

the exact outlines of the bone regions and the identification of soft tissue are ambiguous with
only one gray value.

6. Discussion, conclusion and outlook

We first briefly discuss the two main capabilities of the detector exploited here, interpolation and
energy-resolution. The 4-fold interpolated images reproduced physical features of the size of
single pixels and a FRC-based criterion suggests pixel-limited resolution, demonstrating that
4-fold interpolation without loss of resolution is indeed feasible with the MÖNCH. Here the
FRC-based resolution limit should be taken with care as the applicability of the criterion is not
entirely obvious for this kind of interpolated images and needs to be studied in more detail.
The interpolated images exhibit a checkerboard pattern in homogeneous areas of medium

absorption such as the base of the sample. This can be understood as follows: The energy-
dependence of the attenuation coefficient causes the photon-energy distribution behind a partially
absorbing object to be shifted towards the higher energies, which is known as beam hardening.
The map Ψ that is used in interpolation however, is computed for a photon-energy distribution
without absorption, and hence incorrect in regions of the image that are affected by beam
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hardening. This incorrect Ψ causes artifacts in the interpolated image which manifest themselves
as a periodic "checkerboard" pattern in homogeneous areas. Computing Ψ in finer E-bins
and using this information for the interpolation could suppress these artifacts and improve the
reconstruction.
With respect to the interpolation algorithm, the question arises whether the physical solution

of (6) can be extracted from the solution space without modeling the charge distribution and
charge collection efficiency. While we cannot give a definite answer yet, the algorithm proposed
here allows to solve (6) both in a more exact and faster manner than the previously proposed
methods. Future work will be directed at benchmarking the interpolation results by comparison
with data from high resolution detectors. At this point we have no indication that the results
suffer from flawed interpolation aside from the mentioned (minor) artifact.

With respect to the energy resolution, we note that the comparison of the integrated MÖNCH
spectrum to the spectrum measured with a high resolution CdTe-solid-state spectrometer
(AmpTek), gives evidence of the moderate energy resolution of the MÖNCH and the reduced
sensitivity at higher E due to the sensor properties. Although we did not achieve the theoretical
energy resolution of 0.85 keV, this does not impede the exploitation of three or four energy
bins to reliably distinguish (groups of) characteristic emission lines, which were chosen with
respect to the given spectrum and the object’s optical properties. The present energy resolution
already significantly facilitates the identification of the implant material, as well as automatic
classification of background, soft tissue (membranes), and mineralized tissue (bone). In future
works, a more careful energy calibration of the individual pixels is likely to improve the energy
resolution. Note that the energy channels can flexibly be chosen a posteriori and flexibly adapted
to the sample under study, as exploited for the FLICM-segmentation.
Interesting extensions of this work would involve detailed numerical simulations to gain a

quantitative understanding of the experimental and segmentation parameters, in particular the
optimum number n of energy bins. The number of segmentation classes, and the optimum design

Fig. 8. Phase contrast imaging of a dandelion seed head with 5-fold interpolation, acquired
with a nano-focus source (Excillum, Sweden). (a) Empty-beam corrected image. The high
spatial interpolation ensures that the edge-enhancement (phase effects) are well captured.
(b) reconstructed image (BAC algorithm [23]) with image (parameters α = 0.014, γ = 0.95).
The parameters of image acquisition were: z01 = 27 mm, z02 = 375 mm, M = 13.9
geometric magnification, 50 µA, 60 kV, 1×106 frames, source size 500 nm, effective source
size 1.3 px, 0.36 µm effective pixel size. Scalebar: 100 µm.
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of the emission spectrum, for example using anode alloys with taylored emission lines could also
be studied using well controlled phantoms and by simulation. Further, it would be of interest to
better quantify the information gain, for example based on a Bayesian approach. Quantification of
the difference in histograms by Kullback-Leibler distance or Wasserstein metric could also help
to better understand how and if energy discrimination results in information gain for a particular
measurement as a function of energy bins n .
The fact that the MÖNCH can work only under low flux illumination appears to be the most

limiting experimental factor. However, the high photon sensitivity together with its high resolution,
makes the detector a perfect match for a nano-focus source, where fluence is intrinsically reduced.
For this reason we will use it in future work for tomography at our nano-focus source [30],
where interpolating and energy resolving detection technology is expected to result in significant
progress. A first example for a nearly pure phase object and the corresponding image quality
obtained by 5-fold interpolation is shown in Fig. 8.

Appendix A. Interpolation

Here we describe the algorithm to solve (6). For brevity we consider the equivalent rescaled
problem of finding a diffeomorphism u : Ω→ Ω with Ω = [0, 1]2, that solves

|Du| = f0, (8)

for some given positive and bounded function f0 : Ω→ R>0. Problem (8) is related to (6) by a
shift and rescaling, Ψ = pu − (p/2, p/2), where Ψ and p were defined in section 2.
An initial solution of (8) can be computed as follows. Define a′(x) by

a′(x) =
∫ 1

0
f0(x, t)dt (9)

and
a(x) =

∫ x

0
a′(t)dt, (10)

b(x, y) =
1

a′(x)

∫ y

0
f0(x, t)dt. (11)

Then
u0(x, y) = (a(x), b(x, y)) (12)

solves (8) as can be easily checked.
The true physical solution u must have certain symmetries on Ω which it inherits from the

symmetries of the pixels and the charge distribution. Since the charge distribution is isotropic on
average and the pixels are quadratic, i.e. have a D4 symmetry, any physical u must satisfy

u(Pxx) = Pxu(x), (13a)

u(Pyx) = Pyu(x), (13b)

u(x⊥) = u(x)⊥, (13c)

where Px and Py denote reflection at x = 1/2 and y = 1/2, respectively, and ⊥ denotes rotation
by 90°. As a consequence the function f0 again has a D4 symmetry, i.e.

f0(Pxx) = f0(Pyx) = f0(x⊥) = f0(x), (14)

which is very well satisfied for the experimental data as can be seen in Fig. 1(b,c).
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The solution (12) satisfies (13a) and (13b) as can be easily checked using (14), but is by
construction not symmetric under exchange of x and y and thus violates (13c). Also, the order of
integration was chosen arbitrarily. It is therefore desirable to impose additional constraints to
obtain a unique solution reflecting the physical symmetries. One possibility is to minimize the
integral (7) on the solution space of (8). Such an optimal transport map can be computed from
an initial solution such as (12) by a gradient-descent algorithm [19,31] with update step

ul+1 = ul + γl
1
f0

Dul χl, (15)

where χl is the divergence-free part of ul, f0 is the measured probability density, Dul is the
Jacobian matrix, and γl>0 is an appropriate (possibly constant) step size. The update step
utilizes the Helmholtz decomposition of the function u into its curl-free and divergence-free
parts, respectively: u = ∇w + χ.
In R2, the divergence-free part can be expressed as χ = ∇⊥h for some function h : Ω→ R.

Here ⊥ denotes rotation by 90°, i.e. u⊥ = (−u2, u1) and ∇⊥h = (−∂yh, ∂xh). The function h can
be obtained by solving the Dirichlet-type boundary problem on Ω = [0, 1]2

∆h = −div(u⊥),
h = 0 on ∂Ω.

(16)

From (13a) and (13b) it follows that the right hand side of (16), div(u⊥), is an odd function in
x and y that vanishes at the boundary. It can thus be expressed in a sine basis with zero offset,

div(u⊥) =
∞∑

kx=1

∞∑
ky=1

bkx,ky sin(2πkxx) sin(2πkyy), (17)

with coefficients bkx,ky ∈ R. Expanding h in a Fourier series and comparing the coefficients yields

h(x, y) =
∞∑

kx=1

∞∑
ky=1

bkx,ky

(2πkx)2 + (2πky)2
sin(2πkxx) sin(2πkyy). (18)

This solution (18) can be easily computed numerically on a finite 2d grid using fast Fourier
transforms F ,

h = F −1
((
(2πkx)

2 + (2πky)
2
)−1
F

(
div(u⊥)

) )
, (19)

setting the zero frequency component to 0. Using (19) to compute hl from ul, the complete
update step of the gradient-descent scheme (15) can be written as

ul+1 = ul + γl
1
f0

Dul∇
⊥hl. (20)

Appendix B. Fuzzy Local Information C-Means

Here we briefly describe the Fuzzy Local Information C-Means (FLICM) algorithm [26]. It
is a variation of the fuzzy c-means (FCM) algorithm [32] for image segmentation using local
information.

FCM is a clustering algorithm that assigns each item (here: voxel) to a predefined number of
clusters c. Thereby the algorithm uses the so called membership matrix uik that indicates the
degree of each voxel i belonging to a cluster k. In relation to (volumetric) image segmentation
the matrix uik is computed using similarity measures between each voxels grayvalues (or
multi-channel values) xi and the centroids of each cluster vk.
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The degree of "fuzziness" is controlled by the parameter m. In the limit m→ 1 the algorithm
converges to the k-means algorithm, while for m→∞ the matrix u becomes uniformly distributed.
After some initialization of u, two steps are repeated until the algorithm converges:

1. Compute the centroid vk for each cluster k.

2. Compute the membership matrix u.

FLICM uses the same iteration scheme but introduces an additional local fuzzy factor Gki
between a cluster k and a voxel i for computing the membership matrix uki. In the case at hand
"local" denotes spatial vicinity of voxels. The iteration step is then defined as

v(b+1)k =

∑
i

(
u(b)ki

)m
xi∑

i

(
u(b)ki

)m (21)

u(b+1)ki =

©­­­«
c∑

l=1

©­­«



xi − v(b+1)k




2 + G(b+1)ki


xi − v(b+1)l




2 + G(b+1)li

ª®®¬
1

m−1 ª®®®¬
−1

, (22)

where ‖ · ‖ here denotes the Euclidean distance. The fuzzy factor Gki for the cluster k and voxel i
is defined as

G(b+1)ki =
∑

j∈Ni\{i}

1
‖xj − xi‖ + 1︸          ︷︷          ︸

(I)

(
1 − u(b)kj

)m︸       ︷︷       ︸
(II)

‖xj − vk‖
2︸      ︷︷      ︸

(III)

, (23)

were Ni denotes some set of neighbours to i. In this work we used the 26 spatially nearest
neighbours of the voxel i to define Ni. The term (I) in (23) is independent of the current iteration
step. It operates as a weight that the influence of similar voxels in the i-th neighbourhood is
higher then from dissimilar voxels. Term (II) provides tendency that voxels become members of
the same cluster as their neighbours. Term (III) measures the confidence that the neighbouring
voxel j belongs to the k-th cluster and thus stabilizes (II). The fuzzy factor reduces the sensitivity
to noise and outliers in the data x, and promotes spatially larger connected segments.
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