

Machine learning for orders of magnitude speedup in multiobjective
optimization of particle accelerator systems

Auralee Edelen ,1,* Nicole Neveu,1 Matthias Frey,2 Yannick Huber ,2

Christopher Mayes,1 and Andreas Adelmann2,†
1SLAC National Laboratory, Menlo Park, 94025 California, USA

2Paul Scherrer Institut, 5232 Villigen, Switzerland

(Received 2 October 2019; accepted 24 January 2020; published 8 April 2020)

High-fidelity physics simulations are powerful tools in the design and optimization of charged particle
accelerators. However, the computational burden of these simulations often limits their use in practice for
design optimization and experiment planning. It also precludes their use as on-line models tied directly to
accelerator operation. We introduce an approach based on machine learning to create nonlinear, fast-
executing surrogate models that are informed by a sparse sampling of the physics simulation. The models
are Oð106Þ–Oð107Þ times more computationally efficient to execute. We also demonstrate that these
models can be reliably used with multiobjective optimization to obtain orders-of-magnitude speedup in
initial design studies and experiment planning. For example, we required 132 times fewer simulation
evaluations to obtain an equivalent solution for our main test case, and initial studies suggest that between
330–550 times fewer simulation evaluations are needed when using an iterative retraining process. Our
approach enables new ways for high-fidelity particle accelerator simulations to be used, at comparatively
little computational cost.

DOI: 10.1103/PhysRevAccelBeams.23.044601

I. INTRODUCTION

Physics simulations are essential tools for the initial
design of modern particle accelerator systems, as well as
for the subsequent optimization of new operating configu-
rations. However, there is generally a trade-off between
simulation speed and accuracy in terms of the represented
physics effects. Standard codes for simulating accelerator
systems can be computationally intensive to run, particu-
larly when complex beam behavior must be taken into
account (e.g., instabilities, collective effects, beam self-
fields). Exacerbating this computational burden, accelerator
systems often consist of many components that can be used
to accelerate and manipulate the beam (e.g., accelerating
cavities, bending and focusing magnets, collimators). Each
of these components has controllable variables that can be
independently adjusted to achieve specific beam character-
istics. In many cases, the subtle interactions between all
variables must be considered, and modeling these systems
from “start to end” (i.e., from the beginning of the
accelerator to a final point of interest) is critical for

obtaining realistic predictions. To support this, design and
optimization studies for particle accelerator systems often
require the use of thousands of cores at high performance
computing (HPC) facilities. While in principle many large
accelerator facilities have access to such resources, in
practice this computational burden significantly hampers
efforts to conduct comprehensive optimization studies.
Optimization studies are important in the initial design

of particle accelerator systems, when many trade-offs
between possible setting combinations have to be explored.
In practice, multiobjective optimization with genetic algo-
rithms (GAs) [1,2] is frequently used for finding optimal
setting combinations (see [3–7] for accelerator-specific
examples). One advantage of using multiobjective optimi-
zation is that it enables one to examine optimal trade-offs
between achievable beam parameters. This is done via
examination of the estimated Pareto fronts, which delineate
the limit at which one can no longer improve a particular
parameter without negatively impacting another parameter.
These trade-offs drive the selection of machine working
points, which in turn guide the rest of the design process
(such as selection of rf equipment with appropriate
specifications).
For accelerators that are already in operation, off-line

optimization is also used to aid in experiment planning and
setup. This is especially the case for facilities that require
frequent retuning of settings. For example, at free electron
laser (FEL) facilities like the Linac Coherent Light Source

*edelen@slac.stanford.edu
†andreas.adelmann@psi.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 044601 (2020)

2469-9888=20=23(4)=044601(23) 044601-1 Published by the American Physical Society

https://orcid.org/0000-0002-5833-2003
https://orcid.org/0000-0003-4172-8228
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.23.044601&domain=pdf&date_stamp=2020-04-08
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

(LCLS) and Swiss Free Electron Laser (SwissFEL), a
variety of scientific user requests for specific beam param-
eters need to be accomodated, and new configurations (e.g.,
novel FEL schemes) are often developed during limited
blocks of time between the scheduled user experiments.
Simulations can be used to aid both.
Even though high-fidelity physics simulations are often

created as part of the initial design process for a new
accelerator, they are often not fully utilized during machine
operation (i.e., as “on-line models”) for on-the-fly opti-
mization and control. On-line models can be used in model-
based control and can provide estimates of normally
inaccessible beam parameters. They can also be used to
perform rapid analysis in the control room and to plan out
new courses of action as goals during an experimental shift
may change. In addition, on-line models can be used to
help identify when anomalous conditions have arisen (for
example, if model predictions suddenly show a sharp
increase in error). High-fidelity physics simulations are
typically not used on-line due to their computational
expense: the execution speed is often too slow to aid
operation. Instead, on-line models tend to rely on greatly
simplified representations of the machine physics (e.g., see
[8–10]), and as a result trade accuracy for speed.
In light of these limitations, improving the execution

speed and scalability of particle accelerator simulations is
an area that has seen considerable effort in recent years
[11,12]. Approaches to do this have focused on paralleli-
zation (e.g., see [13,14]) and hardware-based acceleration
of existing simulation codes (e.g., using graphical process-
ing units, GPUs) [15,16]. In a few exceptional cases,
computationally expensive models have been used to aid
live operation when on-site HPC resources are avail-
able [17]. Improvements to underlying modeling algo-
rithms, such as using the Lorentz boosted frame [18] and
spectral solvers [19,20], have also provided orders of
magnitude increases in computation speed. All of these
efforts are highly successful. However, it remains the case
that the computational expense of these simulations pre-
vents them from being fully utilized.
Here we explore a different, but complementary,

approach that immediately enables new capabilities in
how these existing high-fidelity physics simulations can
be used by the particle accelerator community. We show
that one can create machine learning (ML) based surrogate
models to obtain accurate, fast-executing representations of
the relevant beam dynamics from a sparse sampling of the
physics simulation of interest. In contrast to the physics
simulation, the ML models can execute in fractions of a
second on a laptop with comparable accuracy in predicting
the resultant beam parameters. We also show that these
models are useful for multiobjective optimization in two
important ways: (1) they can accurately reproduce opti-
mization results obtained from the physics simulation,
meaning they can be reliably used in experiment planning

and live optimization during accelerator operation, and
(2) they can be used to substantially speed up the initial
design process by eliminating the need to run an optimi-
zation algorithm entirely on the simulation. In addition,
although we do not address it in this work, these models can
in principle be updated with machine measurements (e.g.,
see [21,22] for an initial example) to help improve model
fidelity with respect to the real machine behavior.
We have used ML models in several previous instances to

create fast-executing surrogates for computationally inten-
sive accelerator simulations [21–25]. Here, we build on those
works and take a substantial step forward by evaluating such
models for use in optimization (and multiobjective optimi-
zation in particular). Aiding optimization is one of the main
anticipated use cases for ML in particle accelerator appli-
cations [26,27], and as such this work represents an
important contribution to the particle accelerator community.
We also evaluate how many training samples are needed to
obtain an accurate model when used for optimization and
make a brief comparison between different classes of ML
models.
We demonstrate the proposed approach considering two

different types of accelerator systems: the injector at the

accelerator
settings

ML Model

beam parameters
(ground truth)

beam parameters
(ML prediction)

prediction
error

Calculate update to ML
model parameters

++-

slow to execute

Physics
Simulation

fast to execute

accelerator
settings

ML Model beam parameters
(ML prediction)

fast to execute

ML model
parameters

accelerator
settings

beam parameters

slow to execute

Physics
Simulation

ML model
parameters

Training

(a)

(b)

(c)

FIG. 1. Initially, we have a computationally expensive physics
simulation (a). We then use the physics simulation to generate a
sparse set of training data for the ML model that covers a wide
range of input settings. The ML model parameters are then
optimized until the predictions of the beam parameters match
those from the physics simulation (b). The result is a fast-
executing representation of the physics simulation that can be
used for optimization and on-line modeling (c).

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-2

Argonne Wakefield Accelerator (AWA) Facility [28] (a
linear accelerator) and a high-intensity cyclotron proposed
for the search for sterile neutrinos. The latter system is
based on the Isotope Decay At Rest (IsoDAR) design, as
detailed in [29]. The AWA injector has a simple layout that
is very similar to that used by other accelerator facilities,
whereas the cyclotron is a substantially more complex
machine (see [30] for more discussion on the dynamics of
various types of machine designs). These two cases were
chosen specifically to show the generality of the proposed
approach. For simulating both accelerators, the OPAL

simulation framework is used. OPAL [31] is a parallel,
particle-in-cell (PIC) code that handles nonlinear and
collective beam effects (e.g., coherent synchrotron radia-
tion, 3D space charge).
It is common practice in the accelerator community to

use GAs for multiobjective optimization, although alter-
natives exist, such as particle swarm optimization [32,33].
Because of its ubiquity, we chose to run the popular NSGA-II
[34] algorithm with the ML models as our standard for
assessing their performance. For brevity, in the subsequent
text we refer to the OPAL simulation of the AWA and

IsoDAR as the “physics simulation,” and we refer to
NSGA-II as the “GA.”

II. RESULTS

A. Description of ML approach
and validation procedure

The general procedure for creating the ML surrogate
models is shown in Fig. 1, and the procedure for using these
models to improve the speed of optimization of particle
accelerator systems is shown in Fig. 8. An ML model is
trained on a sparse random sample of the accelerator input
variables and the resulting beam parameters. The ML
model can then be used as a fast-executing representation
of the physics simulation. In this work, to assess the
performance of the ML model when used with an opti-
mization algorithm (see Fig. 2), we run a GA with the
physics simulation to optimize settings (e.g., rf cavity
phases, rf cavity gradients, solenoid strengths). We then
run a GA with the ML model and compare the resultant
estimated Pareto fronts. Good agreement between the
estimated Pareto fronts indicates that the ML model can

FIG. 2. Approach for assessing the reliability of ML-based model when used for optimization of beam parameters. We run a GAwith
the physics simulation to find accelerator settings (e.g., rf cavity phases, rf cavity gradients, solenoid strengths) that optimize the beam
parameters. The optimization is repeated using the ML model instead of the physics simulation. We then compare the estimated Pareto
fronts for key beam parameters. Finally, we run the inputs corresponding to the estimated Pareto front predicted by the ML model
through the simulation to verify the accuracy of the prediction.

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-3

be used as an accurate replacement for the physics
simulation in multiobjective optimization. We also take
the input points that correspond to the estimated Pareto
front from the ML model and run these through the physics
simulation to verify the accuracy of the predictions.

B. Validation of ML surrogate modeling
approach for optimization

We chose to assess this approach first with the AWA
linear accelerator. Research at the AWA is focused on
advanced accelerator concepts, which generally include
efforts to improve control, diagnostic instrumentation, and
components (e.g., accelerating structures) for future accel-
erators. Much effort is also dedicated to developing and
testing beam line configurations that could be used for
beam shaping [35], or future linear colliders [36]. Often, the
accelerator settings (e.g., focusing fields for all magnets,
cavity phases, cavity accelerating gradients) are adjusted
prior to each experiment to achieve custom beam character-
istics (e.g., bunch length and transverse sizes). The accel-
erator also regularly operates at bunch charges where
nonlinear effects are important (e.g., 40 nC), and the cavity
fields contain asymmetries. Overall, this results in a
challenging optimization problem, and 3D PIC simulations
are required to accurately predict the beam behavior. A fast-
executing, accurate model of the machine could be useful
for supporting the research program of the AWA. Taken
together, these factors make the AWA a good test case.
We demonstrate the efficacy of the ML approach by

training models on a sparse random sample of six adjust-
able input variables for the AWA and seven of the resultant
beam parameters (see Fig. 3). The inputs were varied
uniformly over a relevant operating range of the accelerator
(see Table I), and the same range of input variables was
allowed for the GA-based optimization. Definitions of the
output beam parameters can be found in Table II. While the
main focus was on an accelerator configuration with a
bunch charge of 40 nC, we also examined a case with 1 nC
bunch charge (where nonlinear effects are less important).
Details on the datasets, training procedures, implementa-
tions of the ML models and the GA, and the details of the
physics simulations can be found in the Appendix. We first
focus on artificial neural networks (NNs) to demonstrate
the technique, and later briefly compare the results with
those obtained from polynomial chaos expansion (PCE)
[25,37] and support vector regression (SVR) models.

FIG. 3. Schematic of the AWA linac, together with the
controllable accelerator settings and predicted beam parameters.
The randomly varied inputs include the injector rf phase ϕ1

and accelerating gradient G1, the linac cavity rf phase ϕ2 and
accelerating gradient G2, and two solenoid strengths K1 and K2.
The output electron beam parameters are the transverse spot sizes
σx and σy, the bunch length σz, the transverse projected emittance
values εx and εy, the longitudinal projected emittance εz, and the
energy spread ΔE. The input variable ranges are determined by
typical operating ranges at the AWA and are shown in Table I. We
examined this setup for 40 and 1 nC bunch charges.

TABLE I. Range of the AWA input variables.

Name Abbreviation
Minimum
value

Maximum
value Unit

Solenoid 1
strength

K1 400 550 m−1

Solenoid 2
strength

K2 180 280 m−1

Injector phase ϕ1 −10 0 deg
Cavity phase ϕ2 −10 0 deg
Injector
accelerating
gradient

G1 60 75 MVm−1

Cavity
accelerating
gradient

G2 15 25 MVm−1

TABLE II. Definitions of beam parameters referred to in the text.

Name Symbol Unit Definition

Position x, y, z m Position of each particle
Momentum px, py, pz 1 γβx; γβy; γβz
Normalized emittance ϵx, ϵy m-rad

ffi
hx2i · hp2

xi − hx · pxi2
p

, similar for y.
Bunch length σz, σs m rms bunch size in z or s
Transverse beam size σx, σy m rms bunch size in x or y
Energy E MeV Mean bunch energy
Energy spread ΔE MeV Energy spread of the bunch
Halo hx 1 Particles outside the core, hx4i

hx2i2
Particles lost PL % Percentage of initial particles that travel outside the accelerator aperture

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-4

The estimated Pareto fronts obtained using the NN
models and the physics simulation are in good agreement
(see Fig. 4). Only 500 random sample points were
needed to train the NN in the 40 nC case and still
generate a set of estimated Pareto fronts that is very close
to those obtained with the physics simulation. In contrast,
obtaining the same result with the physics simulation
required just under 66,000 simulation evaluations.
Furthermore, only a small amount of fine-tuning of the
NN architecture was done in this case, as the initial
topology and hyperparameters were chosen based on
previous experience of the authors with similar types of
injector modeling problems [21–24]. This highlights the
generality of this approach for common kinds of accel-
erator components and hints at the possibility for doing
transfer learning with the produced models (in which a
pretrained model can be applied to a new system with
relatively little retraining).
It is important to note that verifying the estimated Pareto

front that was obtained with the NNmodel by running these
points through the physics simulation does not verify that
we have reached the actual Pareto front for the problem.
Similarly, although we examined the convergence of the
GA that we ran on the physics simulation to ensure it had
converged to a stable solution, this is also not necessarily
the true Pareto front for the problem. It is simply the one

that the GA was able to converge to. Hence, in our
assessment we only claim that the estimated Pareto front
found with the NN model matches the estimated Pareto
front obtained by running the GA on the physics simulation
(i.e., our ground truth for this comparison).
In order to visualize the extent to which the NN is

generalizing to new regions of the parameter space (as
opposed to just learning the estimated Pareto front directly
from the training data), we compared the training data
with the final estimated Pareto fronts obtained with the
NN (see Fig. 5). From this we infer that for some beam
parameter combinations, the estimated Pareto front is in a
region of the parameter space that is not sampled in the
training data. This indicates that the NN is able to
interpolate in the input parameter space (six input dimen-
sions, seven output dimensions) to find optimal combi-
nations of output beam parameters that are outside of the
convex hull of those observed in the training data. In other
words, these correspond to more optimal combinations of
output beam parameters than were observed during train-
ing. Here “more optimal” means that for a given value of
an output beam parameter that one would like to mini-
mize, a solution was found where a competing output
beam parameter that one also would like to minimize is
at a lower value than was obtained with the previous
solution.

FIG. 4. Comparison between estimated Pareto fronts obtained from the NN and the physics simulation for three sets of beam
parameters. We show results at the 40 nC bunch charge (a) and at the 1 nC bunch charge (b) configurations, and we find excellent
agreement between the estimated Pareto fronts. In total seven beam parameters have been optimized, and we show the 2D projections
from this larger front for the parameters that are most critical for optimization of the AWA. The other projections show similar
agreement.

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-5

C. Reducing training sample size and iterative
retraining

1. Reducing random sample size

Producing training data using the physics simulation is
computationally expensive. In light of this, one question
which arises is how the accuracy of the ML model will
change with the number of samples used in training. This is

important for estimating the corresponding trade-off
between computation time needed to generate the training
set and the resultant model accuracy (the requirements for
which may vary depending on the application).
To address this, we trained models using 5000, 500, 200,

and 100 randomly sampled points for the 40 nC case and
compared the resulting estimated Pareto fronts (see Fig. 6).
Note that when using only 500 points, we do not see

FIG. 5. Visualization of the solution found by the GA run on the NN model, as compared with both the training set and the points
sampled with the GA that was run on the physics simulation. The position of the front indicates that the NN is able to interpolate in the
input space to produce better combinations of output parameters than are observed in the training data. We show the sampled points in
the training set and the verified points from the estimated Pareto front from the NN for 40 nC (a) and 1 nC (b).

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-6

substantial reduction in the estimated Pareto front accuracy,
compared with the 5000 point case. For training with 200
points, the prediction starts to deviate substantially from the
ground truth, but the solution could still be used as an initial
guess (or “warm start”) for subsequent fine-tuning with the
physics simulation (i.e., by including new points from the
estimated front in the training set and iteratively retraining).

We also trained the NNmodels on a larger range of training
sample sizes and evaluated their performance in predicting the
points obtained from running the GA with the physics
simulation. We quickly see diminishing returns in improve-
ment for the prediction task after the number of samples
increases beyond a few thousand. In Fig. 7we show the impact
of changing the training set sizeon thepredictionperformance.

FIG. 6. Impact of training sample size on the quality of the estimated Pareto front solutions. We show a comparison between estimated
Pareto fronts obtained from the NN for three sets parameters in the 40 nC case: ΔE vs εx (a), σz vs εx (b), and σz vs σx (c). Cases with 5k,
500, 200, and 100 training points are shown from top to bottom. 500 randomly sampled training points are sufficient in this case for
obtaining an accurate estimated Pareto front with the NN model. For 200 training points, the estimated Pareto front is quite a bit less
accurate but still could provide an initial population for subsequent fine-tuning with a GA run on the physics simulation.

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-7

2. Iterative retraining

Note that the uniform random sampling of the input
space does not map onto the hypervolume of the output
space evenly, and instead we see clusters of points in the
output space (for example, see the ΔE vs εx plots in Fig. 5).
The consequence is that having just a few points for some
large parts of the output space results in a model that does
not represent these regions as well. It also suggests that the
space could be sampled more efficiently (e.g., to avoid
oversampling some regions and undersampling others).
This points to the potential utility of a more intelligent
sampling strategy. To see whether iterative retraining might
be a viable approach to reduce the number of required
samples, we conducted a preliminary study. For this we
take a small initial sample, train the model, run a GA on the
NN model, evaluate a small set of the resultant solutions,
add these to the training set, and then repeat these steps
until convergence. This process is shown in Fig. 8.
To explore the iterative retraining approach, we leveraged

the fast execution of the NNmodel that was trained on all the
random sample data (referred to as the “NN surrogate” in the
following text) to provide a proxy for the true function. We
did this because it would be too computationally intensive
for us to explore this approach with the physics simulation
directly, particularly when taking into account the number of
trials that we anticipated would be needed to refine the
method. It also highlights an interesting use of the NN
surrogate model: prototyping optimization algorithms. To
ensure that it is acceptable to use the NN surrogate as the
proxy function in this case, we compared point predictions
from it with those from the physics simulation and find that
they are in excellent agreement (for example, see Fig. 9). The
convergence of the GA run on the NN surrogate also
matches the convergence of the GA run on the physics
simulation. Beyond this, we also trained a model on actual
input and output data from the physics simulation and
another model on output data generated by the NN surrogate.

In this case we used a 350-point sample so that we were
below the threshold that was needed to obtain an accurate
front. We then compared the convergence of the GA on each
of these models and found that they were the same. Taken
together, this provides assurance that we can use the NN
surrogate as a proxy for the physics simulation in the
iterative retraining study.
For the study, we conducted iterative updates to a

second, randomly initialized NN model and observed
how many function evaluations were needed to obtain
an estimated Pareto front that matches the one obtained
from the physics simulation. Note that here we are not
directly picking points on the front to add to retraining
(which could also be done), but rather, we are selecting a set
of additional points using the NSGA-II selection algorithm
(i.e., the best-performing solutions with respect to all seven
output objectives). We start with a random sample of 20
points, train the NN model, run a GAwith 500 generations
and 100 individuals in each generation, select 20 points
from the final population, run these points through the full
NN surrogate (which provides an accurate proxy for the
physics simulation in this case), add these new evaluated

FIG. 7. Prediction error in normalized units for the AWAmodel
trained on various training set sizes. After a few thousand points,
we see diminishing returns.

(slow)

Small sample
of inputs

Physics
Simulation

Output beam
parameters

Train ML
Surrogate Model

ML Surrogate
Model

Run full GA to
optimize beam

Model

(fast)

ML Surrogate
Model

Predicted
pareto fronts

(a)

(b)

(c)

(d)
Run short GA to
fine-tune beam

Physics
Simulation

Initial
population for

next GA

Ru

Predicted
pareto fronts

can repeat (a)-(d) as
needed, adding

samples from previous
steps each time

ate

st)

Physics
Simulation

 for
A

can repeat (a)-(d) as
needed, adding

samples from previous
steps each timet h ti

FIG. 8. Workflow for a method to obtain orders of magnitude
faster GA optimization of particle accelerators. First, run a small
random sample of inputs through the physics simulation (e.g., a
few hundred points in our case) (a). Train an ML model on the
random sample (b). Run the GA with the ML model to obtain
predictions of the estimated Pareto front and corresponding
optimal input settings on the machine (c). Use the predicted
optimal input settings as the initial population in a second, shorter
GA optimization over the physics simulation to fine-tune the
result (d). One can also incorporate the new data into a second
training of the ML model and repeat these steps as needed until
convergence (i.e., iterative retraining and optimization).

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-8

points the training and validation sets (16 to the former and
four to the latter), and then repeat the steps. We repeated
this process with ten random sets of initial points and found
that for 40 nC we were typically able to reduce the number
of required points to obtain an accurate front to between
120 and 200 in total (i.e., 6–10 iterations of the algorithm).
An example of one of the slower-to-converge runs is shown
in Fig. 10. The variance is due to differences in where the
20 initial randomly sampled points are located (i.e., some of
these random initializations will happen to map the output
space more evenly than others).
The number of generations and individuals to use for the

GA were selected by doing a small search of the GA
hyperparameters. Investigating this in more detail (e.g.,
rigorously assessing the impact of hyperparameters for both
the GA optimization and the NN training) is outside the
scope of this paper. However, these results affirm the
intuition that iterative retraining is a viable option for
substantially reducing the number of required training
points.

D. Improvement in computational efficiency
by using ML model

Once training is completed, one NN model evaluation
can be computed in < 1 ms on one core of a laptop
computer, compared with 590 seconds for one physics
simulation on eight cores for the 40 nC simulation. In
Table III, the time-to-solution and computing resources

needed for the GA optimization with the physics simulation
are compared with those needed for GA optimization with
the NN surrogate model. The NN-based GA takes about
2 minutes on a laptop computer, which corresponds to
Oð106Þ times fewer computing resources (in terms of
core-hours) than the same optimization when conducted
with the physics simulation directly.
Importantly, the overall improvement is still substantial

when considering the computation time required to generate
the training data and to train the NN. This makes the
approach a viable way of speeding up initial design
optimization. To generate enough training data to produce
an accurate estimated Pareto front in the 40 nC case,
132 times fewer simulation evaluations and 144 times fewer
total core-hours were required than if one were to use the
physics simulation alone. Finally, the NN training itself takes
approximately ten minutes on one core of a laptop.
Furthermore, for a given problem, this step of generating
the data and training the model only needs to be done once,
and the NN model can be used for subsequent modeling and
optimization tasks.
Note that although we showed results in the previous

section that suggest there would be further reduction of the
computational resources by conducting iterative retraining,
we do not include results for this in Table III because we did
not repeat this with the physics simulation itself. On
average, the cost of running each iteration of iterative
retraining included 33.5 seconds for training and
43.0 seconds for running the GA (with standard deviations

FIG. 9. Point predictions from the NN surrogate model and the corresponding points from the physics simulation, showing that the
two are in excellent agreement. These samples are drawn from the test set.

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-9

of 34.7 and 24.9 respectively). For a case with ten iterations
of convergence, this would add 0.21 core-hours on top of
the cost of running the simulation and allow a lower
number of simulation samples to be used (likely about
264 core-hours of simulation time instead of 660). This
corresponds to a factor of 360 times fewer core-hours than

were needed to obtain the equivalent solution with the
physics simulation alone. The NN surrogate is an accurate
proxy for the physics simulation (and thus this result is
encouraging), but the actual computation time should be
verified in future work by running the same iterative
retraining procedure with the physics simulation directly.

FIG. 10. Iterative retraining: Example of convergence of the estimated front for ΔE vs εx during iterative retraining. Here we show ten
iterations from one of the trials and display the estimated Pareto front projections from the physics simulation, from the NN model on
each iteration of the retraining process, and from the training data used in that iteration. Substantially fewer points (e.g., 200 in this run)
are needed to obtain an estimated front that matches the one obtained with the physics simulation, as compared with using a single
random sample for training. Note that this example is one of the slower-to-converge runs, which we deliberately chose as a conservative
demonstration of the method (i.e., other runs had a fewer number of required points, but that relies on lucky placement of the initial
random sample points).

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-10

When considering the reduction in computational resour-
ces used, it is important to note that the physics simulation
had already been tuned for a high level of computational
efficiency and we ran the simulations in parallel. As such,
the results represent improvement over the state-of-the-art.
In cases where simulation codes are less efficient or higher
complexity (e.g., plasma simulations, FEL simulations), the
ML-based approach may actually enable larger optimiza-
tion studies to be conducted than would have been feasible
using the physics simulation alone.

E. Comparison with different ML models

As a check to see whether a linear model would be
sufficient for this problem, we trained a support vector
regression (SVR) model [38] with a linear kernel. For the
error metric, we used the mean squared error (MSE),
defined as MSE ¼ 1

N

P
N
i¼1ðyi − ŷiÞ2, where N is the

number of samples, yi is the true output for sample i,
and ŷi is the predicted output for sample i. The MSE over
all predicted beam parameters using the SVR model was
5.5 × 10−6, in comparison to 3.5 × 10−10 for the NN

TABLE III. Comparison of computing resources: core-hours, wall time, and number of simulation evaluations
required for running the GAwith the physics simulation and the GAwith the NN. Here we show only results for the
40 nC bunch charge, but details on 1 nC bunch charge can be found in the Appendix. When running the same GA
with the NN, 3 × 106 times fewer computing resources are required. When including the resources needed to
generate the training data (as might be done for initial design optimization), we still have a factor improvement of
144 in terms of core-hours required. Note that although we showed results in the previous section that suggest there
would be further reduction of the computational resources by conducting iterative retraining (e.g., 360 times fewer
core-hours for ten iterations), we do not include results for this in the table because we did not repeat this with the
physics simulation itself.

Method Calculation Core-hours
Wall time
(hours) Simulation Evaluations

Physics simulation GA on OPAL 95 000 36 65 929

Generate training data 660 0.33 500
Train NN 0.17 0.17 not applicable

ML-based GA on NN 0.03 0.03 65 600

Speedup—training included 144× 109× 132×
Speedup—training excluded 3 × 106× 1200× not applicable

FIG. 11. Comparison of the estimated Pareto front for a PCE model and a NNmodel. Note that in this case, we use a random sample of
42,000 points (this was from the large initial random sample, which we ran before attempting to scale down to as few sampled points as
possible during training). To make a fair comparison in this case, we use the same number of sample points for the NN as we use for the
PCE. Note that although the PCE model does not perform as well, it is more straightforward to train, has fewer hyperparameters to tune,
and can be used to provide an uncertainty estimate. Although the estimated fronts are less accurate, the points could be used as an initial
starting point for a subsequent GA run on the physics simulation.

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-11

model, indicating that we do gain accuracy by using a
nonlinear model. Note that although these differences in
error may at first strike readers as small, we are dealing with
quantities like emittances that have raw values on the order
of 10−6 m-rad and rms beam sizes that have raw values on
the order of 10−3 m. For example, for an error in emittance
of 0.1 × 10−6 m-rad we would expect a squared error on
the order of 10−14. Considering this, the difference between
the MSE of the SVR and NN model is substantial.
We also compared performance of NN and PCE surro-

gate models, both in parameter prediction and in the
optimization task. In Fig. 11, we show a comparison
between the estimated Pareto fronts obtained with the
PCE and the NN models. The MSE of the PCE model
for 40 nC was 1.6 × 10−7 and for 1 nC was 4.5 × 10−6. In
contrast, the NN models were more accurate with a MSE of
3.5 × 10−10 and 2.9 × 10−8 on the 40 and 1 nC cases,
respectively. However, one downside of using a simple NN
model is that it does not inherently give an estimate of
prediction uncertainty and model sensitivity without addi-
tional analysis. In contrast, the PCE model has the benefit
of providing straightforward estimates of prediction uncer-
tainty and sensitivity via the Sobol’ indices [25,39]. The
PCE model also has fewer hyperparameters to tune (i.e.,
polynomial order, type of polynomial used). Although the
estimated fronts are less accurate, the points from the PCE
could be used as an initial starting point for a subsequent
GA run on the physics simulation.

III. EXTENSION TO A CHALLENGING
CYCLOTRON EXAMPLE

To assess this approach further, we applied it to a higher-
dimensional and generally more complex accelerator prob-
lem: the IsoDAR cyclotron, shown in Fig. 12. The IsoDAR
cyclotron will provide 60 MeV protons for sterile neutrino
search [29]. It has also been proposed to use this machine to
produce medical isotopes with high efficiency [40]. In
high-power proton machines, a major challenge is to
minimize the number of uncontrolled, lost particles (thus
maximizing the number that are sent to the relevant
experiment and also minimizing damage to the machine).
An indication for losses are large halos around the core of
the particle beam. The halo can be quantified by a set of
halo parameters and is proportional to the kurtosis, which is
a measure of the “tailedness” of the probability distribution.
A detailed description of this problem can be found in [25].
The IsoDAR cyclotron simulation is implemented in

OPAL and includes nonlinear beam collective effects such as
the beam self-fields. This simulation is an order of
magnitude more expensive to evaluate than the AWA
due to the long path the particles travel and correspondingly
long integration time. We also attempt to predict a more
difficult set of beam parameters than we did for the AWA.
The most difficult parameter to predict is the beam halo,
which is notoriously challenging to simulate accurately.

Because the simulation is so computationally intensive,
we use only a small number N of particles (i.e.,
N ¼ 1.33 × 105). As a result, we expect that the actual
prediction of the halo is not fully converged (which should
show up as noisy estimates of the halo).
Using a 2500-point random sample, we trained a NN to

predict 12 beam parameter outputs: the total number of lost
particles (PL), the beam energy (E), energy spread (ΔE),
transverse and longitudinal beam sizes (σx, σy, σs), trans-
verse and longitudinal emittances (εx, εy, εs), and the beam
halo (hx, hy, hz). Table IV shows the ranges of the input
variables used in the random sample. Here we use the
definition of the halo parameter found in [41], formula 12.
Again, definitions of the beam parameters can be found in
Table II. The 5 input parameters are the initial proton beam
current and the positions of four families of collimators
(corresponding to 16 collimators in total). For the GA run
on the NN, we use 1000 generations with 300 individuals.
Other than this, the implementation is the same as that used
for the AWA.

FIG. 12. The IsoDAR schematic, showing an overlay of the
magnetic field configuration (coil and dee) and central particle
trajectories from the simulation. The rf system used for accel-
eration is not shown. In black, the centroid trajectories of 18 turns
are shown. A particle bunch of intensity Iinj is injected at the
center and passes through four families of collimators (indicated
with the colored rectangles starting at turn 6). Each collimator
family has one parameter C1…C4 defining the collimator
aperture. The collimator aperture and the initial intensity are
input variables used by the optimizer. In this schematic, the
extraction system is not shown, nor are all 100 turns of the beam.
The last ten turns before extraction are indicated in purple,
together with the output beam parameters: the halo parameters
hx;y;z, the beam size σx;y;s, the projected emittance ϵx;y;s, beam
energy E, and energy spread δ E, and the extracted beam current
Iext. Particle losses (Iinj − Iext) in the collimators have to be
minimized, and a small h is desired. This is one of the most
important considerations in the design phase.

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-12

As expected, upon verification by running the predicted
points through the simulation we find that the estimates
(see Fig. 13) are not as accurate as those obtained for the
AWA. However, the points still roughly map out the region
of parameter space near the boundary sampled by the
physics simulation. It is unclear how much of this is a
contribution from the simulation itself (e.g. due to numeri-
cal noise), since it has not been tuned to ensure that the
mesh size and number of particles is sufficient to produce a
reliable result. Fine-tuning of the simulation was not
conducted because the associated computational intensity
of conducting this process for the broad range of

FIG. 13. Example of estimated Pareto fronts from IsoDAR NN model and corresponding verified points from the physics simulation.
We first show results from training a model to predict and optimize 12 beam parameter outputs (a). We then show corresponding results
from training only on the two most challenging beam parameter outputs, hx and PL (b). We then include the verified front from the
previous model in the training set, retrain the model, repeat the optimization, and check the new Pareto points (iterative retraining) (c).
Although the fronts do not match as well as they do for the AWA, for this challenging problem it is encouraging that we can predict
roughly accurate fronts. Finally, we show the prediction on sorted values of the random sample set.

TABLE IV. Range of the IsoDAR input variables.

Name Abbreviation
Minimum
value

Maximum
value Unit

Initial beam
current

Iinj 5.5 7.5 mA

Collimator 1 C1 2.37 2.63 Unitless
Collimator 2 C2 2.37 2.63 Unitless
Collimator 3 C3 7.60 8.40 Unitless
Collimator 4 C4 7.60 8.40 Unitless

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-13

parameters we are varying was too high to be feasible given
the compute time available to us. Note also that in this case,
we do not have an estimated Pareto front from running the
GA on the physics simulation. This is because the IsoDAR
simulation is so computationally expensive that we were
unable to run a multiobjective optimization on all param-
eters to convergence. All this taken into account, we
consider finding verified points that are in close proximity

to the Pareto front estimated by the NN to be a successful
use of the approach, particularly with regard to creating a
fast-executing representation of the simulation.
For the trade-off between halo parameters and losses, we

obtain results that more closely outline the extent of the
observed hypervolume projection when we produce a
model that only predicts those direct outputs (as opposed
to predicting and then optimizing all 12 objectives).

FIG. 14. Example predictions from IsoDAR model trained on 12 outputs vs true values. Perfect prediction would correspond to a
straight diagonal line.

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-14

In Fig. 13, we show this for hx and PL. This is also more in
line with how GAs are typically used by accelerator
physicists at present: often, only two important parameters
will be optimized as competing objectives. We also find
that by iteratively retraining the model with the verified
points and repeating the process with the new model, we
obtain a model that fills out more of the front (also shown
in Fig. 13).
As a result, we obtain a surrogate model that is Oð107Þ

times faster to execute than the original physics simulation
and can predict the 12 beam parameter outputs with
reasonable accuracy. To illustrate this, in Figs. 14 and
15, we show some examples of the prediction performance
of the IsoDAR model on the random sample dataset. We
show the prediction on the raw sorted values and plot the
expected vs predicted values against one another. As
discussed, the results are likely also impacted by numerical

noise, and the outliers in the dataset also illustrate the need
for uncertainty estimates along with the prediction.

IV. CONCLUSIONS AND DISCUSSION

In practice, physics simulations of particle accelerators
are often too computationally expensive for full exploration
of the parameter space during optimization. The computa-
tional expense also limits (and in many cases prohibits) their
use during machine operation to aid in prediction and
control. In this work, we have shown that machine learning
(andNNs in particular) can be used to obtain a fast-executing
representation of computationally intensive accelerator
physics simulations, and these models can be reliably used
in multiobjective optimization. We have also shown that in
some cases relatively little data is needed to achieve a high
degree of fidelity relative to the original physics simulation.

FIG. 15. Example predictions from IsoDAR model trained on 12 outputs and corresponding values from the simulation.

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-15

The NN surrogate models are more accurate than the
simplified physics models that are presently used when
fast execution is needed (e.g., fast envelope codes, simple
tracking codes used with a small number of particles, etc.).
This approach thus provides one avenue toward creating
fast-executing representations of high-fidelity physics sim-
ulations for use in machine operation, which would not
otherwise be possible. It also enables faster start-to-end
optimization, which could in turn help facilitate more
extensive off-line design optimization and experiment
planning, as well as aid the prototyping of novel accelerator
operating modes. Finally, as we demonstrate, these
models can be used to quickly prototype new optimization
algorithms.
Our results also suggest a new procedure for doing GA

optimization of particle accelerators. Instead of running a
GAwith a physics simulation, one can run a small random
sample spanning the parameter space, train a surrogate
model on this sample, and run a full GA using the surrogate
model very quickly. The estimated Pareto points obtained
from the surrogate model could then be used as an initial
population in a subsequent short GA with the physics
simulation to verify and fine-tune the result (see Fig. 8).
The process can also be repeated until convergence to a
good solution is reached (i.e., using iterative retraining
and reoptimizing).
We found that optimization with the NN model requires

substantially fewer simulation evaluations than a purely
simulation-based optimization (e.g., 132 times fewer sim-
ulations with one random sample in the case of the 40 nC
setup for the AWA, with indications that this could be
further reduced to 330–550 times fewer simulations with
iterative retraining).
The computational cost of the parameter space explora-

tion with the GA before it gets close to convergence is high.
Using the NN model enables one to skip these early stages
of convergence and form a model that can be used to
interpolate across the parameter space. Assuming the
physical function to be modeled is smooth and that the
NN model is learning a good representation of the under-
lying physical system, running the GAwith the NN model
can thus provide an estimate of the Pareto front in a fraction
of the time needed to run the GA on the physics simulation.
This opens up the possibility to do more extensive
optimization than might otherwise have been feasible using
computationally intensive physics simulations alone.
Using NN models to aid the optimization process could

also be useful in cases where one cannot in practice run a
GA for a sufficient number of generations or with a large
enough population to converge. This can be the case when
HPC resources are limited and/or the optimization problem
is too high dimensional or computationally intensive.
Related to this, a larger generation and population size
can be used with the NN than would normally be feasible
with the physics simulation, thus potentially enabling better

solutions to be found during the optimization process (e.g.,
in contrast to doing only a short GA over a limited range
with the physics simulation).
Overall, while training a NN as an intermediate step in

the optimization process may seem cumbersome, GAs do
have their own hyperparameters that need to be tuned (e.g.,
population size, number of generations, crossover and
mutation probabilities). The risk of wasting computational
resources while tuning these parameters is high, and in
practice accelerator physicists often just pick a number of
generations to run based on experience.
During preparation of this manuscript, a similar

approach that employs iterative retraining but conducts
the optimization of the model and selection of new points
slightly differently was demonstrated on the problem of
nonlinear dynamics optimization of the SPEAR3 storage
ring [42], showing similar promise. This is an encoura-
ging indicator that NN-based iterative retraining can be
applied to different kinds of machines to speed up design
optimization.
We anticipate that the approach presented in this work

will be useful for a variety of applications, including
design optimization, prototyping of optimization routines,
off-line experiment planning, and on-line optimization of
machine settings. Overall, the approach is quite general,
and as many beam dynamics problems in accelerators
are similar, it is also reasonable to expect that these results
could provide good starting points for applying this
approach to other kinds of accelerator systems. For
example, injector systems that are similar in scale and
complexity to the AWA are extremely common, and the
results we show in this work should provide good guidance
for those wishing to use this method on similar compo-
nents. The fact that we used a similar NN architecture to
other injector modeling problems (e.g., [21–24,43,44])
also hints at the possibility of doing transfer learning
between models (e.g., training on one injector system and
then reusing the model with small updates for a similar
injector system). While the IsoDAR cyclotron is a more
unique design, the performance of the ML approach on that
case shows it can also be used in cases with much more
complicated beam dynamics.
To move from proof-of-concept demonstrations to

regular deployment in accelerator applications, several
areas of future work are apparent. These include addressing
how best to scale these methods up to larger or more
computationally intensive systems, how to obtain accurate
estimates of prediction uncertainty, how best to combine
simulation and measured data (i.e., to make efficient use of
both, and to improve the model accuracy with respect to
the real machine), how best to incorporate prior physics
knowledge into these models, and how best to account for
machine drift and keep the model updated over time.
We discuss these directions of future work in more detail
below.

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-16

A. Incorporation into on-line modeling and
model-based control

First, one can begin to incorporate these surrogate models
directly in machine operation. In some cases, high-fidelity
simulations have been made to match the machine very
closely and can be used to provide suggestedmachine settings
(for a comprehensive example, see [45]). If the simulation
matches the machine closely enough, the ML model trained
on the simulations can immediately be used to aid operation.
Machine operators could use these models to check the

potential impact of setting changes before trying themout on
the actual machine, or to assess a new course of action as
goals change during an operating shift. These models could
also be used as a diagnostic tool to provide predictions about
unmeasured beam parameters (i.e., as a virtual diagnostic
[21,26,46]) or to flag when the system has changed sub-
stantially (i.e., model-based anomaly detection). They
could also be exploited in model-based control and
model-guided optimization routines (i.e., using the model
to help guide the search for optimal settings, as is done in
model predictive control and Bayesian optimization [47]).
Bayesian optimization with Gaussian process models has
been successfully used in on-line optimization of opera-
tional accelerators [48–52], and a pretrained NNmodel with
prediction uncertainties could in principle be used in a
similar fashion.
The NN surrogate models can also be used to provide a

warm start to a local, feedback-based optimization algo-
rithm (i.e., by reading unvaried inputs from the machine to
get an estimate of the present system state, running an
optimization algorithm on the model for the variable
settings to get an initial solution, and then refining this
with on-line feedback with the machine directly). This is
similar to the approaches described and tested in
[22,23,26,43,53,54], but it uses optimization around the
forward model to obtain the initial suggested settings rather
than using an inverse model (i.e. directly mapping desired
beam outputs to suggested settings). The advantage of the
combined approach (model-based methods combined with
model-free local feedback) is that it can help compensate
for inevitable discrepancies between the model and the
machine (e.g., due to drift, hidden variables, etc.) without
necessitating retraining. As was demonstrated experimen-
tally using an inverse model in [53], the suggested settings
from the model only need to be close enough to the basin
of a good minimum to allow a local optimizer to
converge. Forward models can also be used to help train
inverse models (e.g. for accelerator-specific applications
see [23,44]).
In contrast to relying on local optimization methods or

hand tuning only, these methods could be exploited to
reduce the time spent switching between custom beam
requests. However, all of these possible applications need
to be explored in practice and rigorously assessed before
they will be ready for dedicated on-line deployment.

B. Updating models with measured data

Second, getting the physics simulation to match the
measured machine behavior can be very difficult and
usually requires substantial effort. Even simulations with
the main expected physics effects included often deviate
substantially from the observed machine behavior. As a
result, many accelerator facilities do not prioritize creating
accurate physics simulations (particularly since high-fidel-
ity physics simulations could typically not be used directly
in operation anyway, at least not prior to the introduction of
the approach discussed in this paper).
With a surrogate model, one can instead update the model

learned in simulation with measurements from the machine
to account for deviations between the simulation and the real
machine behavior. This was shown to be viable in [21,22],
but more rigorous study is needed to address how best to
preserve information gained from the simulation while also
updating the model with respect to measured data.
By creating learned models that are trained at least in part

on measured data, subtle statistical correlations across the
machine that may otherwise go unnoticed and unutilized by
human operators can be exploited. Training on simulations
prior to this reduces the need to rely only on machine time
and data available in the archive, thus potentially enabling
regions of parameter space that otherwise would go unseen
to be included. For some use cases, such as identifying the
source of discrepancies between the machine and the
simulation, it may also be more useful to learn to predict
the error between the measured data and the model that was
trained in simulation rather than updating the model
directly. Finding ways to effectively combine measured
and simulated data is an important direction of future work.

C. Accounting for drift and unseen operating conditions

Third, another challenge concerns how best to update the
models with measured data in a reliable fashion so that one
maymaintain prediction accuracy despite drift in themachine
response and exposure to new regions of parameter space.
First, one needs to be able to reliably identifywhen themodel
is no longer accurate for the present operating condition. Raw
prediction errors for available signals or uncertainty predic-
tions can be used to help decide when the model needs to be
retrained and how much to trust a given prediction (e.g., to
help decide whether to use that prediction in control or
analysis, or rely on alternative methods instead).
Then the model must be updated in a reliable fashion

without manual intervention. Online retraining has been
demonstrated for a feed-forward correction scheme to
improve source size stability at the ALS [55]. However,
for accelerators that frequently switch operating conditions
and have very large operating ranges automatic retraining
when a high prediction error is observed could result in a
loss of valuable information about previously visited
machine states. This is due to the well-known problem
of “catastrophic forgetting” in NNs [56–58], and it was also

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-17

observed in practice in early tests at the FAST injector [59]
when attempting to do on-line retraining of the NN model
described in [27,60] for different rf power levels.
All in all, finding good strategies for updating the model

or otherwise accounting for drift while preserving previ-
ously learned behavior from different operating configu-
rations will be critical. Depending on the particular details
of the accelerator (e.g., how much drift there is from day to
day, how flexible the operating conditions are, how much
noise there is, to what extent the diagnostic information
captures the variables that affect the machine behavior), the
strategies to do this most effectively will likely vary.

D. Inclusion of model uncertainty

Fourth, another challenge concerns how to obtain an
accurate measure of the prediction uncertainty, particularly
for NN-based models. Uncertainty predictions can be used
to decide when the model needs to be retrained, or when the
model should not be relied upon. Although this is relevant
to both on-line and off-line applications (and for simu-
lations that exhibit noise), it is particularly important for on-
line deployment or cases where measured data is used in
training. This is because the input-output relationships of
operational accelerators are subject to a variety of sources
of uncertainty, including noise, intermittent anomalous
conditions (e.g., due to equipment failures), drift over
time, and the influence of unobserved variables.
In the context of optimization, uncertainty predictions

can also be used to help choose subsequent points to
evaluate. For example, one may want to assess the expected
benefit of running a computationally expensive simulation
at a given operating point to fill out the parameter space of a
model, or one may want to weigh the risk of moving to a
new operating point on the live machine against the likely
performance improvement from that new operating point.
While this approach is well established for Bayesian
optimization techniques (especially using Gaussian process
models), obtaining reliable uncertainty estimates from NNs
is an open area of research [61–63]. Developing expressive
models that also include uncertainty estimates (e.g., model
ensembles, Bayesian NNs, Gaussian process models with
NN-based kernels [64], deep GPs [65]) is a reasonable
next step.

E. Efficient sampling strategies

Sampling of simulations to produce an initial model can
itself be time consuming in cases where the cost of obtaining
a sample is extremely high or when many variables must be
included. In some cases, the random sampling and iterative
retraining strategies we used in this work may not be
sufficient, and more intelligent sampling strategies will
likely be needed in order to map the parameter space fully
while minimizing the number of simulation evaluations.
Even in the AWA case, we observed that for the random

sample, some areas of the output spacewere overrepresented
and others were underrepresented.

F. Scaling to higher dimension and complexity

While NNs in principle can be used to model high-
dimensional, complex systems, determining how best to
scale this method to accelerator systems with a much
greater number of input/output variables, wider ranges of
variables, or more complex beam dynamics is an important
question that will also need to be examined in future work.

G. Including prior physics information

Present approaches discard our rich knowledge of accel-
erator physics. Methods should be developed which incor-
porate this physics knowledge into these models so that
fewer training examples are required and improved perfor-
mance in unseen regions of parameter space can be obtained.
There are elegant examples of this already for GP models.
For example, in [51] and [52], it was demonstrated that using
physics models to directly inform the GP kernel hyper-
parameters resulted in faster convergence in Bayesian
optimization of accelerator settings.

ACKNOWLEDGMENTS

We gratefully acknowledge the computing resources
provided on Bebop, a high-performance computing cluster
operated by the LCRC at ANL. The training of the
surrogate models benefited from the ETH Leonard cluster
the CSCS Piz-Daint, the PSI Merlin-6 and the SLAC OCIO
Jupyter-Hub GPU cluster. We also thank John Power for
assistance in developing the simulation model of the AWA
(which was built by N. Neveu during her graduate studies
with the AWA), and we acknowledge D. Winklehner and
L. Calabretta in the development of the IsoDAR simula-
tions. This work was supported by the U.S. Department of
Energy, Office of Science, under Contracts No. DE-AC02-
76SF00515 and No. DE-AC02-06CH11357, FWP 100494
through BES on B&R code KC0406020, and Grant
No. DE-SC0015479.

APPENDIX

1. Datasets for the surrogate models

We generated uniformly distributed random samples
from the physics simulation. For this we used the
OPAL-based interface for creating such datasets, which
was developed in part to support this effort. This feature
allows the submission of massively parallel jobs using an
OPAL input file.
For the AWA, the randomly varied inputs include the

injector phase ϕ1 and gradientG1, the linac cavity phase ϕ2

and gradient G2, and two solenoid strengths K1 and K2.
The output parameters are the transverse spot sizes σx and

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-18

σy, the longitudinal beam size σs, the transverse projected
emittances values εx and εy, the longitudinal projected
emittance εs, and the energy spread ΔE. The input variable
ranges are informed by the operating ranges at the AWA
(see Table I). Random samples for two bunch charges were
generated (1 and 40 nC, with the corresponding laser radius
being 2 and 9 mm). In the 1 nC case, we generated 70k
samples, and in the 40 nC case, we generated 80k samples.
However, we only use a small subset of these during
training of the models.
For the IsoDAR cyclotron, the input parameters varied

are the initial beam current Iinj and four collimator settings
C1–C4. The ranges of the collimators and the beam current
are determined by technical design considerations. A
random sample of 2500 points was generated for the initial
training dataset. For retraining, 100 points from the
previous estimated Pareto front were selected randomly
to add to the training set. Table IV shows the ranges of the
input variables used in the random sample.
For running the GA on the AWA simulation, we choose

an initial population of 656 individuals and subsequently
evolve the population over 200 generations, while retaining
the same number of individuals in each generation.
The following hyperparameters were used: gene mutation
probability Pg ¼ 0.8, mutation probability Pm ¼ 0.8, and
recombination probability Pr ¼ 0.2. Specific descriptions
of the hyperparameters can be found in Sec. 1.4.2 of the
OPAL manual [31]. The specific values used in this case
were chosen based on previous optimization work for the
AWA that involved a hyperparameter scan [5]. The con-
straints of the problem were set such that the variables
stayed within the operating ranges of the AWA (see
Table I). For each generation, the input and output
parameters from the simulation are saved. In the 1 and
40 nC cases respectively, 59,285 and 65,929 final samples
were obtained. See Table V for an overview of the
computational resources required to make the physics
simulation datasets.
Note that for the IsoDAR cyclotron, we do not run a GA

on the physics simulation. This is because the IsoDAR
simulation is so computationally expensive that we were
unable to successfully run a multiobjective optimization on
all parameters to convergence.

The implementation of NSGA-II [34] that is provided
within OPAL was used for the GA with the physics
simulation of the AWA. Details related to the algorithm
can be found in [66]. The implementation of the GA used
with OPAL is slightly different than the implementation
in DEAP (used with the ML models) because some of
the adjustable hyperparameters are defined differently.
Originally, we had intended to use DEAP for both the
physics simulation and the ML model. However, we ran
into practical limitations in being able to run the OPAL

simulation in parallel using DEAP. OPAL had ostensibly the
same algorithm programmed in a way that allowed efficient
parallelism (making it feasible to run the GA on the physics
simulation in a reasonable amount of time). We did not at
the time have a way to run DEAP in parallel on the HPC
systems that we had access to. Thus, we used the same
nominal algorithm in each case (NSGA-II), but the imple-
mentation is slightly different in DEAP and OPAL.
After setting up LIBENSEMBLE [67] to do the parallel

simulations in conjunction with DEAP, we were later able to
do a direct comparison between DEAP’s version of NSGA-II
and OPAL’s version by running both of these with the physics
simulation. When comparing the two algorithms on OPAL

simulations of the AWA, the fronts produced by each method
are in reasonable agreement, as shown in Fig. 16. The main
source of the discrepancy between the OPAL-GA solution and
the DEAP solution is the slight difference between the
algorithm implementation. Note that this does not alter
the conclusions of the paper. Specifically, two points need
to be considered: (1) the solution from the NN model is in
agreement with both the OPAL and DEAP solutions (which
themselves have deviations between one another but are in
general agreement) after running 200 generations with 656
individuals in each generation, and (2) the beam parameters
found with the NN model are more optimal than are seen in
the training set (which is a separate consideration from the
DEAP or OPAL GA solutions).

2. OPAL simulation

OPAL is an open-source, parallel library for electrostatic
PIC simulations of charged particle accelerators. More
details can be found in the OPAL manual (see [31]). For

TABLE V. Overview of the datasets from the physics simulations and the computational resources used for generating them. Note that
we found that to make accurate surrogate models we needed many fewer randomly sampled points than were initially generated. For the
GAs, 2624 cores were used. For the 1 nC random sample, 16k cores were used, and for the 40 nC random sample, 15k cores were used.

Case Calculation Core-hours Wall time (hours) Simulation evaluations

AWA 1 nC Genetic algorithm (200 gen) 43 500 16.56 65 929
Random sample 60 600 4.12 70 000

500 points 283 0.14 500
AWA 40 nC Genetic algorithm (200 gen) 95 000 36 65 928

Random sample 115 700 7.23 80 000
500 points 660 0.33 500

IsoDAR Random sample 13 335 1.7 2 500

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-19

simulations of the AWA, 3D space charge forces are
calculated throughout the time evolution of the beam, which
is important for realistically capturing the nonlinear impact
of the beam self-fields. The particle generation at the CsTe
photocathode is modeled using a uniform emission model,
assuming a planar ideal surface. The laser profile used for
emission is uniform transversely and a flattop longitudinally,
withGaussian tails.Convergence studieswerepreviousdone
to determine an appropriate time step,mesh size, andnumber
of particles to use (here, 1 × 10−11 seconds for the time step,
16 × 16 × 32 grid cells for the space charge mesh, and 10k
macroparticles). The full-width-half-maximum of the laser
in the longitudinal directionwas6ps for both cases.The laser
radius was set to 2mm for the 1 nC simulations. Due to large
nonlinear space charge forces at 40 nC, the laser radius was
increased to 9 mm. These are typical operating conditions at
the AWA.
Field maps generated in POISSON [68] were used to

model the solenoid magnets. Two types of rf field maps
were used to model the gun and accelerating cavities. 2D
maps were generated in SUPERFISH [69] and used in the
1 nC case. 3D maps were generated in ACE3P [70] and used
in the 40 nC simulations. While 3D field maps are
computationally more expensive to evaluate, they are more
accurate and capture asymmetries that are present in the
AWA rf cavities.
The IsoDAR simulation is described in Sec. II of [71]. In

addition, in this work we added four collimators to clean up

the beam (i.e., reduce halo). The collimators are placed in
the central region of the cyclotron where the energy is low
and the activation is negligible.

3. Implementation of machine learning
based surrogate models

The NNs were implemented in KERAS [72], with
TensorFlow [73] as the backend. For general demonstration
of the technique, we used a topology and set of hyper-
parameters that roughly correspond to those the authors had
previously found to work well for similar problems in
accelerators [21–24,43]. This consisted of a fully con-
nected, feed-forward NNwith four hidden layers, each with
20 nodes and hyperbolic tangent activation functions. No
regularization penalties (e.g., L1 or L2 norm) were used on
the weights. The NNs were trained for 10k epochs with a
batch size of 500 points. The Adam optimization algorithm
[74] was used for training, with an initial learning rate of
0.001 and hyperparameters β1 ¼ 0.9, and β2 ¼ 0.999. For
training, the random sample data was randomly split into
training (60%), validation (20%), and testing (20%) sets.
All datasets were scaled to fit within an appropriate range.
For example, in our case the data was scaled to be within
the range of ½−1; 1�. For the IsoDAR problem, the setup is
the same, except we use a neural network with a slightly
different number of nodes in each hidden layer: 10 − 20 −
20 − 15 nodes in each layer respectively.

FIG. 16. ComparisonbetweenestimatedPareto fronts obtainedwith theOPAL implementationofNSGA-II and theDEAP implementationof
NSGA-II after 200 generations, with 656 individuals in each generation. We also show the result from running DEAP on the neural network
surrogate model. We consider these to be in sufficiently close agreement; please refer to the text for more discussion.

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-20

The surrogate model based on polynomial chaos expan-
sion (PCE) is constructed using the Uncertainty
Quantification Toolkit (UQTk) [75,76]. This library provides
functionalities to perform an intrusive as well as a non-
intrusive UQ in C++ and PYTHON. In contrast to the
projection method of [25], we used the regression method
[76,77] with Legendre polynomials, and we associate a
uniform distribution to all input variables. In this work, we
closely follow [25] in regard to the PCE surrogate model.
Furthermore, choosing a polynomial order of p ¼ 4 and
60% of the random sample for training matches the
performance of the NN model most closely.
The GA optimization with the surrogate models is done

using the PYTHON package DEAP [78] and its standard
implementation of NSGA-II.We picked hyperparameters that
were as close as possible to those used with the OPAL GA.

4. Code availability

For this research only open source software is used. This
includes the accelerator simulation framework OPAL [31]
and PYTHON-based software tools: DEAP [78], KERAS [72],
TensorFlow [73], UQTk [75], and SCI-KIT LEARN [79]. For
access to additional materials contact authors Auralee
Edelen and Andreas Adelmann.

[1] M. Mitchell, An Introduction to Genetic Algorithms (MIT
Press, Cambridge, MA, 1996).

[2] T. Bäck, Evolutionary Algorithms in Theory and Practice:
Evolution Strategies, Evolutionary Programming, Genetic
Algorithms (Oxford University Press, Inc., New York,
1996).

[3] I. V. Bazarov and C. K. Sinclair, Multivariate optimization
of a high brightness dc gun photoinjector, Phys. Rev. ST
Accel. Beams 8, 034202 (2005).

[4] A. Hofler, B. Terzić, M. Kramer, A. Zvezdin, V. Morozov,
Y. Roblin, F. Lin, and C. Jarvis, Innovative applications of
genetic algorithms to problems in accelerator physics.
Phys. Rev. ST Accel. Beams 16, 010101 (2013).

[5] N. Neveu, L. Spentzouris, A. Adelmann, Y. Ineichen,
A. Kolano, C. Metzger-Kraus, C. Bekas, A. Curioni,
and P. Arbenz, Parallel general purpose multiobjective
optimization framework with application to electron
beam dynamics, Phys. Rev. Accel. Beams 22, 054602
(2019).

[6] Y. Sun, Multiobjective online optimization of beam
lifetime at APS, in Proceedings of NAPAC 2016, Chicago,
IL, USA (JACoW, 2016), WEPOB12, http://accelconf.web
.cern.ch/AccelConf/napac2016/papers/wepob12.pdf.

[7] W. F. Bergan et al., Online storage ring optimization using
dimension-reduction and genetic algorithms, https://arxiv
.org/abs/1807.10720.

[8] M. Woodley, R. Iverson, P. Krejcik, G. White, and J. Wu,
XAL-based applications and online model for LCLS, in
Proceedings of PAC, Vancouver, CA (2010), FR5REP022.

[9] T. Pelaia, Open XAL Status Report 2013, in Proceedings
of the 4th International Particle Accelerator Conference,

IPAC-2013, Shanghai, China, 2013 (JACoW, Shanghai,
China, 2013), MOPWO086.

[10] A. Scheinker and S. Gessner, Adaptive method for electron
bunch profile prediction, Phys. Rev. ST Accel. Beams 18,
102801 (2015).

[11] R. Ryne et al., Scidac advances and applications in
computational beam dynamics, J. Phys. Conf. Ser. 16,
210 (2005).

[12] SciDAC: Scientific discovery through advanced comput-
ing, https://scidac.gov/.

[13] A. Adelmann, U. Locans, and A. Suter, The dynamic
kernel scheduler–Part 1, Comput. Phys. Commun. 207, 83
(2016).

[14] M. Borland, ELEGANT: A flexible sdds-compliant code for
accelerator simulation, Technical Report No. LS-287,
Argonne National Laboratory, 2000–2018.

[15] H. Takeda and J. E. Stovall, Modified PARMILA code for
new accelerating structures, in Proceedings of the Particle
Accelerator Conference, Dallas, TX, 1995 (IEEE, New
York, 1995), Vol. 4, pp. 2364–2366.

[16] X. Pang, Advances in Proton Linac Online Modeling, 6th
International Particle Accelerator Conference, Richmond,
VA, USA (JACoW, Geneva, Switzerland, 2015), paper
WEXC2, https://doi.org/10.18429/JACoW-IPAC2015-
WEXC2.

[17] X. Pang, L. J. Rybarcyk, S. A. Baily, High-performance
beam simulator for the LANSCE linac, in Proceedings of
the 3rd International Particle Accelerator Conference,
New Orleans, LA, 2012 (IEEE, Piscataway, NJ, 2012),
C1205201, https://www.osti.gov/servlets/purl/1040799/.

[18] J.-L. Vay, Noninvariance of Space- and Time-Scale Ranges
under a Lorentz Transformation and the Implications for
the Study of Relativistic Interactions, Phys. Rev. Lett. 98,
130405 (2007).

[19] J.-L. Vay, I. Haber, and B. B. Godfrey, A domain
decomposition method for pseudospectral electromagnetic
simulations of plasmas, J. Comput. Phys. 243, 260
(2013).

[20] R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and
J.-L. Vay, A spectral, quasicylindrical and dispersion-free
particle-in-cell algorithm, Comput. Phys. Commun. 203,
66 (2016).

[21] A. Edelen et al., Neural network virtual diagnostic for the
FAST low energy beam line, in Proceedings of IPAC 2018,
Vancouver, Canada (JACoW, 2018), WEPAF040.

[22] A. Edelen et al., Neural network based approaches to the
modeling and control of particle accelerators, in Proceed-
ings of IPAC 2018, Vancouver, Canada (JACoW, 2018),
THYGBE2, https://accelconf.web.cern.ch/AccelConf/
ipac2018/talks/thygbe2_talk.pdf.

[23] A. Edelen, J. Edelen, S. Biedron, S. Milton, and P. van der
Slot, Using a neural network control policy for rapid
switching between beam parameters in a FEL, in Proceed-
ings of the International Free Electron Laser Conference,
Santa Fe, NM, USA (JACoW, 2017), pp. 406–409, http://
accelconf.web.cern.ch/AccelConf/fel2017/papers/wep031
.pdf.

[24] A. Edelen, S. Biedron, J. Edelen, and S. Milton, First steps
toward incorporating image based diagnostics into particle
accelerator control systems using convolutional neural

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-21

https://doi.org/10.1103/PhysRevSTAB.8.034202
https://doi.org/10.1103/PhysRevSTAB.8.034202
https://doi.org/10.1103/PhysRevSTAB.16.010101
https://doi.org/10.1103/PhysRevAccelBeams.22.054602
https://doi.org/10.1103/PhysRevAccelBeams.22.054602
http://accelconf.web.cern.ch/AccelConf/napac2016/papers/wepob12.pdf
http://accelconf.web.cern.ch/AccelConf/napac2016/papers/wepob12.pdf
http://accelconf.web.cern.ch/AccelConf/napac2016/papers/wepob12.pdf
http://accelconf.web.cern.ch/AccelConf/napac2016/papers/wepob12.pdf
http://accelconf.web.cern.ch/AccelConf/napac2016/papers/wepob12.pdf
https://arxiv.org/abs/1807.10720
https://arxiv.org/abs/1807.10720
https://arxiv.org/abs/1807.10720
https://doi.org/10.1103/PhysRevSTAB.18.102801
https://doi.org/10.1103/PhysRevSTAB.18.102801
https://doi.org/10.1088/1742-6596/16/1/028
https://doi.org/10.1088/1742-6596/16/1/028
https://scidac.gov/
https://scidac.gov/
https://doi.org/10.1016/j.cpc.2016.05.013
https://doi.org/10.1016/j.cpc.2016.05.013
https://doi.org/10.18429/JACoW-IPAC2015-WEXC2
https://doi.org/10.18429/JACoW-IPAC2015-WEXC2
https://www.osti.gov/servlets/purl/1040799/
https://www.osti.gov/servlets/purl/1040799/
https://www.osti.gov/servlets/purl/1040799/
https://doi.org/10.1103/PhysRevLett.98.130405
https://doi.org/10.1103/PhysRevLett.98.130405
https://doi.org/10.1016/j.jcp.2013.03.010
https://doi.org/10.1016/j.jcp.2013.03.010
https://doi.org/10.1016/j.cpc.2016.02.007
https://doi.org/10.1016/j.cpc.2016.02.007
https://accelconf.web.cern.ch/AccelConf/ipac2018/talks/thygbe2_talk.pdf
https://accelconf.web.cern.ch/AccelConf/ipac2018/talks/thygbe2_talk.pdf
https://accelconf.web.cern.ch/AccelConf/ipac2018/talks/thygbe2_talk.pdf
https://accelconf.web.cern.ch/AccelConf/ipac2018/talks/thygbe2_talk.pdf
https://accelconf.web.cern.ch/AccelConf/ipac2018/talks/thygbe2_talk.pdf
https://accelconf.web.cern.ch/AccelConf/ipac2018/talks/thygbe2_talk.pdf
http://accelconf.web.cern.ch/AccelConf/fel2017/papers/wep031.pdf
http://accelconf.web.cern.ch/AccelConf/fel2017/papers/wep031.pdf
http://accelconf.web.cern.ch/AccelConf/fel2017/papers/wep031.pdf
http://accelconf.web.cern.ch/AccelConf/fel2017/papers/wep031.pdf
http://accelconf.web.cern.ch/AccelConf/fel2017/papers/wep031.pdf
http://accelconf.web.cern.ch/AccelConf/fel2017/papers/wep031.pdf

networks, in Proceedings of NAPAC 2016, Chicago, IL,
USA (JACoW, 2017), TUPOA51.

[25] A.Adelmann,Onnonintrusiveuncertaintyquantificationand
surrogate model construction in particle accelerator model-
ing, SIAM/ASA J. Uncertainty Quantif. 7, 383 (2019).

[26] A. Edelen et al., Opportunities in machine learning for
particle accelerators, White paper from the 1st ICFA
Machine Learning Workshop for Particle Accelerators,
https://arxiv.org/abs/1811.03172.

[27] A. L. Edelen, S. G. Biedron, B. E. Chase, D. Edstrom, S. V.
Milton, and P. Stabile, Neural networks for modeling and
control of particle accelerators, IEEE Trans. Nucl. Sci. 63,
878 (2016).

[28] M. Conde et al., Research program and recent results at the
Argonne Wakefield Accelerator Facility (AWA), in Pro-
ceedings of IPAC 2017, Copenhagen, Denmark (JACoW,
2017), WEPAB132.

[29] A. Bungau et al., Proposal for an Electron Antineutrino
Disappearance Search Using High-Rate 8Li Production and
Decay, Phys. Rev. Lett. 109, 141802 (2012).

[30] J. D. Meiss, Symplectic maps, variational principles, and
transport, Rev. Mod. Phys. 64, 795 (1992).

[31] A. Adelmann, P. Calvo, M. Frey, A. Gsell, U. Locans, C.
Metzger-Kraus, N. Neveu, C. Rogers, S. Russell, S.
Sheehy, J. Snuverink, and D. Winklehner, OPAL a versatile
tool for charged particle accelerator simulations,
arXiv:1905.06654.

[32] X. Pang and L. Rybarcyk, Multiobjective particle swarm
and genetic algorithm for the optimization of the LANSCE
linac operation, Nucl. Instrum. Methods Phys. Res., Sect.
A 741, 124 (2014).

[33] J. Kennedy and R. Eberhart, Particle swarm optimization,
in Proceedings of ICNN’95—International Conference on
Neural Networks (1995), Vol. 4, pp. 1942–1948, https://
doi.org/10.1109/ICNN.1995.488968.

[34] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast
and elitist multiobjective genetic algorithm: NSGA-II,
IEEE Trans. Evol. Comput. 6, 182 (2002).

[35] G.Ha,M. H.Cho,W.Gai,K.-J.Kim,W.Namkung, andJ. G.
Power, Perturbation-minimized triangular bunch for high-
transformer ratio using a double dogleg emittance exchange
beam line, Phys. Rev. Accel. Beams 19, 121301 (2016).

[36] W. Gai, , J. G. Power, and C. Jing, Short-pulse dielectric
two-beam acceleration, J. Plasma Phys. 78, 339 (2012).

[37] R. Smith, Uncertainty Quantification: Theory, Implemen-
tation, and Applications (SIAM, Philadelphia, PA, 2014).

[38] V. Vapnik, Statistical Learning Theory. Adaptive and
Learning Systems for Signal Processing, Communications,
and Control (Wiley, New York, 1998).

[39] I. Sobol, Global sensitivity indices for nonlinear math-
ematical models and their Monte Carlo estimates, Math.
Comput. Simul. 55, 271 (2001).

[40] J. R. Alonso et al., Medical isotope production with the
IsoDAR cyclotron, Nat. Rev. Phys. 1, 533 (2019).

[41] C. K. Allen and T. P. Wangler, Beam halo definitions based
upon moments of the particle distribution, Phys. Rev. ST
Accel. Beams 5, 124202 (2002).

[42] F. Wang, M. Song, A. Edelen, and X. Huang, Machine
learning for design optimization of storage ring nonlinear
dynamics, arXiv:1910.14220.

[43] A. Edelen, J. Edelen, S. Biedron, S. Milton, and P. van der
Slot, Using a neural network control policies for rapid
switching between beam parameters in a FEL, in NeurIPS
Deep Learning for Physical Sciences Workshop (DLPS
2017), Long Beach, CA (2017), https://dl4physicalsciences
.github.io/files/nips_dlps_2017_16.pdf.

[44] A. Edelen, N. Neveu, C. Mayes, C. Emma, and D. Ratner,
Machine learning models for optimization and control of
x-ray free electron lasers, in NeurIPS Machine Learning
for the Physical Sciences Workshop (2019), https://
ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019
_90.pdf.

[45] C. Gulliford et al., Demonstration of low emittance in the
Cornell Energy Recovery Linac injector prototype, Phys.
Rev. ST Accel. Beams 16, 073401 (2013).

[46] C. Emma, A. Edelen, M. J. Hogan, B. O’Shea, G. White,
and V. Yakimenko, Machine learning-based longitudinal
phase space prediction of particle accelerators, Phys. Rev.
Accel. Beams 21, 112802 (2018).

[47] C. E. Rasmussen and C. K. I. Williams, Bayesian regres-
sion and Gaussian processes, Gaussian Processes for
Machine Learning (MIT Press, Cambridge Massachusetts,
2006), Chap. 2.

[48] M. McIntire, T. Cope, S. Ermon, and D. Ratner, Bayesian
optimization of FEL performance at LCLS, in Proceedings
of IPAC 2016, Busan, Korea (JACoW, 2016),WEPOW055.

[49] M. McIntire, D. Ratner, and S. Ermon, Sparse Gaussian
processes for Bayesian optimization, in UAI’16 Proceed-
ings of the Thirty-Second Conference on Uncertainty in
Artificial Intelligence (2016), https://www-cs.stanford.edu/
ermon/papers/sparse-gp-uai.pdf, pp. 517–526.

[50] K. Johannes, M. Mutny, N. Hiller, R. Ischebeck, and A.
Krause, Adaptive and safe Bayesian optimization in high
dimensions via one-dimensional subspaces, UAI’16 Pro-
ceedings of the Thirty-Second Conference on Uncertainty
in Artificial Intelligence (2019), https://arxiv.org/pdf/1902
.03229.pdf.

[51] J. Duris, D. Kennedy, A. Hanuka, J. Shtalenkova, A. Edelen,
A. Egger, T. Cope, and D. Ratner, Bayesian Optimization of
a Free-Electron Laser, arXiv:1909.05963 [Phys. Rev. Lett.
(to be published)].

[52] A. Hanuka, J. Duris, J. Shtalenkova, D. Kennedy, A.
Edelen, D. Ratner, and X. Huang, Online tuning and light
source control using a physics-informed Gaussian process,
Machine Learning for the Physical Sciences Workshop,
NeurIPS 2019, Vancouver CA.

[53] A. Scheinker, A. Edelen, D. Bohler, C. Emma, and A.
Lutman, Demonstration of Model-Independent Control of
the Longitudinal Phase Space of Electron Beams in the
Linac-Coherent Light Source with Femtosecond Resolu-
tion, Phys. Rev. Lett. 121, 044801 (2018).

[54] A. Scheinker, D. K. Bohler, A. L. Edelen, R. W. Garnett, S.
V. Milton, and D. Rees, Applying artificial intelligence to
accelerators, Proc. 9th International Particle Accelerator
Conference (IPAC’18), Vancouver, BC, Canada (JACoW
Publishing, Geneva, Switzerland, 2018), pp. 2925–2928,
https://doi.org/10.18429/JACoW-IPAC2018-THYGBE1.

[55] S. C. Leemann, S. Liu, A. Hexemer, M. A. Marcus, C. N.
Melton, H. Nishimura, and C. Sun, Demonstration of
Machine Learning-Based Model-Independent Stabilization

AURALEE EDELEN et al. PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-22

https://doi.org/10.1137/16M1061928
https://arxiv.org/abs/1811.03172
https://arxiv.org/abs/1811.03172
https://arxiv.org/abs/1811.03172
https://doi.org/10.1109/TNS.2016.2543203
https://doi.org/10.1109/TNS.2016.2543203
https://doi.org/10.1103/PhysRevLett.109.141802
https://doi.org/10.1103/RevModPhys.64.795
https://arXiv.org/abs/1905.06654
https://doi.org/10.1016/j.nima.2013.12.042
https://doi.org/10.1016/j.nima.2013.12.042
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/4235.996017
https://doi.org/10.1103/PhysRevAccelBeams.19.121301
https://doi.org/10.1017/S0022377812000037
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1038/s42254-019-0095-6
https://doi.org/10.1103/PhysRevSTAB.5.124202
https://doi.org/10.1103/PhysRevSTAB.5.124202
https://arXiv.org/abs/1910.14220
https://dl4physicalsciences.github.io/files/nips_dlps_2017_16.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_16.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_16.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_16.pdf
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_90.pdf
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_90.pdf
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_90.pdf
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_90.pdf
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_90.pdf
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_90.pdf
https://doi.org/10.1103/PhysRevSTAB.16.073401
https://doi.org/10.1103/PhysRevSTAB.16.073401
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
https://www-cs.stanford.edu/ermon/papers/sparse-gp-uai.pdf
https://www-cs.stanford.edu/ermon/papers/sparse-gp-uai.pdf
https://www-cs.stanford.edu/ermon/papers/sparse-gp-uai.pdf
https://www-cs.stanford.edu/ermon/papers/sparse-gp-uai.pdf
https://www-cs.stanford.edu/ermon/papers/sparse-gp-uai.pdf
https://arxiv.org/pdf/1902.03229.pdf
https://arxiv.org/pdf/1902.03229.pdf
https://arxiv.org/pdf/1902.03229.pdf
https://arxiv.org/pdf/1902.03229.pdf
https://arXiv.org/abs/1909.05963
https://doi.org/10.1103/PhysRevLett.121.044801
https://doi.org/10.18429/JACoW-IPAC2018-THYGBE1

of Source Properties in Synchrotron Light Sources, Phys.
Rev. Lett. 123, 194801 (2019).

[56] R. M. French, Catastrophic forgetting in connectionist
networks, Trends Cognit. Sci. 3, 128 (1999).

[57] M. McCloskey and N. J. Cohen, Catastrophic interference
in connectionist networks: The sequential learning prob-
lem, Psychology of Learning and Motivation (Academic
Press, New York, 1989), Vol. 24, pp. 109–165.

[58] J. Kirkpatrick, R. Pascanu, N. Rabinowitz et al., Over-
coming catastrophic forgetting in neural networks, Proc.
Natl. Acad. Sci. U.S.A. 114, 3521 (2017).

[59] A. Edelen et al., Internal report, Fermilab, 2014.
[60] A. Edelen et al., Initial experimental results of a machine

learning-based temperature control system for an rf gun, in
Proceedings of IPAC 2015, Richmond, VA, USA (2015),
MOPWI028, http://accelconf.web.cern.ch/AccelConf/
IPAC2015/papers/mopwi028.pdf.

[61] Y. Gal and Z. Ghahramani, Dropout as a Bayesian
approximation: Representing model uncertainty in deep
learning, in ICML (2016), http://proceedings.mlr.press/
v48/gal16.pdf.

[62] V. Kuleshov, N. Fenner, and S. Ermon, Accurate
uncertainties for deep learning using calibrated regre-
ssion, in ICML (2018), http://proceedings.mlr.press/v80/
kuleshov18a/kuleshov18a.pdf.

[63] R. M. Neal, Bayesian Learning for Neural Networks
(Springer Science and Business Media, New York,
New York, 2012).

[64] A. G.Wilson, Z.Hu,R. Salakhutdinov, andE. P.Xing,Deep
Kernel Learning (2016), http://arxiv.org/abs/1611.00336.

[65] A. C. Damianou and N. D. Lawrence, Deep Gaussian
Processes, International Conference on Artificial Intelli-
gence and Statistics (AISTATS) 2013, Scottsdale, AZ, USA,
Vol. 31, http://proceedings.mlr.press/v31/damianou13a.pdf.

[66] Y. Ineichen, Toward massively parallel multiobjective
optimization with application to particle accelerators,
Ph. D. thesis, ETH Zurich, Zurich, Switzerland, 2013.

[67] LibEnsemble, https://libensemble.readthedocs.io/en/master/.
[68] J. L. Warren, G. P. Boicourt, M. T. Menzel, G. W. Rodenz,

and M. C. Vasquez, Revision of and documentation for the
standard version of the POISSON group codes, IEEE Trans.
Nucl. Sci. 32, 2870 (1985).

[69] K. Halbach and R. F. Holsinger, SUPERFISH—A computer
program for evaluation of rf cavities with cylindrical
symmetry, Part. Accel. 7, 213 (1976).

[70] O. Kononenko et al., Advances in massively parallel
electromagnetic simulation suite ACE3P, in Proceedings
of International Computational Accelerator Physics
Conference, ICAP 2015, Geneva, Switzerland (JACoW,
2015), FRAJI3.

[71] J. Yang, A. Adelmann, W. Barletta, L. Calabretta, A.
Calanna, D. Campo, and J. M. Conrad, Beam dynamics
simulation for the high intensity DAEdALUS cyclotrons,
Nucl. Instrum. Methods Phys. Res., Sect. A 704, 84
(2013).

[72] F. Chollet et al., KERAS: The Python deep learning library
(2015), https://keras.io.

[73] M. Abadi et al., TENSORFLOW: Large-scale machine
learning on heterogeneous systems, 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16) (2016), pp. 265–283, https://www.usenix.org/
system/files/conference/osdi16/osdi16-abadi.pdf.

[74] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, CoRR (2014), https://arxiv.org/abs/1412
.6980.

[75] B. Debusschere, K. Sargsyan, C. Safta, and K. Chowdhary,
Uncertainty quantification toolkit (UQTk), in Handbook of
Uncertainty Quantification, edited by R. Ghanem, D.
Higdon, and H. Owhadi (Springer International Publishing,
Cham, 2017), pp. 1807–1827, https://doi.org/10.1007/978-
3-319-12385-1_56.

[76] B. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio,
R. G. Ghanem, and O. P. Le Maître, Numerical challenges
in the use of polynomial chaos representations for
stochastic processes, SIAM J. Sci. Comput. 26, 698
(2004).

[77] B. Sudret, Global sensitivity analysis using polynomial
chaos expansions, Reliability Engineering System Safety
93, 964 (2008).

[78] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M.
Parizeau, and C. Gagné, DEAP: Evolutionary algorithms
made easy, J. Mach. Learn. Res. 13, 2171 (2012).

[79] F. Pedregosa et al., SCIKIT-LEARN: Machine learning in
Python, J. Mach. Learn. Res. 12, 2825 (2011).

MACHINE LEARNING FOR ORDERS OF … PHYS. REV. ACCEL. BEAMS 23, 044601 (2020)

044601-23

https://doi.org/10.1103/PhysRevLett.123.194801
https://doi.org/10.1103/PhysRevLett.123.194801
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopwi028.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopwi028.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopwi028.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopwi028.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopwi028.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopwi028.pdf
http://proceedings.mlr.press/v48/gal16.pdf
http://proceedings.mlr.press/v48/gal16.pdf
http://proceedings.mlr.press/v48/gal16.pdf
http://proceedings.mlr.press/v48/gal16.pdf
http://proceedings.mlr.press/v48/gal16.pdf
http://proceedings.mlr.press/v80/kuleshov18a/kuleshov18a.pdf
http://proceedings.mlr.press/v80/kuleshov18a/kuleshov18a.pdf
http://proceedings.mlr.press/v80/kuleshov18a/kuleshov18a.pdf
http://proceedings.mlr.press/v80/kuleshov18a/kuleshov18a.pdf
http://proceedings.mlr.press/v80/kuleshov18a/kuleshov18a.pdf
http://arxiv.org/abs/1611.00336
http://arxiv.org/abs/1611.00336
http://arxiv.org/abs/1611.00336
http://proceedings.mlr.press/v31/damianou13a.pdf
http://proceedings.mlr.press/v31/damianou13a.pdf
http://proceedings.mlr.press/v31/damianou13a.pdf
http://proceedings.mlr.press/v31/damianou13a.pdf
https://libensemble.readthedocs.io/en/master/
https://libensemble.readthedocs.io/en/master/
https://libensemble.readthedocs.io/en/master/
https://doi.org/10.1109/TNS.1985.4334210
https://doi.org/10.1109/TNS.1985.4334210
https://doi.org/10.1016/j.nima.2012.12.050
https://doi.org/10.1016/j.nima.2012.12.050
https://keras.io
https://keras.io
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-12385-1_56
https://doi.org/10.1007/978-3-319-12385-1_56
https://doi.org/10.1137/S1064827503427741
https://doi.org/10.1137/S1064827503427741
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1016/j.ress.2007.04.002

