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Abstract: Uncertainties in instantaneous dam-break floods are difficult to assess with standard
methods (e.g., Monte Carlo simulation) because of the lack of historical observations and high
computational costs of the numerical models. In this study, polynomial chaos expansion (PCE) was
applied to a dam-break flood model reflecting the population of large concrete dams in Switzerland.
The flood model was approximated with a metamodel and uncertainty in the inputs was propagated
to the flow quantities downstream of the dam. The study demonstrates that the application of
metamodeling for uncertainty quantification in dam-break studies allows for reduced computational
costs compared to standard methods. Finally, Sobol’ sensitivity indices indicate that reservoir volume,
length of the valley, and surface roughness contributed most to the variability of the outputs. The
proposed methodology, when applied to similar studies in flood risk assessment, allows for more
generalized risk quantification than conventional approaches.

Keywords: risk assessment; dam-break flood; uncertainty quantification; global sensitivity analysis;
metamodeling; polynomial chaos expansion

1. Introduction

Safety standards applied to large dams must be maintained at a high level to provide sufficient
protection for the downstream population. The safety standards are normally based on three pillars:
thorough design, systematic monitoring, and emergency concept [1]. A dam is normally designed by
evaluating its performance in all possible operational conditions (including maximum loads), whereas
monitoring aims to detect structural defects or external threats to dam safety so that certain safety
measures can be taken. Finally, the emergency concept aims to minimize the degree of potential
consequences of the dam failure, and in some countries (e.g., Switzerland) it is included in measures
of civil protection [2,3]. To help the decision-making process within the emergency concept, risk is
commonly assessed by using a computational model of a potential dam break. Three essential steps of
such an assessment are: (i) the simulation of the outflow hydrograph resulting from the dam break,
(ii) the propagation of this hydrograph in the downstream topography, and (iii) the estimation of loss
of life (LL). This study moves toward the estimation of LL due to a dam-break by focusing on the
assessment of the flow quantities reached downstream of the dam in case of its failure, addressed
through the aforementioned first two steps.

In this study, a risk assessment for the first two steps mentioned above was performed for
hydropower dams in Switzerland, which is a country with one of the highest densities of dams
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in the world (five per 1000 km2 [1]). To reflect the risk level potentially associated with the Swiss
hydropower infrastructure, the population of hydropower dams that are representative for the country
was considered. About 90% of hydroelectricity in Switzerland is supplied by large dams, according
to the International Commission on Large Dams definition [4]. However, large dams account for
only 14% of all hydropower plants in the country. This explains the high importance of each large
dam. Among different dam types, concrete arch dams have the largest share of Swiss hydroelectricity
production (45%), followed by gravity (39%) and embankment (11%) dams [5]. Based on this, the
geometry of a large concrete arch dam was chosen for this study as a proxy for large hydropower dams
in Switzerland. To obtain the largest possible discharge values, the tallest third of these dams was
considered (over 100 m in height); to model the worst-case scenario, the failure mode was assumed
to be complete and instantaneous. The latter is also a common assumption for concrete dams [6],
supported by the knowledge about past failures of concrete arch dams (e.g., the Malpasset dam in
France; the Idbar dam in former Yugoslavia; the Moyie dam in USA [7]).

To evaluate the flow quantities downstream of the dam after its failure, first the quantity of
water released from the reservoir needs to be estimated. Empirical and analytical methods, which are
commonly used for this purpose, calculate the flow quantities (e.g., the peak outflow and the time
to the peak outflow) by applying regression equations to historical or experimental observations [8].
However, these approaches are usually not able to fully reproduce flood wave dynamics and only
provide results in coarse spatial and temporal resolution [9]. Therefore, in this study a hydrodynamic
model was applied to simulate detailed flood wave dynamics. The model simulates water flow by
solving equations of the underlying physical processes. The result not only provides the outflow
hydrograph, but also routes this hydrograph through the downstream area to the final receptor [10]. An
advantage of this computational method is its ability to solve time-dependent and multi-dimensional
problems, whereas its drawback is the high complexity resulting in the increased uncertainty in model
parameters (elaborated in Section 2.3.1).

The presence of numerous uncertainties in the computational models used for dam risk assessment
(e.g., uncertain model inputs, uncertainty due to high complexity of the model) and the importance of
addressing these has been recognized in numerous studies conducted in the field of dam safety [11].
Until now, the analysis of uncertainty in this field was mainly performed in a qualitative manner
e.g., [12]. Quantitative estimation of uncertainties has mainly focused on embankment dam failures,
which commonly gradually fail and enable datasets with historical observations to be established; these
datasets were analyzed with regression methods or Monte Carlo (MC) simulations to build probability
distributions and quantify uncertainties in the discharge or parameters of the breach e.g., [13].

As for instantaneous dam-break flood models, which are the focus of this study, the application
of regression and MC approaches based on historical datasets is limited. The reason is the lack of
recorded observations (e.g., water depth or velocity reached downstream) for instantaneous failures
due to their nature. Alternatively, for hydrodynamic models simulating the dam-break flood wave,
available computational power enables running a sufficient number of model realizations for MC
to be applied to the shallow water equations (SWEs). Furthermore, General Likelihood Uncertainty
Estimation [14] and Bayesian methods [15], which were used in previous studies focusing on floods in
general and not only on dam-break floods, can be applied. On the other hand, metamodeling, also
referred to as surrogate modeling, has been used for uncertainty quantification in flood inundation
studies [9]. Metamodeling substitutes a complex time-consuming computational model with a
statistically equivalent computationally inexpensive model [16]. Successful application of various
metamodels has been demonstrated in many studies, including flood control systems [17], complex
hydrologic models [18], and high resolution geological models [19], among others.

Two families of metamodels can be distinguished, namely response surface metamodels (RSM),
which approximate the relationships between several explanatory variables, and lower-fidelity
physically based metamodels (LFPM), which are simplified models of the original system [20]. RSM
techniques like polynomial chaos expansions (PCE) [21], kriging [22], or artificial neural networks [23]
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provide inexpensive and accurate approximations for the underlying physics-based models, and their
use is favorable for purposes of uncertainty quantification. PCE has the additional benefit that it
belongs to the class of spectral expansions (similar to, e.g., Fourier series expansion), a characteristic that
allows it to directly provide variance-decomposition-based sensitivity indices (for Sobol’ indices) [24].
The latter is the main motivation for the choice of PCE as a surrogate model in this contribution (for a
comparison with the second most-adopted choice, kriging, please see [25]).

Based on these premises, the novel contribution of this study is the quantitative assessment of
uncertainties in the flow quantities of a hydrodynamic dam-break flood model by using metamodeling
techniques. This overcomes the limitations of observation-based methods and methods with high
computational cost. For this, first a computational model of the release of water from the reservoir
and the resulting flood propagation was set up. Next, the output of this computational model
was approximated by a polynomial chaos expansion (PCE) metamodel. The PCE allowed a direct
propagation of the input uncertainties, both aleatory and epistemic, through the metamodel and the
calculation of uncertainty in the metamodel output. Finally, global sensitivity analysis was performed
on the metamodel and the importance of each model input for critical outputs was evaluated [26].

Furthermore, the metamodel output aims to reflect the risk level for hydropower in Switzerland,
i.e., the metamodel needs to be generic for the population of large hydropower dams in Switzerland.
For this purpose, all uncertain model inputs were parameterized considering the population of large
concrete arch dams, which can be considered representative for hydropower dams in Switzerland.
A generic metamodel can be favorable for application in risk analysis and within an energy policy
perspective because it allows for a quick estimation of flow quantities without running intensive
numerical computations or using laboratory scale models [27].

The structure of this study is composed of the following parts. The methodology for uncertainty
quantification and sensitivity analysis is given in Section 2 along with the main assumptions,
simplifications, and calculation steps. Afterwards, the computational model and its parametrized
inputs are given in Sections 3.1 and 3.2. Finally, results for uncertainties of calculated flow quantities,
as well as sensitivity of the model output, are given in Sections 3.3 and 3.4 and discussed in Section 4.

2. Methodology

2.1. Uncertainty Quantification Framework

In this study, the framework for uncertainty quantification in engineering by Sudret [28] and De
Rocquigny et al. [29] was applied. The procedure is represented schematically in Figure 1.
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In step A, a computational model is set up to solve the physical problem, i.e., the flood wave
propagation. All inputs required to run the model, as well as all outputs quantities of interest (QoIs),
are defined. In step B, sources of uncertainty are identified. Available information is gathered or,
alternatively, expert judgement is applied to define marginal probability distributions for each uncertain
input. In addition to the marginal distributions, dependence among probabilistic inputs must be
described. In step C, the input uncertainty is propagated through the computational model. As a result
of this propagation, usually statistics of the model QoIs such as their means and variances are given.
Finally, a sensitivity analysis completes the framework (step D) by identifying inputs that contribute
most to the output variability.

2.2. Step A. Computational Model

Prior to the metamodeling for uncertainty quantification, the appropriate computational model
needs to be set up. This model should be able to simulate the detailed dynamics of a flood wave
resulting from a dam break using up-to-date methods available for hydrodynamic models.

In this study, a complete and instantaneous dam break was assumed. Thus, with the dam failure
occurring in a sufficiently short time, the dam-break flood was treated as a generalized dam-break
problem, also known as a Riemann problem [30]. In this regard, a common approach for modeling
flood waves is the non-linear shallow water equation (SWE) [31].

The dam-break flood wave was approximated by a one-dimensional (1D) numerical model based
on SWEs where the flood wave propagation only occurs in the main flow direction [32,33]. This is
a reasonable simplification because the flow in narrow valleys is markedly 1D [9,34]. Furthermore,
the main model simplifications and assumptions are: hydrostatic pressure distribution, uniform flow
velocity over the channel cross section, the cosine of channel slope is about unity, head losses in
unsteady flow are modeled by using a steady-state resistance law. Finally, the channel geometry is
fixed and not subject to erosion or deposition.

The governing equations are the continuity (Equation (1)) and the momentum equations
(Equation (2)) [35]:

∂A
∂t

+
∂Q
∂x1

= 0 (1)

∂Q
∂t

+
∂
∂x1

(
Q2

A

)
+ gA

∂zS
∂x1

+ gAS f = 0 (2)

where A is the wetted cross section; Q is the discharge; zS is the gradient of water surface elevation; g
is the gravitational acceleration; t is the time; x1 is the coordinate in main flow direction; and Sf is the
friction slope.

For the simulation, the software BASEMENT [36] was used, where the governing equations are
discretized for cross-sections using a first-order cell-centered finite volume method and time integration
is adopted by an explicit first-order Euler scheme. Hydrodynamic fluxes are computed employing
a Roe-type, approximate Rienmann solver [30] and the friction source term is solved using a robust
splitting technique [37].

2.3. Step B. Quantification of Sources of Uncertainties

2.3.1. Identification of The Sources of Uncertainties

The sources of uncertainty in dam-break modeling are numerous and can be attributed to input
parameters, model simplifications, and lack of knowledge [38]. These uncertainties can be categorized
into two types, namely aleatory and epistemic [39].

The model inputs that are not explicitly known, due to the lack of knowledge, contribute to the
epistemic uncertainty [40]. Among them is the reservoir volume (i.e., water volume retained at the
time of the break), which is not an exact parameter, but can be rather accurately measured for large
hydropower reservoirs. Furthermore, epistemic uncertainty exists in the parameters that were set
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using certain approximations (e.g., the same slope over the length of the valley, the same roughness
coefficient for the valley-bed land cover) [41]. Another example of epistemic uncertainty is the surface
roughness, for which data is missing for some areas of the computational domain. Finally, the epistemic
uncertainty due to implicit parameters, such as the failure mode (e.g., a complete instantaneous failure)
or the water and flow properties, were either restricted or disregarded (e.g., the varying density of
water-sediment mixture from mobilized aggradations in reservoir, etc.) [42].

On the other hand, the input parameters of the model contain aleatory uncertainty, which
originates from the natural variability within one topography (e.g., surface roughness), but also from
the natural variability within the considered population of dams and valleys. For example, the height
and crest length of a concrete dam are normally known inputs; however, in a generic model as proposed
in this study, these parameters contain variability of all physically admissible values taken into account
in the considered dam population.

2.3.2. Modeling the Sources of Uncertainties

All model inputs contributing to the sources of aleatory or epistemic uncertainty were included
in the model as marginal probability distributions and not as deterministic values. This form of
representation allows a quantitative description of the uncertainty of each parameter. Furthermore,
distributions of these parameters were defined for all existing values including outliers; thus, it allowed
the metamodel to be generic for the defined population of dams rather than a model for a specific dam.

The first step in building the marginal distributions was to gather information for all model input
parameters (see Section 3.1.1). Based on the availability of the collected data, different methods for
distribution fitting can be applied. In particular, when operating with almost no data, the maximum
entropy principle can be applied to select the distribution family [43]. In some fields of science
and engineering there are joint databases and codes providing probability distributions for common
parameters (e.g., the Joint Committee on Structural Safety [44]). Thus, these distributions can be used
as a priori generated distributions in studies lacking data for the particular parameters.

In contrast, when plentiful data is available, the maximum likelihood method with information
criteria can be used. The former is based on calculation of the maximum likelihood estimator (MLE).
The MLE of a parameter θ corresponds to the value that maximizes the likelihood function, i.e., the
probability of observing the sample set X, which has been observed indeed θ̂ML

= arg max
θ

L(θ; X) [45].

Additionally, several probability distributions can be tested to identify their fit to the data by calculating
Information Criteria (IC) (e.g., Bayesian or Akaike [46,47]). The distribution with the smallest value
of IC is commonly chosen because it is a good compromise between maximizing the likelihood and
minimizing model complexity.

Furthermore, when scarce data is available, Bayesian methods are typically used. Bayes’ theorem
describes the probability of an event based on the prior knowledge, the prior distribution P(θ). The
prior distribution can be built based on existing studies or from expert knowledge (e.g., with the
maximum entropy principle). Then, the prior information is updated with newly collected information
(i.e., scarce data), through the likelihood function (P(y

∣∣∣θ )). The posterior (P(θ
∣∣∣y) ) represents the

probability of a parameter value given some data as the product of the prior distribution of the
parameter value and the likelihood of the data given a parameter value, as P(θ

∣∣∣y) ∝ P(y
∣∣∣θ)·P(θ).

Therefore, the two extreme scenarios here are a case with no data (results when using maximum
entropy principle) and a case with plentiful data (results when using MLE or IC).

Finally, in this study, dependence among parameters was described by the copula formalism [48].
A general two-dimensional copula C is a joint cumulative distribution function on the unit hypercube
with uniform marginals. In this study, a Gaussian copula is used, a particular class of copula constructed
from a multivariate normal distribution [48,49]. The Gaussian copula can be directly parametrized
through the sample rank correlation coefficient estimated from the available data.
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2.4. Step C. Uncertainty Propagation

Once the uncertainty of the model input parameters was quantitatively described, Step C of the
uncertainty quantification (UQ) framework (Figure 1) was conducted. As a first step, the applied
computational model was considered as the model Y = M(X) of the response of the quality of interest,
Y, to the random input, X (X εRM) with a joint probability distribution function (PDF) fX. Then, this
model was substituted with a computationally inexpensive analytical approximation, namely the
metamodel. In this study, polynomial chaos expansion (PCE) was the metamodel of choice [21,50].
PCE is a spectral decomposition of the form:

MPCE def
=

∑
αεNM

yαΨα

(
X j

)
(3)

where MPCE is the PCE metamodel response (later it is also distinguished between MPCE
i , i =

1 . . .m, MPCE
i =

{
MPCE

Qpeak
, MPCE

tpeak
, MPCE

tar
, MPCE

k , MPCE
vmax , MPCE

hmax

}
), yα,i are real coefficients, the index α

determines the degree of the multivariate polynomials Ψα, which are product of underlying orthonormal
polynomials, φ(i)

αi
:

Ψα(x) =
M∏

i=1

φ
(i)
αi
(xi) (4)

This method assumes independence between the model input parameters so that fX(x) =∏M
i=1 fXi(xi). In case of dependent input parameters, an isoprobabilistic transformation can be applied

to decorrelate the input parameters prior to the expansion [51].
The coefficients yα of the PCE for a given basis can be calculated using non-intrusive methods,

e.g., least-squares analysis. The coefficients result from the post-processing of a training sample of
the input random vector, X =

{
x(1), . . . , x(N)

}
, x(i) = RM, the experimental design (ED), and the

corresponding set of model responses,Y =
{
y(1), . . . , y(N)

}
:

yα = argmin
1
N

N∑
i=1

y(i) −
∑
αεNM

yαΨα

(
x(i)

)
2

(5)

The training sample X (Table 1) was created using Latin Hypercube Sampling (LHS) [52].
When calculating the coefficients for high-degree expansions and a limited experimental design,

overfitting should be avoided. For this purpose, strategies like least angle regression (LARS, [53]) are
commonly used. In comparison with the other methods, e.g., quadrature or ordinary-least-squares
(OLS), LARS requires a much smaller experimental design to properly converge even in relatively high
dimensions (i.e., M ~ 100). Because the PCE is supposed to have an infinite number of summands, a
truncation is applied within Equation (5), i.e., the maximum polynomial degree is limited between 1
and 15; a sparse truncation scheme using the hyperbolic norm with q = 0.75 was applied.

In this study, the construction and use of the metamodel for the purpose of uncertainty
quantification was performed using PCE based on LARS as introduced in Blatman and Sudret [54] and
as implemented in UQLab, an uncertainty quantification toolbox for MATLAB [55,56].

The agreement between the original model and the calculated PCE model was evaluated by
calculating the normalized leave-one-out cross-validation error (εLOO) [57]:

εLOO
def
=

∑K
i=1

(
M

(
x(i)

)
−MPCE\i

(
x(i)

))2∑K
i=1

(
M

(
x(i)

)
− µ̂Y

)
)2

(6)
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where M
(
x(i)

)
is the response of the computational model to the ith point in the experimental design,

µ̂Y is the mean value of the experimental design response, and MPCE\i
(
x(i)

)
is the response of a

PCE constructed on all points except x(i). In other words, in Equation (6) a total of N different
metamodels were built. Each metamodel was built on a reduced experimental design X\x(i) ={
x( j), j = 1, . . . , K, j , i

}
except the ith observation (i.e., x(i) with the associated response y(i)). Then,

this observation was used as a single validation point for this metamodel. Finally, the mean square
error was estimated and normalized by the estimated variance of the computational model.

2.5. Step D. Global Sensitivity Analysis

To meet the objectives of this study, the sensitivities of each model output, Yi, to the input
parameters need to be quantified. The calculated sensitivity indices indicate the contribution of
each model input to the overall uncertainty of the output due to structural effects of the particular
computational model, so-called “structural” sensitivity analysis. In general, such analysis aims to
locate important sources of discrepancy in the computational model and consequently to improve the
model. Presumably, the improved model allows for a better representation of the true uncertainty in
water quantities downstream of the valley.

To perform the sensitivity analysis, the preference was given to a global sensitivity analysis (GSA)
and not a local sensitivity analysis. The latter concentrates only on the local impact of the particular
input variation on the model output in vicinity of a reference input configuration, while values of
other input parameters are kept constant. In contrast, GSA allows for the assessment of the relative
contribution of individual input parameters even when the input–output relationship is nonlinear.

For the GSA, Sobol’ sensitivity indices were chosen in this case [58]. The Sobol’ method is
arguably one of the most adopted techniques for GSA in engineering applications because it requires
no assumptions on the form of the model and allows for convergence of the calculated indices to the
exact relative contributions of the inputs and their interaction with the variance of the output [59].

Generally, the Sobol’ indices are defined as the ratio of the partial variance due to the input
variable Xi, Di, to the total variance, D, [60]. For example, the first-order Sobol’ indices are defined as:

Si =
Di
D

(7)

where Di is calculated as Di = VarXi [E(M(X)
∣∣∣Xi = xi)] and D is a sum D =

∑M
i=1 Di +

∑
1≤i< j≤M Di j +

. . . + D12...M. The first-order Sobol’ index, Si, represents the expected fraction of total variance
attributable to a single input variable when all other inputs are fixed. It indicates what reduction of
output variance to expect if the parameter Xi is fixed to some value xi, averaged over all possible values
of xi.

In this study, when the PCE metamodel is built, the Sobol’ indices can be calculated directly from
the PCE coefficients without the need for additional sampling [61]. The partial variance Di can be
obtained as a sum of squares of selected coefficients Di =

∑
α∈NM y2

α; then, the first-order indices can be
computed as:

Si =
∑

α∈Ai
y2
α/D, (8)

where, Ai =
{
α ∈ NM : αi > 0, α j,i = 0

}
is the set of selected multi-indices of multivariate polynomials

with N being the number of samples in the ED and M being the dimension of the computational model.
In this study, because we are interested in the parameters that dominate the response of the

model, we performed the sensitivity analysis on independent inputs (a process known as “deep model
exploration,” [62]).
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3. Results and Discussion

In this section, the setup of the computational model and the subsequent approximation by the
metamodel are described. This includes the results for uncertainty and sensitivity of the model output,
as well as results for all intermediate modeling steps defined in Figure 2.

As mentioned earlier, the focus of this study is on representative large hydropower dams in
Switzerland, i.e., concrete arch dams taller than 100 m. Based on the information about these dams, 14
dams and their downstream areas were chosen for further analysis (Table S1).

3.1. Step A: Computational Model

Following the methodology described in Section 2.2, all inputs required to run the model
(Section 3.1.1) and the model outputs (Section 3.1.2) were defined. Based on this, the numerical model
can be set up. At the beginning of the simulation, the reservoir is initialized with a water volume while
the channel downstream of the dam is considered to be dry (Figure 2).

3.1.1. Required Model Input

To set up the flood propagation model, all input parameters required to sufficiently describe the
computational domain need to be defined. Among these parameters are dimensions and shape of the
dam, reservoir, and downstream area, as well as roughness according to land cover.

To describe the shape and dimensions of the dam and reservoir, it was assumed that the dam
cross section can be described as an isosceles trapezoid with height equal to the dam height, width of
the upper base equal to the length of the dam crest, and side slopes equal to the abutment slopes of the
dam [63]. The width of the bottom base of the dam is assumed to be the same as the average bottom
width of the valley downstream of the dam. The reservoir created by the dam has a planar bed and a
trapezoidal cross section that is equal to the one of the dam. Representing the worst-case scenario,
the water depth in the reservoir is equal to the dam height. Values of the parameters for dimensions
and shape of the dam reservoir are constant over the length of the domain, i.e., prismatic shape of
the reservoir.

With these assumptions, three input parameters are required to define the shape and dimensions
of the dam and its reservoir; they are the dam height, H (m), the length of the dam crest, Lcr (m), and
the volume of the reservoir, V (m3). Units and definitions of these parameters are given in Table 1 for
visualization purposes these parameters are shown in Figure 2. Other characteristics of the dam and
reservoir (e.g., the reservoir cross section, A (m2), reservoir length, Lre (m), etc.) can be estimated using
the abovementioned inputs.
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Table 1. Input parameters for the model of the flood wave propagation resulting from a concrete
dam break.

Parameter Name Unit Definition

Physical characteristics of the dam and reservoir

H Dam height (m) Dam height
V Reservoir volume (m3) Volume of the water in the reservoir formed by the dam

Lcr Length of the dam crest (m) Length of the crest of the dam

Physical characteristics of the channel

Lch−rel Relative channel length (m/m)
Length of the channel between the dam and the location,

where the flow quantities are defined; expressed as
relative to the height of the dam

W Channel width (m) Width of the channel bed.

Ss Slopes of channel sides (◦) Slopes of the sides of the channel cross section. A
trapezoidal cross section is assumed.

Sb Slopes of channel bed (m/m) Average slope of the channel bed.

Characteristics of the environment

Ms
Roughness coefficient of

the channel sides (s/m1/3)
Roughness coefficient of the channel side slopes. It is

given as a Manning roughness coefficient.

Mb
Roughness coefficient of

the channel bed (s/m1/3)
Roughness coefficient of the channel bed. It is given as a

Manning roughness coefficient.

To describe the shape and dimensions of the downstream area (i.e., valley), a simplified
geometry was proposed [64]. To define what kind of simplified geometry can rather accurately
reflect the population of valleys downstream of the representative hydropower dams in Switzerland, a
classification of valleys downstream of the 14 Swiss concrete arch hydropower dams taller than 100 m
(Table S1) was performed. It should be noted that classification of natural valleys can be controversial
because each natural valley is unique. Therefore, the classification performed in this study considers
only major features of the valleys.

For the purpose of classification, slope maps were generated for the area downstream of each
of these 14 dams. Slope data were extracted from the Swiss high-resolution digital elevation model,
swissALTI3D [65], and then all slope values were partitioned into three groups: “flat”—flatter than 20◦;
“moderately steep”—between 20◦ and 45◦; and “steep”—steeper than 45◦. Based on the obtained data
and on the work about categorization of natural valleys conducted by Rosgen [66] and Rosgen et al. [67],
three classes of valleys were defined (Table 2).

Among the defined classes, the V-shaped valleys (Class 1) have a narrow bottom with moderately
steep side slopes (i.e., 20◦–63◦). This class corresponds to valleys with steep, moderately steep, or
gentle-sloping sides as defined in Rosgen [66] and Rosgen, Rosgen, Collins, Nankervis and Wright [67]
(Table 2). A good approximation for valleys of this class can be a channel with a triangular cross section.
The U-shaped valleys (Class 2) have a distinct valley bottom and moderately steep slopes forming
the valley walls that start from the edges of the valley bed. Therefore, this class is reflected in the
categorization by Rosgen as moderately steep, U-shaped glacial-through valleys. Valleys of Class 2
can be represented by a channel with a trapezoidal cross section. Finally, valleys of Class 3 are like
bedrock valleys with steep side slopes; they also have a pronounced bottom area as in Class 2, but their
sides are steeper, i.e., almost vertical (≥75◦). Therefore, this class is represented by rectangular-shape
cross sections.

Based on the simplified geometries defined for the three classes, a generic model of the downstream
valley reflecting all three classes could be defined as a channel with the trapezoidal cross section with
two extreme cases, namely the rectangular and triangular cross sections. Therefore, the shape and
dimensions of the channel with the simplified geometry can be characterized using four parameters:
the channel length relative to the height of the dam, Lch−rel (m/m), the channel width, W (m) (uniform
for the entire length of the channel), the slope of the channel bed, Sb (m/m) (the same along the entire
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channel length), and the slope of the channel side slopes, Ss (◦) (the same on the right and on the left
side of the channel and constant along the entire channel length).

Finally, to account for the surface resistance to the flow, the surface of the channel is described
by the roughness coefficients, where roughness values for channel bed, Mb (s/m1/3), and channel side
slopes, Ms (s/m1/3), are distinguished. The latter are assumed to be the same on both side slopes.

Table 2. Classification of the valleys downstream of 14 concrete arch hydropower dams in Switzerland.

Valley Type Based on Rosgen [66] & Rosgen,
Rosgen, Collins, Nankervis and Wright [67]

Dam-downstream Valleys in Switzerland
Simplified Geometry

Class 1: Channel with a triangular cross section

Moderately steep,
gentle-sloping

side-slopes (often in
colluvial valleys)
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3.1.2. Required Model Response

As output, the model provides time series of the flow quantities downstream of the dam. The
flow quantities, namely the outflow hydrograph, maximum water depth, hmax, and maximum water
velocity, vmax, at the last downstream cross section of the channel are the outputs of interest. Although
the parameters hmax and vmax are self-explanatory, the shape of the hydrograph generally can be
described using the following features. Taking into account that the downstream area is initially dry
(i.e., no base flow) and that the flood was caused by a water release from the dam reservoir and not
by a rainfall event (i.e., the basin lag time is substituted by the time to the peak discharge), the peak
discharge, the time to the peak discharge, the time of the flood arrival, and the recession constant can
sufficiently describe the shape of the hydrograph (Table 3) [68].
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Table 3. Definition of hydrograph features.

Feature Definition Visualization

Peak discharge, Qpeak,
(m3/s)

Maximum outflow reached during the flood event
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Time-to-peak
discharge, tpeak, (s)

Time interval between the start of the computational
time and the peak discharge

Time-to-flood arrival,
tar, (s)

Time interval between the start of the computational
time and the time of the first non-zero discharge value.

Knowing tpeak, tar, and Qpeak the rising limb of the
hydrograph can be built, i.e., the curve reflecting the

increase of the discharge.

Recession constant, k,
(m3/s2)

The recession limb begins at time to peak and continues while the value of discharge decreases.
This limb is characterized by a recession constant, k, of the line between the peak discharge and a

discharge at time t after the peak discharge.

Although values for all the hydrograph features can be set based on their definition, the recession
constant, k (m3/s2), can be calculated as [69]:

k =
(
ln

(
Qpeak

)
− ln(Qt)

)
/∆t (9)

where, Qt (m3/s) is the discharge at time t, which corresponds to the total run time and ∆t (s) is the time
between tpeak and t. In this study, the total run time was set to a conservative value of 9000 s, allowing
for the computation of the model output and also for extreme-case scenarios.

3.2. Step B. Modeling the Sources of Uncertainties

For the majority of the model input parameters, the initial dataset contained 14 data points.
Therefore, the maximum entropy principle was used to define distributions for this model (Section 2.3.2).
According to the maximum entropy principle, the least biased Probability Density Function (PDF)
fX(x) : Ω 7−→ DXcRint for representing information about a continuous variable X is the one that

maximizes its entropy H[ fX] (as defined in Equation (10)), as well as certain constraints based on the
available information, e.g., bounds, moments, etc.

H[ fX]
def
=

∫
DX

− fX(x) ln fX(x)dx = E[−ln fX(X)] (10)

In this study, entropy was tested between uniform and beta distributions (Table 4), which are
normally used when little knowledge about the parameter is available (e.g., little confidence in the
computed mean or median of the data). Furthermore, both distributions are bounded, allowing
for setting the limits based on the range of values for the population of dams. For each of the two
distribution types, the equations for entropy are given in Table 4. To identify the parameters of the
distributions (Table 4), the maximum likelihood principle was used as explained in Section 2.3.2.

To model the distributions of physical characteristics of the dam and reservoir, information about
the population of dams in Switzerland was gathered. In order to build probability distributions for H
(m), Lcr (m), and V (m3), data about 14 concrete arch dams taller than 100 m (Table S1) were used (Swiss
Committee On Dams [5]). By testing entropy for two probability distribution types (Section 2.3.2), it
was found that the length of the dam crest was uniformly distributed [Figure 3a]. In the case of dam
height, it is known that lower values of the distribution range will have higher probabilities, i.e., the
frequency of having a dam with a lower height is higher. Therefore, a beta distribution was used to
describe the dam height [Table 6, Figure 3b], where aB and bB are the bounds of the height range for
the Swiss arch concrete dams taller than 100 m. Because the reservoir volume is strongly correlated
with the dam height, it was assumed that V was also following a beta distribution [Table 6, Figure 3c].
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Table 4. Probability distributions used to build marginal distributions for the model input parameters.

Distribution Density Function Parameters Entropy

Beta
B(α, β)

f (x) =
xα−1(1− x)β−1

B(α, β)
,

for x defined on the support [0,1] or (0,1)

Where B(α, β) is the Beta function,
α = µ((µ(1− µ)/σ) − 1) is a first shape parameter and
β = (µ(1− µ)/σ)(1− µ) is a second shape parameter. A

Beta distribution is an alternative for bounded
parameters with non-uniform distributions.

H(x) = ln[B(α, β)] − (α− 1)[ψ(α) −ψ(α+ β)] −
(β− 1)[ψ(β) −ψ(α+ β)], where ψ(c) is the first

derivative of Euler’s gamma

for y with a support [aB, bB] or (aB, bB): y = x(bB − aB) + aB
Therefore,

f (y;α, β, aB, bB) =
(y− aB)

α−1(bB − y)β−1

(bB − aB)
α+β−1B(α, β)

Uniform
U(a, b)

f (x) =
1

b− a
f or x ∈ [a, b]

(otherwise f (x) = 0)

Where a = µ−
√

3·σ is a lower boundary and
b = µ+

√
3·σ is an upper boundary. A Uniform

distribution is applied when little is known about the
parameter (e.g., distance, loads).

H(x) = ln(b− a)
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the channel length is measured between the dam and the Bagnes town, with the population of 8,057 

Figure 3. Marginal distributions for (a) length of the dam crest, Lcr; (b) dam height, H; (c) reservoir
volume, V.

To build probability distributions for the parameters of the channel (i.e., Lch−rel, W, Ss, Sb),
information was extracted from the topographic maps and digital elevation maps [65] of the areas
downstream of the 14 arch dams considered (Table S1).

The channel length was estimated as the distance between the dam and the nearest locality with
at least 500 inhabitants situated downstream of the dam [Figure 4a]. The distance corresponds to the
flow path, i.e., considering all bends in the reach. For each dam, the locality situated either along the
channel or at the end of the channel was chosen (Table S1). For example, in the Mauvoisin dam case,
the channel length is measured between the dam and the Bagnes town, with the population of 8057
people as in 2016 [70]. Based on these measurements, the channel length relative to the height of the
dam, Lch−rel, was described with a uniform distribution [Table 6, Figure 4b].
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the valley bed [Figure 6a, rose polygon). In the next step, the slope value at each point falling within 

Figure 4. (a) Mauvoisin dam downstream area with orange line indicating the flow path; (b) empirical
data on the relative channel length, Lch−rel, and the probability distribution fitted to the data.

The channel slope Sb was defined by the difference in elevation between the dam and the locality
and the absolute value of the channel length (i.e., not normalized by the dam height). Based on the
collected data, Sb was found to follow a beta distribution truncated over the boundary corresponding
to the smallest and the largest existing values (Table 6).

According to the definition given in Section 3.1.1, the channel bed is defined using the swissALTI3D
slope map [65]. Then, multiple lines were drawn across the bed area perpendicular to the channel
axis, where each line represented the width of the channel bed in a specific location [as shown, for
example, in Figure 5a]. For each channel the average value of W was taken into account to build
a generic distribution representing all channels. The channel bed width was uniformly distributed
[Table 6, Figure 5b].
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Figure 5. (a) Mauvoisin dam downstream area with the valley bed (pink area) and lines indicating
its width at different locations; (b) empirical data on the averaged width of the channel bed, W, and
distribution fitted to the data.

To define the channel side slope Ss for each individual valley the following steps were performed,
as shown for the case of the Mauvoisin dam in Figure 6a–c. First, the polygon of the valley embankments
was drawn [Figure 6a, green polygon]. This polygon indicated the area that is lying below the mountain
ridge forming the sides of the valley, but that is not included in the polygon of the valley bed [Figure 6a,
rose polygon). In the next step, the slope value at each point falling within the defined polygon was
extracted from the swissALTI3D slope map [Figure 6b]. Then, the mean of the slope was computed
assuming that Ss for each valley was normally distributed. Figure 6c presents an empirical histogram
of all 14 calculated Ss values showing that Ss is uniformly distributed (Table 6).

Energies 2019, 12, x FOR PEER REVIEW 14 of 25 
the defined polygon was extracted from the swissALTI3D slope map [Figure 6b]. Then, the mean of 

the slope was computed assuming that 𝑆𝑠  for each valley was normally distributed. Figure 6c 

presents an empirical histogram of all 14 calculated 𝑆𝑠  values showing that 𝑆𝑠  is uniformly 

distributed (Table 6). 

(a) (b) (c) 

Figure 6. (a) Mauvoisin dam downstream area with the valley bed (pink area) and sides (green area); 

(b) slope [°] of the valley sides; (c) histogram of the mean values of side slopes, Ss , with fitted

distribution.

The downstream environment is characterized by the roughness coefficients 𝑀𝑏 and 𝑀𝑠. Figure 

7a–c shows three steps performed to build a probability distribution for 𝑀𝑏 based on the data about 

the 14 valleys. The process of building a probability distribution for 𝑀𝑠 is analogous.  

In the first step [Figure 7a], the types of land cover in the areas downstream of the dam were 

collected using data from the Swiss topographic landscape model, swissTLM3D [71]. The 

swissTLM3D differentiates between six types of land cover (Table). In this study, water bodies were 

excluded as a land cover type, because the downstream area of the dam was treated as a dry domain 

due to much smaller size of any water body in comparison with the dam reservoir.  

Manning’s roughness coefficients for different land cover types were defined using information 

available in the literature. Because many studies [72, 73] used the NLCD classification (i.e., National 

Land Cover Dataset by the US Geologic Survey, [74]), land cover types in the SwissALTI3D 

classification were allocated to the types of the NLCD classification using the available description 

(Table 5).  

Table 5. Roughness coefficients for different types of land cover. 

Landcover Type 

(swissTLM3D) 
Number 

Name According to US National 

Land Cover Dataset (NLCD) 

Manning’s 

Coefficients (s/m1/3) 

Rock 1 barren land 0.011–0.09 

Shrubbery forest 6 shrub/scrub 0.05–0.4 

Soil, earth 7 barren land 0.011–0.09 

Wetlands 11 
woody/emergent herbaceous 

wetlands 
0.086–0.14 / 0.045–0.3 

Forest 12 deciduous forest / evergreen forest 0.1–0.36 / 0.1–0.32 

Forest (open) 13 deciduous forest / evergreen forest 0.1–0.36 / 0.1–0.32 
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Figure 6. (a) Mauvoisin dam downstream area with the valley bed (pink area) and sides (green area); (b)
slope [◦] of the valley sides; (c) histogram of the mean values of side slopes, Ss, with fitted distribution.

The downstream environment is characterized by the roughness coefficients Mb and Ms.
Figure 7a–c shows three steps performed to build a probability distribution for Mb based on the
data about the 14 valleys. The process of building a probability distribution for Ms is analogous.

In the first step [Figure 7a], the types of land cover in the areas downstream of the dam were
collected using data from the Swiss topographic landscape model, swissTLM3D [71]. The swissTLM3D
differentiates between six types of land cover (Table 5). In this study, water bodies were excluded as a
land cover type, because the downstream area of the dam was treated as a dry domain due to much
smaller size of any water body in comparison with the dam reservoir.
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Figure 7. (a) Mauvoisin dam downstream area with land cover types within the valley bed; (b)
workflow for calculation of average areal roughness distribution; (c) individual distributions of average
areal roughness coefficient, Mb, for each dam (dashed lines) and their generic density function (red
solid line).

Table 5. Roughness coefficients for different types of land cover.

Landcover Type
(SwissTLM3D) Number Name According to US National Land

Cover Dataset (NLCD)
Manning’s

Coefficients (s/m1/3)

Rock 1 barren land 0.011–0.09
Shrubbery forest 6 shrub/scrub 0.05–0.4

Soil, earth 7 barren land 0.011–0.09
Wetlands 11 woody/emergent herbaceous wetlands 0.086–0.14/0.045–0.3

Forest 12 deciduous forest/evergreen forest 0.1–0.36/0.1–0.32
Forest (open) 13 deciduous forest/evergreen forest 0.1–0.36/0.1–0.32

Manning’s roughness coefficients for different land cover types were defined using information
available in the literature. Because many studies [72,73] used the NLCD classification (i.e., National
Land Cover Dataset by the US Geologic Survey, [74]), land cover types in the SwissALTI3D classification
were allocated to the types of the NLCD classification using the available description (Table 5).

In the second step [Figure 7b], the roughness of each land cover type was described by the average
areal roughness with mean, µi, and variance, σ2

i , calculated by assuming that the roughness coefficient
within each land cover type is distributed uniformly. Furthermore, areal probability, Pi, was assigned
to each land cover type by defining the fraction of the area occupied by the land cover type in the total
area of the downstream valley bed. Then, using the equations given in Figure 7b, the mean, µareal, and
the variance, σ2

areal, of the average areal roughness for the entire area of the downstream valley bed
were defined. Finally, using the mean µareal and variance σ2

areal calculated with the method of moments,
the maximum entropy was used to calculate the parameters of a beta probability distribution, which
yielded a better fit to the Mb data.

Probability distributions of the average areal roughness, Mb, for each valley are displayed as
dashed lines in Figure 7c. To construct the distribution of the roughness reflecting the population
of all considered valleys, roughness distributions of all distinct land cover types in different valleys
were treated together and their areal probabilities were normalized by the total number of considered
valleys. This resulted in a beta distribution shown as a red solid line in Figure 7c. The information
about chosen marginal distributions, their hyper parameters, truncation range, and moments are
summarized for all input parameters in Table 6.
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Table 6. Information about the marginal distributions specified for the input of the metamodel.

Para-Meter Unit Distribution Hyper Parameters Truncation Mean and Variance

H (m) H ∼ Beta(α, β, aB, bB)
α = 1.28, β = 2.98,
a = 100, b = 250 - 159.9, 26.6

V (m3) V ∼ Beta(α, β, aB, bB)
α = 1.28, β = 2.98,

a = 9200, b = 2.1E5 - 69,890, 40,460

Lcr (m) Lcr ∼ U(a, b) a = 256, b = 610 - 433, 102.19
Lch−rel (m/m) Lch−rel ∼ U(a, b) a = 5.9, b = 123.6 - 64.75, 33.98

W (m) W ∼ U(a, b) a = 1.0, b = 163.66 - 82.33, 46.96
Ss (◦) Ss ∼ U(a, b) a = 28.28, b = 45.98 - 37.13, 5.11
Sb (m/m) Sb ∼ Beta(α, β) α = 3.22, β = 32.48 [0.03, 0.23] 0.090, 0.047
Mb (s/m1/3) Mb ∼ Beta(α, β) α = 0.33, β = 2.07 [0.01, 0.4] 0.14, 0.19
Ms (s/m1/3) Ms ∼ Beta(α, β) α = 0.40, β = 1.88 [0.01, 0.4] 0.17, 0.12

Finally, all input parameters of the model were checked for possible dependence. The results
showed strong positive, as well as negative, correlation between some of the inputs. For example, both
the correlation between reservoir volume and dam height and the correlation between the crest length
and the reservoir volume had a value of 0.57. These results can be supported by findings of other
research conducted in the past; for example, the first example of correlation is reflected in the GRanD
database guidelines for estimating missing reservoir volumes based on the reservoir area and dam
height [75].

A negative correlation was found between the dam height and the relative length of the channel
(ρH,Lch−rel = −0.51), and between the slope of the channel bed and the roughness coefficient of the
channel sides (ρSb, Ms = −0.52). The later, for example, can demonstrate that it is harder for vegetation
such as forest trees to grow on very steep slopes. Correlation coefficients for other combinations are
given in Table 7.

Table 7. Spearman rank correlation coefficients calculated among model input parameters.

Parameter H V Lcr Lch−rel W Ss Sb Mb Ms

H 1 0.574 0.218 −0.512 0.082 0.213 −0.020 −0.007 0.125
V 1 0.574 −0.253 0.298 0.112 −0.156 0.046 −0.108

Lcr 1 −0.336 0.280 −0.138 0.143 0.196 −0.380
Lch−rel 1 0.417 −0.341 −0.385 0.354 0.165

W 1 −0.179 −0.347 0.378 0.223
Ss 1 0.196 −0.442 −0.380
Sb 1 −0.073 −0.521
Mb 1 0.292
Ms 1

3.3. Step C. Uncertainty Propagation

The generic PCE metamodel for each of the defined model outputs was calculated using the
experimental design with a sample size of 2000. The correlation between the model inputs was not
considered for building the metamodel to achieve better metamodeling performance [76]. Afterwards,
the constructed PCEs were evaluated on the new sample set of size 1,000,000 using coefficients
calculated in the previous step. Prior to the forward propagation of the input uncertainties, the
information about correlation between model inputs, i.e., Gaussian Copula with calculated Spearman
rank correlation coefficients, was added to the information about marginal distributions and their
bounds. In this way, the final PDF distributions reflecting uncertainty of the model outputs were built,
including the information about the dependency between input parameters.

In Figure 8a–f, the histograms of the computational model responses, YED
1−6, and the histograms

of the PCE metamodel response, MPCE
1−6 , are shown. The latter together with the calculated moments

of the metamodel response reflect the variability of the modeled parameters. In particular, the mean
value of the peak discharge is 0.99 × 105 m3/s and the arrival of this peak outflow corresponds to 1067 s
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(17.78 min), whereas arrival of the flood itself corresponds to 756 s (12.60 min). However, the range of
possible values of the corresponding parameters is large and the values of the peak outflow and the
time to the peak outflow can grow up to 7 × 105 m3/s and 9000 s (150 min), respectively. The results for
the recession constant describing the hydrograph indicate that the descending limb is a flat curve (i.e.,
the mean value of the recession constant k is 0.98 × 10−3 m3/s2), demonstrating that the water tends to
remain at the location, i.e., the decrease in water depth is slow. The mean value of the maximal flow
velocity is 26.19 m/s and the mean value of maximum water depth is 34.42 m, which are rather high
considering that they indicate the most severe moment when the flood wave arrives.Energies 2019, 12, x FOR PEER REVIEW 17 of 25 
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Figure 8. Model response, YED
i−n, and polynomial chaos expansion (PCE) response, MPCE

1−n , for (a) peak
discharge, Qpeak; (b) time to the peak discharge, tpeak; (c) time to the flood arrival, tar; (d) recession
constant, k; (e) maximum water velocity, vmax; (f) maximum water depth, hmax, at the last cross section
at the end of the channel.

Quantitative validation of the calculated PCEs was done by estimating the cross-validation error
(εLOO). Results are given in Figure 9 and Table S2 for different experimental designs. The PCE degree
shown in the appendix is the PCE degree with the lowest εLOO in the array of the given degrees (i.e.,
1–15) [54]. The results showed that with the increasing ED the value of εLOO decreases, and the degree
of the calculated PCE changes as well. The residual εLOO for some of the model outputs is about 10%
(e.g., k, vmax).

Because of the relatively high residual εLOO, in addition to the built-in error estimation, the mean
squared error (MSE) was used as another error metric for the convergence of the mean values of the
model outputs. For this analysis, the ED was divided into two samples, where one was used for
construction of the PCE, XNED, and another as a validation sample, XVAL. While XVAL was represented
by the same sample set of 100 points, XNED was increased stepwise from 200 to 1900 sample points
(see Figure 9). Then, the validation error evolution using the prediction of PCE, YNED, and the true
output of the computational model, YVAL, was calculated as:
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The calculated MSE (Figure 9 and Table S2) decreases for all the model outputs with the larger
size of the ED, YNED. For some of the parameters the decrease of the MSE value is rather constant and
well-pronounced (e.g., Qpeak, k, hmax); for some others the MSE value decreased to 10% rather quickly
and then stayed rather constant at the same level with the enlarging ED (e.g., tpeak, tar). Similar to εLOO,
the residual MSE for some parameters is about 10%. The overall tendency of MSE to decrease with
an increasing ED is an indicator that the applied computational model is complex. In addition, the
repeatability error calculated for each of the model outputs is close to 0.1% or substantially lower than
this value (Protocol S1), which is another indicator of the model complexity.Energies 2019, 12, x FOR PEER REVIEW 18 of 25 
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Figure 9. The value of εLOO [%] and mean squared error (MSE) error [%] calculated for each model
output using different sizes of ED. (a) peak discharge, Qpeak; (b) time to the peak discharge, tpeak; (c)
time to the flood arrival, tar; (d) recession constant, k; (e) maximum water velocity, vmax; (f) maximum
water depth, hmax, at the last cross section at the end of the channel.

The validation results with the residual error (both εLOO and MSE) of 10% might compromise the
advantages of using PCE as a tool for UQ. However, studies conducted in the past were able to prove
that if the metamodel is used for the estimation of the statistical properties of the model output (e.g.,
mean, variance) and also for calculation of sensitivity indices (Section 3.4), then it is rather accurate
even with a residual error of about 10% [25]. Another factor that can potentially contribute to relatively
high validation error (both εLOO and MSE) is the nature of the model outputs defined in this study.
Most of them represent maxima parameters (i.e., Qpeak, vmax, hmax) and the peaks are intrinsically
harder to metamodel.

Finally, other types of surrogate modeling techniques, such as low-rank approximation (LRA) [16]
and Gaussian process modeling (i.e., kriging [77]), were tested. Although LRA is particularly promising
for high-dimensional problems (i.e., the number of unknown coefficients in LRA grows only linearly
with respect to the input dimension [16]) and kriging has a different approach to approximate Y (i.e., it
focuses on the local alterations of Y, whereas PCE approximates the global behavior of Y [78]), both of
these metamodeling approaches did not reveal a better fit to the computational model.

3.4. Step D. Global Sensitivity Analysis

In general, the PCE approach reduces the cost of GSA by calculating the Sobol’ indices directly
from the PCE coefficients, yα, without the need for additional sampling (see Section 2.5). However, in
real applications different issues can arise. An example can be cases of high-dimensional models, such
as the one applied in this study (i.e., the model has nine inputs). For these models, UQ sampling of
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the size 102 to 103 still allows to reach a good agreement with the computational model, but for the
calculation of the Sobol’ indices a sample size 104 to 105 is normally required. In other words, if the
computational cost for building the metamodel itself does not depend on the dimensionality of the
model, the computational cost for the GSA increases with larger model dimensions. However, for the
particular case of the “structural” GSA (Section 2.5), sampling of the size 102 to 103 could be adopted,
and the metamodel built in Section 3.3 on the ED of 2000 points was used also for GSA.

The calculated first-order Sobol’ indices (Figure 10a–f) indicate that among the parameters
characterizing the dam and its reservoir (i.e., H, V, Lcr), the reservoir volume, V, is the most important
for the parameters Qpeak and hmax. In other words, the volume of the water released from the dam
reservoir influences amounts of water reachable downstream, which are expressed as outflow or water
depth. Meanwhile, dam height, H, and crest length, Lcr, did not influence any of the flow quantities
estimated at the end of the channel.

Among the parameters of the channel, the relative length, Lch−rel, strongly affected all model
outputs. In other words, by moving further downstream from the dam, not only did the maximum
reachable flow quantities (Qpeak, vmax, hmax) changed, but the shape of the hydrograph (tpeak, tar, k) was
altered. The width of the channel bed, W, is relatively important only for hmax; the water has literally
more space to spread. Lastly, the slope of the channel bed, Sb, and sides, Ss, did not show influence
over any of the model outputs.

Finally, the roughness coefficients had influence on the characteristics of the hydrograph
(Qpeak, tpeak, tar, k) and the maximum velocity reached downstream, vmax. Roughness corresponds to
flow resistance, e.g., the velocity decreases and it takes more time for the discharge to arrive and to
reach its peak. The influence of Ms on the output parameters is slightly higher than the influence of
Mb, which may be simply related to the fact that the channel sides cover a substantially larger surface
area than the channel bed.
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The calculated sensitivity indices identified the model input parameters that are influential for the
model describing large hydropower dams in Switzerland. When variability of the output has to be
limited, further investigation of the influential inputs needs to be done to decrease their uncertainty.
For example, in the context of the dam risk assessment, to make a better prediction of the potential
loss of life due to the impact of the dam-break flood wave, uncertainty of the value of the outflow,
flow velocity, and maximum water depth at the location of the city needs to be decreased. According
to the sensitivity results, to achieve that, the volume of the dam reservoir needs to be measured or
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monitored accurately. Furthermore, the roughness, especially of the channel sides, may be defined more
specifically. For example, the average areal roughness used in this study can be further investigated to
reflect different roughness on various parts of the valley.

4. Conclusions

The current study demonstrated the application of metamodeling for quantitative assessment
of uncertainties for the complete and instantaneous break of a hypothetical concrete dam located in
Switzerland. A 1D model based on the Shallow Water Equations was used for numerical simulation of
the flood wave propagation. The model configuration included nine input parameters characterizing
the dam, its reservoir and the downstream area and six model outputs defined as the flow quantities
reached downstream of the failed dam. This computational model was approximated with a metamodel.

A polynomial chaos expansion (PCE) was able to reproduce the computational model with good
agreement using 2000 runs of the original model. This offers the opportunity to reduce computational
efforts compared, for example, to Monte Carlo sampling, which was applied in Froehlich [79] and
required 100,000 trials to estimate confidence limits of dam-breach flood calculations. Furthermore, the
quantitative assessment of uncertainties, which was enabled by using the metamodel, is beneficial
for further phases of modeling the dam-break event. For example, it allows for the description of the
flow quantities reached downstream in form of probability distributions, which then can be used as
uncertain inputs to the model for the loss of life estimation in the downstream area.

The applied metamodeling approach also allowed sensitivity analysis by calculating the first-order
PCE-based Sobol’ indices. These indices helped to understand how the variability of each model
input affected variability of the model output and to identify important sources of discrepancy within
the model. Particularly, the reservoir volume, length of the channel, and surface roughness in the
downstream area were important parameters that drove the output of the model as reflected by the
higher values of the Sobol’ indices. The dam dimensions, as well as slopes of the channel sides and
bed, did not significantly influence the flow quantities at the end of the channel, i.e., at the locality of
population at risk.

Finally, the constructed metamodel can support decision-making processes in risk management
for large concrete arch hydropower dams in mountain regions of Switzerland. By setting certain
parameters to deterministic values and by further specifying the distribution of the remainder of the
parameters based on the specific location, this generic metamodel is converted into a preliminary
model of the failure of a dam to be built in the future. Then, the flow quantities that can be reached
downstream can be quickly approximated without running any computationally expensive model,
what is useful for risk assessment and decision support. These findings eventually provide important
inputs for decision makers when formulating energy policy strategies.

As an outlook of the current research, if it is decided to switch to 2D flood propagation models to
account for non-prismatic channels and valleys with more complex topographies, robustness of PCE
for quantitative assessment of uncertainties has to be investigated. Furthermore, correlation among
input parameters and their influence on variability of the model output can be further addressed
in sensitivity analysis. For this purpose, alternative techniques, e.g., Borgonovo indices [80] or
copula-based approaches [81,82], can be applied. However, their application should be done with
caution since it strongly depends on the question asked before doing the analysis. Finally, the step of
life-loss estimation due to a dam-break will be addressed by the authors in the follow-up research.
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Table S1: Information about 19 large concrete arch hydropower dams located in Switzerland, Table S2: The degree
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Nomenclature

The following symbols are used in this paper:

Physical Parameters of the Model

hmax = maximum water depth at the last cross section at the end of the channel;
H = dam height;
k = recession constant;
Lcr = length of the dam crest;
Lch-rel = channel length relative to the dam height;
Mb = roughness coefficient of the channel sides;
Ms = roughness coefficient of the channel bed;
Q0 = discharge at time zero;
Qpeak = peak discharge;
Qt = discharge at time t corresponding to the total run time;
Sb = slope of the channel bed;
SS = side slopes;
tpeak = time to the peak discharge;
tar = time to the flood arrival;
∆t = time between tpeak and t given for the outflow hydrograph;
vmax = maximum water velocity at the cross section of the channel end;
V = reservoir volume; and
W = channel width;

Marginal Distributions

a = lower boundary of a Uniform function;
aB = lower boundary of the support for a four-parameter Beta function;
b = upper boundary of a Uniform function;
bB = upper boundary of the support for a four-parameter Beta function;
Beta = Beta function;
DX = support of a random continuous variable X, DX =

{
X(ω), ωεΩ

}
;

E = expected value;
fX = Probability density function (PDF) of a continuous variable X;
H[ fX] = entropy of a variable X with PDF fX;
Rint = Interval for the support of a random continuous variable X;
U = Uniform function;
α = first shape parameter of a Beta function;
β = second shape parameter of a Beta function;
µ = mean value;
σ = standard deviation; and
ψ(c) = first derivative of Euler’s gamma
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Saint-Venant Equations

A = wetter cross section;
g = gravitational acceleration;
S f = friction slope;
t = time;
Q = discharge;
zS = gradient of the water surface elevation; and
xcr = distance between cross sections

Uncertainty Propagation and Sensitivity Analysis

Di = partial variance calculated as Di = VarXi [E(M(X)
∣∣∣Xi = xi)];

D = total variance calculated as a sum D =
∑M

i=1 Di +
∑

1≤i<j≤M
Dij + · · ·+ D12...M;

fX = Probability density function (PDF) of X;
M

(
x(i)

)
= evaluation of the computational model;

MPCE
i = PCE metamodel response built on the experimental design XED

i ;
MPCE\i = PCE metamodel response built on the experimental design XED

\x(i);
M = dimensions of the computational model;
N = number of sampling points in the experimental design;
R = rank-equivalent;
R = support of the parameter X;
Si = first-order Sobol’ index of the input parameter Xi;
x = one value realization;
x = random vector;
X = probability density function of x;
X = joint distribution of x;
X = sample set (collection of realizations);
XED

i = model experimental design (model input parameters);
YED

i = model experimental design (model output parameters);
X\x(i) = model experimental design excluding x(i);
yα = coefficient for the actual term of the sum for the PCE;
α = degree of the underlying polynomials (α = {α1, . . . , αM});
εLOO = leave-one-out cross-validation error;
µ̂Y = mean value of the computational model;
ρs

i j = Spearman coefficient between two input parameters (ith and jth);
Ψα = multivariate polynomials. i.e., the product of the underlying orthonormal polynomials; and
φα = Orthonormal polynomials
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