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a b s t r a c t

Every computer model depends on numerical input parameters that are chosen according to mostly
conservative but rigorous numerical or empirical estimates. These parameters could for example be
the step size for time integrators, a seed for pseudo-random number generators, a threshold or the
number of grid points to discretize a computational domain. In case a numerical model is enhanced
with new algorithms and modelling techniques the numerical influence on the quantities of interest,
the running time as well as the accuracy is often initially unknown. Usually parameters are chosen on
a trial-and-error basis neglecting the computational cost versus accuracy aspects. As a consequence
the cost per simulation might be unnecessarily high which wastes computing resources. Hence, it is
essential to identify the most critical numerical parameters and to analyse systematically their effect on
the result in order to minimize the time-to-solution without losing significantly on accuracy. Relevant
parameters are identified by global sensitivity studies where Sobol’ indices are common measures.
These sensitivities are obtained by surrogate models based on polynomial chaos expansion.

In this paper, we first introduce the general methods for uncertainty quantification. We then
demonstrate their use on numerical solver parameters to reduce the computational costs and discuss
further model improvements based on the sensitivity analysis. The sensitivities are evaluated for
neighbouring bunch simulations of the existing PSI Injector II and PSI Ring as well as the proposed
DAEδALUS Injector cyclotron and simulations of the rf electron gun of the Argonne Wakefield
Accelerator.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Numerical models in scientific research disciplines are usually
xtremely complex and computationally intensive. A common
eature to all is the dependency on numerical model parameters
hat do not represent an actual property of the underlying sci-
ntific problem. They are either prescribed in the source code
nd, thus, hidden to the user or can be chosen at runtime. Ex-
mples are the seed for pseudo random number generators, an
rror threshold in a convergence criterion, the number of grid
oints in mesh-based models or the step size in time integrators.
atter two are often chosen to satisfy memory constraints or time
imits. When applying new algorithms and modelling techniques
he sensitivity of such input values on the response is usually
tudied by varying only a single parameter. While this captures
he main influence of the tested parameter, possible correlations
ith other parameters are missed. A remedy is the evaluation
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of Sobol’ indices [1] which are variance-based global sensitivity
measures to express both individual and correlated parameter
influences. Instead of Monte Carlo estimates, these quantifiers
can easily be obtained by surrogate models based on polynomial
chaos expansion (PCE). Uncertainty quantification (UQ) based on
PCE is generally used in many areas of scientific computing and
modelling [2–5] and several frameworks exist such as [6–8].
The coefficients of the truncated PCE that are required to de-
termine Sobol’ indices are mostly computed using the projection
or regression method [9]. Since some numerical parameters are
limited to integers, the former method is not applicable.

In this paper we study the sensitivity of adaptive mesh refine-
ment (AMR) and multi bunch [10,11] parameters in Particle-In-
Cell (PIC) simulations of high intensity cyclotrons where we use
the new AMR capabilities of OPAL (Object Oriented Parallel Accel-
erator Library) [12] as presented in [13]. We further explore the
sensitivity of a rf electron gun model with respect to the number
of macro particles, the energy binning and the time step. The sen-
sitivities are evaluated using ordinary least squares and Bayesian
compressive sensing (BCS) [14,15]. Both methods are part of the
uncertainty quantification toolkit UQTk [16,17] (version 3.0.4).
The results are cross-checked using Chaospy [7] (version 3.0.5)
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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together with the orthogonal matching pursuit [18,19] regression
model of the Python machine learning library scikit-learn [20,21]
(version 0.21.2).

Although we apply UQ on numerical solver parameters, it is a
general method used for example in [5] to evaluate the sensitiv-
ities and to predict the quantities of interest due to uncertainties
in physical parameters.

The paper is organized as follows: In Section 2.1 we elaborate
the physical applications and their numerical modelling. An in-
troduction to UQ is given in Section 3. The experimental setup
and its results are presented in Sections 4 and 5, respectively. In
Section 6 are the final conclusions.

2. Applications

2.1. High intensity cyclotrons

Cyclotrons are circular machines that accelerate charged par-
ticles (e.g. protons) or ions (e.g. H+2 ). Depending on the particle
species and delivered energy, these machines find different ap-
plications ranging from isotope production [22,23] and neutron
spallation [24] to cancer treatment [25,26]. An example that
provides a beam for neutron spallation is the High Intensity
Proton Accelerator (HIPA) facility at Paul Scherrer Institut (PSI)
consisting of two cyclotrons, i.e. the PSI Injector II and PSI Ring.
At a frequency of 50.65MHz 10mA DC (direct current) proton
bunches at 870keV are injected into PSI Injector II in which they
are collimated to approximately 2.2mA and accelerated up to
72MeV (∼37% speed of light), before being transported to the PSI
Ring where they reach a kinetic energy of 590MeV (∼79% speed
of light) at extraction.

Another example is the planned facility of the DAEδALUS and
IsoDAR (Isotope Decay At Rest) experiments for neutrino oscil-
lation and CP violation. It consists of two cyclotrons where the
DAEδALUS Injector Cyclotron (DIC) [27,28] is the first acceleration
stage delivering a 60MeV/amu H+2 beam to the Superconducting
Ring Cyclotron (DSRC) with extraction energy of 800MeV/amu.

Since cyclotrons are isochronous, i.e. the magnetic field is
ncreased radially in order to keep the orbital frequency constant,
.e. the revolution time per turn is energy-independent and, thus,
he bunches lie radially on axis. A sketch showing five bunches
enoted as circles on adjacent turns is depicted in Fig. 1a. As
hown in [11], a small turn separation causes interactions be-
ween neighbouring bunches which yields to more halo particles
cf. Fig. 1b). In order to resolve these effects, the open source
eam dynamics code OPAL [12] got recently enhanced with AMR
apabilities [13] which adds more complexity to the numerical
odel. The influence of the AMR solver parameter settings on

he statistical measures of the particle bunches is yet unknown
nd a too conservative AMR regrid frequency worsens the time-
o-solution. Furthermore, the applied energy binnnig technique
10] to fulfil the electrostatic assumption (cf. Section 2.1.1) in-
reases the computational costs considerably. Hence, the goal of
his study is to quantify the impact of AMR solver and energy
inning parameters in order to improve further computational
nvestigations of these bunch interactions.

.1.1. Numerical model
The numerical model of neighbouring bunch simulations in

PAL, as presented in [11], is based on [10]. Due to the energy
ifference of the particle bunches on neighbouring turns a single
ransformation into the particle rest frame does not fully satisfy
he requirements of the electrostatic assumption to solve Pois-
on’s equation. Instead, each of the N macro particles is assigned
o an energy bin b due to its momentum βγ according to

=

⌊
sinh-1 (βγ )− sinh-1

(
mini={1,N}(βγ )i

)
η

⌋
(1)
where the binning parameter η is a measure of the energy spread.
In each time step the force on a particle exerted by all others is
the sum of the electric field contributions of each energy bin b
evaluated in the appropriate rest frame of the particles obtained
by a Lorentz transform with the proper relativistic factor γb. The
algorithm is summarized in Alg. 1. The computation of the electric
field of an energy bin involves only particles of that bin, thus,
the charge deposition applies only on a subset of particles M ⊂
{1, . . . ,N}. However, the field on the mesh is interpolated and
applied to all N particles.

Algorithm 1 Electrostatic Particle-In-Cell with B energy bins and
N macro particles.
1: En ← 0 ∀n ∈ {1, . . . ,N} ▷ Electric field at particle location
2: for b ∈ {1, . . . , B} do ▷ Loop over energy bins
3: x̃n ←LorentzTransform(xn, γb) ∀n ∈ {1, . . . ,N}
4: ρ̃i,j,k ←DepositCharge(x̃m, qm) ∀m ∈ M ⊂ {1, . . . ,N}

▷ Interpolate charge onto mesh
5: Ẽb

i,j,k ←PoissonSolve(ρ̃i,j,k)
6: Ẽb

n ← GatherEfield(Ẽb
i,j,k, x̃n) ∀n ∈ {1, . . . ,N}

▷ Get field at particle location
7: Eb

n ←BackLorentzTransform(Ẽb
n, γb) ∀n ∈ {1, . . . ,N}

8: xn ←BackLorentzTransform(x̃n, γb) ∀n ∈ {1, . . . ,N}
9: En ← En + Eb

n ∀n ∈ {1, . . . ,N} ▷ Add field contribution
10: end for

2.1.2. RF electron gun model
To study the effect of energy binning we further use the

example of the Argonne Wakefield Accelerator (AWA) [29–31]
facility, an experiment setup for beam physics studies and ac-
celerator technology developments. The facility is equipped with
a photocathode rf electron gun that emits high intensity elec-
tron beams at high accelerating gradients (≫1 MV/m). Due to
the high gradients the electrostatic approximation is invalidated
and, hence, energy binning is necessary. In OPAL, we model the
particle emission by

ptotal =

√(
Ekin
mc2
+ 1

)2

− 1

px = ptotal sin (ϕ) cos (θ)
py = ptotal sin (ϕ) sin (θ)
pz = ptotal |cos (ϕ)|

ϕ = 2 cos−1
(√

x
)

with x ∈ [0, 1] and θ ∈ [0, π] uniformly randomly sampled [12].

.2. Quantities of interest

In accelerator physics interesting quantities of interest (QoI)
lso denoted as observables, of the co-moving frame are the rms
eam size

ω =

√
⟨ω2⟩ ∀ω = x, y, z

and the projected emittance

εω =

√
⟨ω2⟩⟨p2ω⟩ − ⟨ωpω⟩2 (2)

that describes the phase space volume per dimension. The bracket
⟨·⟩ represents the moment. In order to quantify halo (cf. Fig. 1b),
i.e. the tails of a particle distribution, we use two statistical defini-
tions for bunched beams by [32,33], the spatial-profile parameter

hω =
⟨ω4
⟩

σ 4
ω

−
15
7

(3)

and the phase-space halo parameter

Hω =

√
3
√
Iω4
2 −

15
(4)
2 εω 7
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Fig. 1. Sketch of neighbouring bunches (left) in the context of isochronous cyclotrons and characterization of a single bunch (right).
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ith Eq. (2) and fourth order invariant (cf. also [34])

ω
4 =

⟨
ω4⟩ ⟨p4ω⟩+ 3

⟨
ω2p2ω

⟩2
− 4

⟨
ωp3ω

⟩ ⟨
ω3pω

⟩
.

n case the bunch has uniform density Eq. (3) is zero due to the
onstant 15/7. An important quantity of interest in the rf electron
un model is the energy spread

E ∝
√
⟨p2z ⟩. (5)

3. Non-intrusive uncertainty quantification

Simulations of physical phenomena usually rely on measured
input data. Depending on the accuracy of the measurement and
the model sensitivity, the response may vary significantly. UQ
introduces methods to quantify this variability in order to esti-
mate the reliability of the obtained results. UQ distinguishes two
approaches which are called intrusive and non-intrusive UQ. In
contrast to intrusive UQ, non-intrusive UQ uses the computa-
tional model as a black box. In this paper we only give a short
overview following the description and notation of [1,5,9,35,36].
A detailed introduction to UQ in general is found in e.g. [37,38].

In Section 3.1, the surrogate model based on the polynomial
chaos expansion (PCE) is explained in general. The Sections 3.2 to
3.5 describe methods to obtain the coefficients of the expansion
where special focus is given on the methods applied in this
paper. The definition of the Sobol’ indices and their computation
with the PCE is given in Section 3.6. In order to check the er-
ror bounds of the estimated sensitivities, we use the bootstrap
method explained in Section 3.7.

3.1. Surrogate model based on polynomial chaos expansion

The PC-decomposition originates from [39], where a random
variable of a Gaussian distribution is represented as a series
of multivariate Hermite polynomials of increasing order. And
as stated by the Cameron–Martin theorem [40], any functional
in L2 space can be represented in a series of Fourier–Hermite
functionals. Later, this method was rediscovered and applied

by [41] to a stochastic process and then generalized by [42] to
other probability measures and their corresponding orthogonal
polynomials.

Let a multivariate polynomial Ψαi (ξ) of dimension d ∈ N \ {0}
nd multiindex αi = (α1, α2, . . . , αd) ∈ Nd be defined by

αi (ξ) =
d∏

j=1

ψαj (ξj)

ith orthogonal univariate polynomials {ψαj}
d
j=1. The response of

model m(x) with random input vector x ∈ Ω1×· · ·×Ωd, where
j ∀j = {1, . . . , d} denotes the sample space of the jth random

variable, can then be represented as

m(x) =
∞∑
i=0

cαiΨαi (T (x)) (6)

where the basis of a random input component is determined by
its probability distribution (cf. Table 1) and T : x ↦→ ξ denotes
an isoprobabilistic transform. In case of dependent input compo-
nents, for example, T represents the Rosenblatt transform [43]
that yields independent random variables. Another method for
dependent variables presented in [44] applies the Gram–Schmidt
orthogonalization.

Under the assumption of only independent input variables,
the transform T reduces to a simple linear mapping of every
component of x onto the defined interval of the corresponding
univariate polynomial, e.g. ξj ∈ [−1, 1] for Legendre polynomi-
als. In numerical computations the sum in Eq. (6) is truncated
at some polynomial degree p, hence the expansion is only an
approximation of the exact model m(x), i.e.

m̂(x) =
P−1∑
i=0

cαiΨαi (T (x)). (7)

The truncation scheme is not clearly defined. A common rule,
which is also used here, is the so-called total order truncation
that keeps all multiindices α for which ||α||1 ≤ p. This yields a
number of

P =
(p+ d)!

(8)

p!d!
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Table 1
Examples of the Wiener–Askey polynomial chaos of random variables ξj with
ppropriate probability density function (PDF) [42].
PDF of ξj Polynomial basis Support

{ψαj (ξj)} Ωj

Gaussian Hermite ] −∞,∞[

Gamma Laguerre [0,∞[
Uniform Legendre [a, b] with a, b ∈ R

multiindices. Three other schemes are explained in [35]. In the
next sections we describe methods to compute the coefficients
cαi of Eq. (7).

.2. Projection method

The (spectral) projection method computes the coefficients of
q. (7) making use of the orthogonality of the basis functions,
.e.
⟨
Ψαi (ξ)Ψαj (ξ)

⟩
= 0 with ∀i ̸= j. Thus, the PC coefficients are

iven by

αi =

⟨
m(T −1(ξ))Ψαi (ξ)

⟩⟨
Ψ 2

αi
(ξ)
⟩ .

hile the denominator is evaluated by analytic formulae (see
xamples in the appendix of [9]), the numerator is computed by
aussian quadrature integration where

= (p+ 1)d

ntegration points, i.e. high fidelity model m(x) evaluations, are
equired.

.3. Linear regression method

The coefficients of Eq. (7) can also be computed with regres-
ion-based methods

ˆ = argmin
c

1
2

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
N−1∑
j=0

(
m(xj)−

P−1∑
i=0

cαiΨαi (ξj)

)⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
2

2

+
λ1

2
||c||22 + λ2 ||c||1 (9)

with regularization parameters λ1, λ2 ≥ 0, and the l1 norm and l2
norm denoted by ||·||1 and ||·||2, respectively. The minimization
problem is called ordinary least squares if λ1 = λ2 = 0,
elastic net [45] if λ1, λ2 > 0, ridge regression [46] (or Tikhonov
regularization) if only λ1 > 0 and Lasso [47] if only λ2 > 0. In
matrix form the problem reads

ĉ = argmin
c

1
2
||y − Ac||22 +

λ1

2
||c||22 + λ2 ||c||1 (10)

ith model response y = (m(x0), . . . ,m(xN−1))⊺ ∈ RN×1, un-
nown coefficient vector c =

(
cα0 , . . . , cαp

)⊺
∈ RP×1 and system

atrix A ∈ RN×P . In case of λ2 = 0, the coefficients of Eq. (10)
re obtained in closed form by

ˆ = (A⊺A+ λ1I)−1 A⊺y

ith P×P identity matrix I . In contrast to the projection method
cf. Section 3.2), this method does not require a fixed number
f samples N . However, [9] gives an empirical optimal training
ample size of

= (d− 1)P (11)

ith P defined in Eq. (8).
.4. Orthogonal matching pursuit

The matching pursuit (MP) is a greedy algorithm developed
y [18] which was enhanced by [19] to obtain better convergence.
his improved method is called orthogonal MP (OMP). In terms of
CE, the algorithm searches a minimal set of non-zero coefficients
o represent the model response, i.e.

ĉ = argmin
c

||y − Ac||22

subject to ||c||0 ≤ Nc

here ||c||0 denotes the number of non-zero coefficients in c
ith a user-defined maximum Nc [48]. The vectors and matrices
re defined according to Eq. (10). It is an iterative procedure
here in the (i+1)th step a new coefficient vector c i+1 is searched
hat maximizes the inner product to the current residual r i =
− y i. We refer to the given references for details.

.5. Bayesian compressive sensing

As stated in [14,15], the linear regression model Eq. (9) can be
nterpreted in a Bayesian manner, i.e.

(c|D) =
p (D|c) p (c)

p (D)

with posterior distribution p (c|D), likelihood p (D|c), prior p (c)
and evidence p (D) of training data D = {x, y}N−1j=0 [36]. The
likelihood is assigned a Gaussian noise model

p (D|c) =
1(

2πσ 2
)N/2 exp

⎛⎝− N−1∑
j=0

(
m (xi)− m̂ (xi)

)2
2σ 2

⎞⎠
with variance σ 2. It is a measure of how well the high fidelity
model is represented by the surrogate model Eq. (7). In order to
favour a sparse PCE solution, a Laplace prior

p (c) =
(
λ

2

)P+1

exp

(
−λ

P∑
i=0

|ci|

)
(12)

s chosen. Using Eq. (12) in the maximum a posteriori (MAP)
stimate for c , i.e.

rgmax
c

log [p (D|c) p (c)] , (13)

he Bayesian approach is equivalent to Eq. (9) with λ1 = 0 [49],
ince Eq. (13) is identical to a minimization of

rgmin
c
− log [p (D|c) p (c)] .

n iterative algorithm to obtain the coefficients is described in
15]. It requires a user-defined stopping threshold ε that basically
ontrols the number of kept basis terms, with more being skipped
he higher the value is. The overall method is known as Bayesian
ompressive Sensing (BCS) [14,15].

.6. Sensitivity analysis

Sobol’ indices [1] are good measures of sensitivity since they
rovide information about single and mixed parameter effects.
n addition to these sensitivity measures, there are various other
ethodologies such as Morris screening [50]. A survey is pre-
ented in [51] on the example of a hydrological model. Instead of
onte Carlo, Sobol’ indices are also easily obtained by surrogate
odels based on PCE as discussed in the following subsections.
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3.6.1. Sobol’ sensitivity indices
In [1] Sobol’ proposed global sensitivity indices that are calcu-

lated on an analysis of variance (ANOVA) decomposition (Sobol’
decomposition) of a square integrable function f (x) with x ∈ Id :=
[0, 1]d, i.e. [52]

f (x) = f0 +
d∑

i=1

fi(xi)+
∑

1≤i1<···<is≤d

fi1 is (xi1 , xis )

+ · · · + f12...d(x1, x2, . . . , xd) (14)

with mean

f0 =
∫
Id
f (x)dx

and∫ 1

0
fi1...is (xi1 , . . . , xis )dxk = 0, (15)

for k = i1, . . . , is and s = 1, . . . , d. Since Eq. (15) holds, the
components of Eq. (14) are mutually orthogonal. Therefore, the
total variance of Eq. (14) is

D =
∫
Id
f 2(x)dx− f 20

that can also be written as

D =
d∑

i=1

Di +
∑

1≤i1<···<is≤d

Di1 is + · · · + D123...d (16)

where

Di1...is =

∫
Is
f 2i1...is (xi1 , . . . , xis )dxi1 · · · dxis , (17)

with 1 ≤ i1 < · · · < is ≤ d. Based on Eqs. (16) and (17), the Sobol’
indices are defined as

Si1...is :=
Di1...is

D
ith
d

i=1

Si +
∑

1≤i<j≤d

Sij + · · · + S12...d = 1. (18)

he first order indices Si are also known as main sensitivities.
hey describe the effect of a single input parameter on the model
esponse. The total effect of the ith design variable on the model
esponse, proposed by [53], is the sum of all Sobol’ indices that
nclude the ith index, i.e.

STi =
∑
i∈I

Si

ith I = {i = (i1, . . . , is) : ∃k, 1 ≤ k ≤ s ≤ d, ik = i}.

3.6.2. Sobol’ indices using polynomial chaos expansion
Instead of Monte Carlo techniques, Sobol’ indices can be esti-

mated using surrogate models based on PCE since the truncated
expansion can be rearranged like Eq. (14). The Sobol’ estimates
are then given by [9]

Ŝi1...is =
1

D̂

∑
α∈Ii1,...,is

c2α
⟨
Ψ 2

α

⟩
where

Ii1,...,is =

{
α :

αk > 0 ∀k = 1, . . . , n, k ∈ (i1, . . . , is)
}

αk = 0 ∀k = 1, . . . , n, k ̸∈ (i1, . . . , is)
and variance

D̂ =
P−1∑
i=1

c2αi

⟨
Ψ 2

αi

⟩
.

The main and total sensitivities are computed by

Ŝi =
1

D̂

∑
α∈Ii

c2α
⟨
Ψ 2

α

⟩
with Ii = {α = (α1, . . . , αd) : αi > 0 ∧ ∀k ̸= i, αk = 0} and

ŜTi =
1

D̂

∑
α∈Ii

c2α
⟨
Ψ 2

α

⟩
,

ith Ii = {α = (α1, . . . , αd) : αi > 0}, respectively.

.7. Confidence intervals using bootstrap

In this subsection we briefly outline the computation of con-
idence intervals for the estimates of Sobol’ indices using the
ootstrap method [54]. In the context of PCE, the bootstrap
ethod has already been applied in [55], where it is referred to as
ootstrap-PCE (or bPCE). The bootstrap method, in general, gen-
rates B independent samples each of size N by resampling from
he original dataset. Each bootstrap sample, that may contain a
oint several times, is then considered as a new training sample
o compute the coefficients of Eq. (7). In order to calculate the 95%
onfidence interval for Sobol’ indices we follow the description
f [56], where the bounds are given by

ˆi1...is ± 1.96 · s.e.(Ŝi1...is )

ith 1 ≤ s ≤ d and standard error (s.e.) of B ∈ N>1 bootstrap
amples

.e.(Ŝi1...is ) =

√ 1
B− 1

B∑
b=1

(
S(b)i1...is

− S∗i1...is

)2
and bootstrap sample mean

S∗i1...is =
1
B

B∑
b=1

S(b)i1...is
.

4. Experiment design

4.1. High intensity cyclotrons

In order to study the effect of AMR solver parameters and
energy binning in neighbouring bunch simulations we perform
sensitivity experiments with three different high intensity cy-
clotrons, the PSI Ring [57], the PSI Injector II [58] and the
DAEδALUS Injector Cyclotron (DIC) [27,28]. We always accelerate
5 particle bunches with 106 particles. The coarsest level grid is
kept constant with 243 mesh points which is refined twice. For
the PSI Injector II and PSI Ring the particles are integrated in time
over one turn using 2880 steps per turn and for the DIC over
three turns with 1440 steps per turn. The experimental setup
is summarized in Table 2. In all experiments the initial particle
distribution is read from a checkpoint file to guarantee identical
conditions for all training and validation points of a UQ sample.

A list of the design variables under consideration is given
in Table 3. While the resolution is basically controlled by the
maximum number of AMR levels, the refinement policy affects
its location. As described in [13] the OPAL library provides several
refinement criteria such as the charge density per grid point, the
potential as well as the electric field. Here, we want to analyse
the effect of the threshold λ ∈ [0, 1] of the electrostatic potential
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Table 2
Experimental setup of the PSI Ring, PSI Injector II and DAEδALUS Injector Cyclotron model.
No. turns Steps/turn No. bunches Particles/bunch PIC base grid No. AMR levels

1 or 3 1440 or 2880 5 106 24× 24× 24 2
b
t
A
e

e
n
j
r
E

5

m
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n
C
t
l
a
s
c
I
s

Table 3
List of design variables and their sampling ranges for the neighbouring bunch
simulations.
Symbol Design variable Sampling range

fr Regrid frequency [1, 120]
λ Refinement threshold [0.5, 0.9]

η

Binning Ring (10−3) [4.7, 5.7] ∪ [5.8, 7.6] ∪ [7.7, 11.5] ∪
[11.6, 23.0] ∪ [23.1, 27.1]

Binning Inj-2 (10−3) [4.0, 4.9] ∪ [5.0, 6.5] ∪ [6.6, 9.8] ∪
[9.9, 19.7] ∪ [19.8, 23.8]

Binning DIC (10−3) [4.1, 5.0] ∪ [5.1, 6.6] ∪ [6.7, 10.0] ∪
[10.1, 20.0] ∪ [20.1, 24.1]

refinement policy, where a grid cell (i, j, k) on a level l is refined
if

|φl
i,j,k| ≥ λmax

i,j,k
|φl

i,j,k|

holds. Due to the motion of the particles in space the multi-level
ierarchy has to be updated regularly to maintain the resolution
hich is defined by the regrid frequency fr . It should be noted that

the regrid frequency defines the number of steps until the AMR
hierarchy is updated. Hence, if fr = 1, the AMR levels are updated
in each time step. Whenever this happens, the electric self-field
needs to be recalculated by solving Poisson’s equation. The num-
ber of Poisson solves is controlled by the number of energy bins
and therefore by the binning parameter η (cf. Section 2.1.1). The
lower the value of η, the smaller the bin width and, hence, the
more expensive the model is.

As an upper limit of the regrid frequency fr we choose 120
integration steps. Since we perform either 1440 or 2880 steps
per turn, this corresponds to an azimuthal angle of 30◦ and 15◦,
respectively. The choice of the binning parameter η in Eq. (1)
depends mainly on the energy difference between bunches. The
upper bound of the sampling range was selected such that we
have at most as many energy bins as bunches in simulation.
However, the sampling from the range is not straightforward
since there exist more states with fewer energy bins (cf. Fig. 2)
due to Eq. (1). Instead, we sample the binning parameter in
subranges of equal bin count in order to avoid a biased sample
set.

4.2. RF electron gun model

Like in the neighbouring bunch model, the time-to-solution in
the rf electron gun model is dominated by the Poisson solver and
the time integration. A reduction of the computational effort with
regard to the Poisson solver is achieved by smaller PIC meshes
and fewer energy bins NE . The costs of the time integrator is
cheapened with coarser time steps ∆t and fewer macro particles.
Instead of the AMR model, the rf electron gun model uses the Fast
Fourier Transform (FFT) Poisson solver of OPAL where we put a
Lx×Ly×Lz uniform mesh of Lx = Ly = 64 and Lz = 32 grid points.
The final number of emitted macro particles is given by

Np = pf LxLyLz

where the particle multiplication factor pf is an integer. This
parameter basically controls the number of particles per grid cell
and, hence, the noise of the PIC model. The design variables and
sampling ranges are given in Table 4. We model the rf electron
gun of the Argonne Wakefield Accelerator (AWA) that has a

length of approximately 30 cm. d
Table 4
List of design variables and their sampling ranges for the rf electron gun model.
The time step is the only floating point variable.
Symbol Design variable Sampling range

pf Particle factor [1, 5]
NE Number of bins [2, 10]
∆t Time step (0.1 ps) [1, 10]

Table 5
PC surrogate model settings for all accelerator model examples. The stopping
criterion of Bayesian Compressive Sensing (BCS) and Orthogonal Matching
Pursuit (OMP) is discussed in Sections 3.4 and 3.5, respectively.
Model PC order Stopping criterion

ε (BCS) Nc (OMP)

PSI Ring 2 1× 10−7 5
PSI Injector II 2 1× 10−4 7
DIC 2 1× 10−8 6
AWA 2 1× 10−9 7

4.3. Surrogate model selection

In order to avoid overfitting we proceed like [35] where the
truncation order of the PC expansion and the settings of the
regression models are chosen such that the relative l2 error√∑N−1

i=0

[
m(xi)− m̂(xi)

]2∑N−1
i=0 m2(xi)

(19)

etween the surrogate m̂(x) and high fidelity model m(x) of the
raining and validation set is approximately of equal magnitude.
s an additional error measure we also compare the relative l1
rror∑N−1

i=0

⏐⏐m(xi)− m̂(xi)
⏐⏐∑N−1

i=0 |m(xi)|
. (20)

The number of samples N in Eqs. (19) and (20) corresponds eith-
r to the number of training Nt or validation points Nv . The total
umber of N = 100 samples was randomly partitioned into dis-
oint training and validation sets with Nt = 0.5N and Nv = 0.5N ,
espectively. Since we have d = 3 design variables, we satisfy
q. (11) with Nt = 50 up to polynomial order p = 3.

. Results

The estimated sensitivities are obtained from PC surrogate
odels where we use either ordinary least squares (OLS) and
ayesian compressive sensing (BCS) of UQTk [16,17] or orthogo-
al matching pursuit (OMP) of scikit-learn [20,21] together with
haospy [7] to compute the expansion coefficients. A summary of
he PC model setups is given in Table 5. In order to study the evo-
ution of the sensitivities we construct the PC surrogate models
t equidistant steps of the accelerator models and evaluate their
ensitivities. These steps correspond to azimuthal angles in the
yclotrons or longitudinal positions in the rf electron gun model.
n the examples below we only show the first order Sobol’ indices
ince their sum is already almost one which is the maximum per
efinition (cf. Eq. (18)).
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Fig. 2. Number of energy bins in the PSI Ring, PSI Injector II and DAEδALUS Injector Cyclotron (DIC) with respect to the binning parameter η. The shown binning
urves are with respect to the initial simulation energies used in this study. A straightforward uniform sampling from the full range yields a biased sample set.
Fig. 3. Evolution of the mean and standard deviation (std) of the spatial-profile parameters hx , hy and the phase-space halo parameters Hx , Hy as defined in Eqs. (3)
and (4), respectively. Based on the mean of Hx , the location of the dipoles in the PSI Injector II can be detected, i.e. at 90◦ , 180◦ , 270◦ and 360◦ .
Fig. 4. Evolution of the relative l2 and l1 error between the surrogate and the true model of the PSI Injector II. The full lines are the errors to the surrogate model
btained with the training set and the dashed lines are the errors to the surrogate model computed with the validation set. For each quantity, the dashed and full
ines are close to each other, indicating no overfitting of the surrogate model.
.1. High intensity cyclotrons

In order to study the effect of the input parameters we eval-
ate the sensitivities of the halo parameters Eqs. (3) and (4)
ith respect to the centre bunch of the 5 bunches (cf. Fig. 1a).
he initial kinetic energy of the centre bunch in the different
odels is approximately 98MeV, 25MeV and 17MeV for the PSI
Ring, PSI Injector II and DIC, respectively. As shown in Figs. 4,
8 and 12, the relative l1 and l2 errors (cf. Eqs. (19) and (20))
between training and test samples are in good agreement for all
cyclotron examples. A similar observation is done at a single angle
in Figs. 5, 9 and 13. The average errors are given in Tables 7–9.
The computation methods OLS, BCS and OMP yield similar results.
In case of the PSI Injector II, the refinement threshold has more
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Fig. 5. Comparison between the high fidelity (x-axis) and PC surrogate model (y-axis) at 390◦ of the PSI Injector II simulation. The blue and red dots indicate the
training and validation points, respectively. In the best case all points coincide with the dashed black line. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Fig. 6. Evolution of the estimated first order Sobol’ indices in the PSI Injector II. The error bars denote the 95% bootstrapped (B = 100) confidence interval (cf.
Section 3.7). The main sensitivities are evaluated for the spatial-profile parameters hx , hy and the phase-space halo parameters Hx , Hy as defined in Eqs. (3) and (4),
respectively. The bars are coloured with respect to the regrid frequency fr , AMR refinement threshold λ and energy binning parameter η. The refinement threshold
has the highest impact on the halo measures.
than 80% impact on the halo. The energy binning parameter η
and regrid frequency f play a negligible role. The increase of the
r
95% bootstrap confidence intervals in Fig. 6 correlates with the
decrease of the standard deviation in Fig. 3. It is best observed
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Fig. 7. Evolution of the mean and standard deviation (std) of the spatial-profile parameters hx , hy and the phase-space halo parameters Hx , Hy as defined in Eqs. (3)
and (4), respectively. The mean of all quantities shows a more or less periodic pattern along the three turns of the DAEδALUS Injector Cyclotron.
Fig. 8. Evolution of the relative l2 and l1 error between the surrogate and the true model of the DAEδALUS Injector Cyclotron. The full lines are the errors to the
surrogate model obtained with the training set and the dashed lines are the errors to the surrogate model computed with the validation set. For each quantity, the
dashed and full lines are close to each other, indicating no overfitting of the surrogate model.
for hx at around 215◦ or Hx between 195◦ and 255◦. In contrast to
the PSI Injector II, the DIC also strongly depends on the regrid fre-
quency. It has an average main sensitivity of approximately 60%
for hx. The parameters also exhibit more correlations as observed
between the main and total sensitivities (cf. Table 8). The stan-
dard deviations for the DIC are one order of magnitude smaller
than for the PSI Injector II, causing the confidence intervals to
increase as illustrated in Fig. 10. This effect is even stronger in the
PSI Ring where Coulomb’s repulsion is less dominant and the halo
parameters are smaller (cf. Fig. 11) compared to the PSI Injector
II. The standard deviation is in the order of O(10−4) denoting
o significant influence of the input parameters on the model
esponse, hence, the confidence intervals in Fig. 14 exhibit large
anges. For this reason we can make no reliable statement about
he sensitivities for the PSI Ring. Nevertheless, these findings give
ise to computational savings. Due to the small deviations, it is
ufficient for the PSI Ring to select a cheap model. According to
able 6, the cheapest model among all N = 100 samples is 2.47
imes faster than the most expensive model.
Table 6
Most expensive and cheapest cyclotron models with respect to runtime among
all N = 100 samples.
Model Design variables Time [s]

fr λ η

PSI Ring 111 0.8272 0.0227 7 938
3 0.5022 0.0052 19 613

PSI Injector II 4 0.6455 0.0224 10 526
3 0.5022 0.0045 21 422

DIC 90 0.8584 0.0157 9 560
74 0.5958 0.0216 31 709

5.2. RF electron gun model

In order to approximate the high fidelity model we use PC
surrogate models of second order where the BCS method uses a
tolerance of ε = 10−9 and the OMP method is stopped once 7
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Fig. 9. Comparison between the high fidelity (x-axis) and PC surrogate model (y-axis) at 1120◦ of the DAEδALUS Injector Cyclotron simulation. The blue and red
dots indicate the training and validation points, respectively. In the best case all points coincide with the dashed black line. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Evolution of the estimated first order Sobol’ indices in the DAEδALUS Injector Cyclotron. The error bars denote the 95% bootstrapped (B = 100) confidence
interval (cf. Section 3.7). The main sensitivities are evaluated for the spatial-profile parameters hx , hy and the phase-space halo parameters Hx , Hy as defined in
Eqs. (3) and (4), respectively. The bars are coloured with respect to the regrid frequency fr , AMR refinement threshold λ and energy binning parameter η. Besides
the refinement threshold, the regrid frequency has also a significant impact on the halo measures.
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Table 7
Average relative l1 and l2 errors between the high fidelity model and the PC surrogate models for the training and validation sets
as well as the average main and total sensitivities for the PSI Injector II. OLS: Ordinary Least Squares; BCS: Bayesian Compressive
Sensing; OMP: Orthogonal Matching Pursuit.
QoI Method l1 error [%] l2 error [%] Sobol’ sensitivity indices

Train Test Train Test Ŝfr ŜTfr Ŝλ ŜTλ Ŝη ŜTη

hx

OLS 0.23 0.33 0.33 0.44 0.03 0.06 0.91 0.94 0.02 0.04
BCS 0.26 0.30 0.38 0.44 0.03 0.05 0.92 0.95 0.02 0.04
OMP 0.24 0.32 0.34 0.45 0.03 0.04 0.92 0.95 0.02 0.04

Hx

OLS 0.15 0.22 0.21 0.29 0.08 0.16 0.80 0.89 0.01 0.05
BCS 0.16 0.20 0.24 0.28 0.07 0.15 0.81 0.90 0.01 0.05
OMP 0.15 0.21 0.22 0.30 0.07 0.16 0.80 0.90 0.01 0.05

hy

OLS 0.18 0.27 0.25 0.36 0.06 0.10 0.88 0.92 0.01 0.04
BCS 0.20 0.24 0.30 0.35 0.05 0.09 0.88 0.92 0.01 0.04
OMP 0.19 0.26 0.27 0.37 0.05 0.08 0.89 0.92 0.01 0.04

Hy

OLS 0.11 0.17 0.15 0.22 0.06 0.10 0.88 0.92 0.01 0.03
BCS 0.12 0.15 0.17 0.21 0.06 0.10 0.88 0.92 0.01 0.03
OMP 0.11 0.16 0.16 0.22 0.05 0.09 0.89 0.93 0.01 0.04
Table 8
Average relative l1 and l2 errors between the high fidelity model and the PC surrogate models for the training and validation sets
as well as the average main and total sensitivities for the DAEδALUS Injector Cyclotron. OLS: Ordinary Least Squares; BCS: Bayesian
Compressive Sensing; OMP: Orthogonal Matching Pursuit.
QoI Method l1 error [10−2%] l2 error [10−2%] Sobol’ sensitivity indices

Train Test Train Test Ŝfr ŜTfr Ŝλ ŜTλ Ŝη ŜTη

hx

OLS 0.29 0.45 0.38 0.61 0.59 0.71 0.27 0.33 0.02 0.09
BCS 0.30 0.46 0.39 0.61 0.60 0.72 0.25 0.33 0.02 0.09
OMP 0.30 0.45 0.39 0.60 0.62 0.72 0.26 0.32 0.01 0.07

Hx

OLS 0.21 0.31 0.28 0.41 0.29 0.40 0.57 0.67 0.02 0.06
BCS 0.23 0.32 0.30 0.42 0.29 0.40 0.57 0.67 0.02 0.05
OMP 0.23 0.31 0.31 0.40 0.25 0.34 0.64 0.73 0.01 0.02

hy

OLS 0.34 0.55 0.44 0.72 0.11 0.24 0.67 0.76 0.07 0.15
BCS 0.35 0.55 0.45 0.71 0.11 0.24 0.67 0.76 0.07 0.15
OMP 0.36 0.54 0.46 0.69 0.10 0.22 0.71 0.77 0.06 0.13

Hy

OLS 0.24 0.37 0.31 0.47 0.47 0.58 0.39 0.48 0.02 0.07
BCS 0.25 0.38 0.32 0.49 0.47 0.58 0.39 0.48 0.02 0.07
OMP 0.25 0.37 0.33 0.47 0.44 0.53 0.46 0.53 0.01 0.04
Fig. 11. Evolution of the mean and standard deviation (std) of the spatial-profile parameters hx , hy and the phase-space halo parameters Hx , Hy as defined in Eqs. (3)
and (4), respectively. The variability of these quantities in the PSI Ring cyclotron is on the order of O(10−4) which is two orders of magnitude smaller than for the
PSI Injector II (cf. Fig. 3).
non-zero coefficients are found. In Fig. 16 are the relative l2 and l1
errors evaluated along the rf electron gun model. The mean errors
are summarized in Table 10. It shows that the l1 and l2 errors on
the test and training points match with an absolute difference of
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Fig. 12. Evolution of the relative l2 and l1 error between the surrogate and the true model of the PSI Ring cyclotron. The full lines are the errors to the surrogate
odel obtained with the training set and the dashed lines are the errors to the surrogate model computed with the validation set. For each quantity, the dashed
nd full lines are close to each other, indicating no overfitting of the surrogate model.
Fig. 13. Comparison between the high fidelity (x-axis) and PC surrogate model (y-axis) at 471◦ of the PSI Ring simulation. The blue and red dots indicate the training
and validation points, respectively. In the best case all points coincide with the dashed black line. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
O(10−2) and O(10−1), respectively. An example of a comparison
between the PC surrogate and high fidelity model is illustrated in
Fig. 17.

The first order Sobol’ indices and their 95% bootstrapped confi-
dence intervals are illustrated in Fig. 18. Except to the sensitivities
of the horizontal projected emittance εx, we observe a conver-
gence of the model parameter influences. The energy spread ∆E
and the projected emittance εs strongly depend on the time
step (Ŝ[εs], Ŝ[∆E] > 0.90). This high influence is due to the
momentum component in their definitions (cf. Eqs. (5) and (2))
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Fig. 14. Evolution of the estimated first order Sobol’ indices in the PSI Ring. The error bars denote the 95% bootstrapped (B = 100) confidence interval (cf. Section 3.7).
The main sensitivities are evaluated for the spatial-profile parameters hx , hy and the phase-space halo parameters Hx , Hy as defined in Eqs. (3) and (4), respectively.
The bars are coloured with respect to the regrid frequency fr , AMR refinement threshold λ and energy binning parameter η. Due to the high uncertainty of the
sensitivities, no reliable conclusion can be drawn for this machine.
Table 9
Average relative l1 and l2 errors between the high fidelity model and the PC surrogate models for the training and validation sets as
well as the average main and total sensitivities for the PSI Ring. OLS: Ordinary Least Squares; BCS: Bayesian Compressive Sensing;
OMP: Orthogonal Matching Pursuit.
QoI Method l1 error [10−2%] l2 error [10−2%] Sobol’ sensitivity indices

Train Test Train Test Ŝfr ŜTfr Ŝλ ŜTλ Ŝη ŜTη

hx

OLS 0.85 0.78 1.13 1.01 0.15 0.19 0.50 0.54 0.27 0.34
BCS 0.92 0.80 1.24 1.06 0.15 0.19 0.50 0.54 0.27 0.34
OMP 0.86 0.78 1.14 1.01 0.14 0.16 0.50 0.51 0.34 0.36

Hx

OLS 0.47 0.45 0.62 0.58 0.11 0.16 0.59 0.62 0.22 0.29
BCS 0.60 0.50 0.79 0.65 0.11 0.16 0.59 0.62 0.22 0.29
OMP 0.48 0.45 0.64 0.57 0.07 0.13 0.63 0.64 0.24 0.30

hy

OLS 0.80 0.76 1.05 0.98 0.10 0.19 0.60 0.63 0.20 0.28
BCS 0.96 0.80 1.28 1.06 0.10 0.19 0.60 0.63 0.20 0.28
OMP 0.81 0.77 1.07 0.98 0.09 0.17 0.59 0.61 0.24 0.31

Hy

OLS 0.42 0.39 0.55 0.50 0.13 0.22 0.51 0.55 0.25 0.34
BCS 0.47 0.39 0.62 0.49 0.13 0.23 0.50 0.55 0.25 0.34
OMP 0.43 0.40 0.56 0.50 0.10 0.23 0.52 0.54 0.24 0.37
and the fact that the smaller the time step, the better the process
of acceleration (i.e. the evolution of the momentum) is resolved.
The rms beam size in longitudinal direction is dominated by the
energy binning (Ŝ[NE] ≈ 0.45) and the particle multiplication
factor (Ŝ[pf ] ≈ 0.41). While a higher pf value improves the statis-
tics of the beam size and reduces the numerical noise of PIC, the
energy binning is coupled with Coulomb’s repulsion that affects
the beam size. In transverse direction, NE and ∆t are important
instead. The convergence of the relative errors is correlated with
the convergence of the variances of the quantities of interest as
observed in Fig. 15. The model might therefore be improved with
an adaptive time stepping scheme that addresses this effect. The
cheapest AWA rf electron gun model, i.e. ∆t = 1 ps, NE = 2 and
pf = 1, is 15 times faster than the most expensive model which
has ∆t = 0.1 ps, NE = 10 and pf = 5.

6. Conclusions

In this paper we discussed uncertainty quantification based

on polynomial chaos expansion and gave a brief introduction
to four numerical methods to compute the polynomial coeffi-
cients. The choice of the method depends on the problem and
its dimension. While the projection method is the most accurate,
the number of high-fidelity evaluations grows exponentially with
the dimension which is not the case for the other presented
methods. Bayesian compressive sensing and matching orthogo-
nal pursuit favour sparse solutions by the selection of the most
important contributions. The least squares method solves a linear
system which may fail in case the matrix is ill-conditioned which
happens when input dimensions can only take a few discrete
values. This can be the case with integer input, for example, when
specifying the number of AMR levels or the grid sizes for the
Poisson solver.

Besides a cheap surrogate model that mimics the high fidelity
model, polynomial chaos based uncertainty quantification has the
additional benefit to easily evaluate the Sobol’ sensitivity indices.
As demonstrated in this paper, this technique is not only suitable
to gain knowledge about the sensitivity of physical parameters
(e.g. initial beam properties) on the quantities of interest but
also numerical parameters of computer codes. Since some tested
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Table 10
Average relative l1 and l2 errors between the high fidelity model and the PC surrogate models for the training and validation sets
as well as the average main and total sensitivities for the rf electron gun model of the AWA. OLS: Ordinary Least Squares; BCS:
Bayesian Compressive Sensing; OMP: Orthogonal Matching Pursuit.
QoI Method l1 error [%] l2 error [%] Sobol’ sensitivity indices

Train Test Train Test Ŝ∆t ŜT∆t Ŝpf ŜTpf ŜNE ŜTNE

σx

OLS 0.03 0.04 0.04 0.05 0.32 0.32 0.12 0.12 0.56 0.56
BCS 0.04 0.04 0.05 0.05 0.32 0.32 0.12 0.12 0.56 0.56
OMP 0.03 0.04 0.04 0.05 0.32 0.32 0.12 0.12 0.55 0.56

εx

OLS 0.13 0.16 0.16 0.20 0.43 0.44 0.09 0.10 0.46 0.47
BCS 0.14 0.15 0.17 0.19 0.43 0.44 0.09 0.10 0.46 0.47
OMP 0.13 0.16 0.17 0.20 0.44 0.45 0.10 0.10 0.45 0.46

σs

OLS 0.02 0.02 0.03 0.03 0.13 0.14 0.41 0.41 0.45 0.46
BCS 0.02 0.03 0.03 0.03 0.13 0.14 0.41 0.41 0.45 0.46
OMP 0.02 0.02 0.03 0.03 0.13 0.13 0.39 0.39 0.48 0.48

εs

OLS 0.69 0.62 1.04 0.93 0.95 0.96 0.01 0.01 0.04 0.05
BCS 0.93 0.86 1.22 1.12 0.95 0.96 0.01 0.01 0.04 0.04
OMP 0.69 0.63 1.04 0.95 0.95 0.96 0.01 0.01 0.04 0.04

∆E
OLS 0.11 0.12 0.16 0.17 0.94 0.94 0.01 0.01 0.05 0.05
BCS 0.14 0.15 0.18 0.19 0.94 0.94 0.01 0.01 0.05 0.05
OMP 0.11 0.12 0.16 0.17 0.94 0.94 0.01 0.01 0.05 0.05
Fig. 15. Evolution of the mean and standard deviation (std) of the energy spread ∆E, the projected emittances εx , εs and the rms beam sizes σx , σs for rf electron
gun model of the AWA.
numerical parameters might be limited to integers, the projec-
tion method to obtain the polynomial coefficients is, however,
not applicable. Instead, regression-based methods, Bayesian Com-
pressive Sensing or Orthogonal Matching Pursuit and others have
to be applied. A further difficulty with numerical parameters is
a fair random sampling. In some cases (cf. Fig. 2) a straightfor-
ward, uniform sampling of the parameter yields biased input data
and, hence, may induce wrong conclusions. To circumvent, we
perform a stratified sampling that guarantees a well-balanced
distribution.

The sensitivity studies of the three high intensity cyclotrons
show that the sensitivity results are different among accelerators
of the same type. While the AMR threshold is the most important
parameter in the PSI Injector II with a sensitivity of about 90%, the
regrid frequency is relevant in the DAEδALUS Injectory Cyclotron
(DIC), too. Large bootstrap confidence intervals for the Sobol’
indices indicate a failure of the analysis since the contributed
variation of the model response is rather due to noise than the
tested input parameters. In such a case no reliable statements
based on the sensitivity estimates can be done. In contrast to our
intuition the standard deviation of the halo parameters remain
pretty constant throughout one turn in the PSI Ring and PSI
Injector II and the considered three turns in the DIC. Nevertheless,
these findings give rise to computational savings. Without losing
significantly on accuracy (cf. Figs. 3, 7 and 11), energy binning
can be totally switched off for these cyclotrons. In addition, this
reduces the amount of AMR hierarchy updates which reduces the
time-to-solution even further since the operators of the adaptive
multigrid solver to solve Poisson’s equation do not need to be set

up in every time step. To illustrate this, we take the benchmark
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Fig. 16. Evolution of the relative l2 and l1 error between the surrogate and the true model of the AWA rf electron gun. The full lines are the errors to the surrogate
model obtained with the training set and the dashed lines are the errors to the surrogate model computed with the validation set. For each quantity, the dashed
and full lines are close to each other, indicating no overfitting of the surrogate model.
Fig. 17. Comparison between the high fidelity (x-axis) and PC surrogate model (y-axis) at the exit of the rf electron gun model of the AWA, i.e. s ≈ 30 cm. The
lue and red dots indicate the training and validation points, respectively. In the best case all points coincide with the dashed black line. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
xample in [13] that solves Poisson’s equation 100 times using a
hree level AMR hierarchy with a base level of 5763 grid points.
he benchmark running on 14 400 CPU (Central Processing Unit)
ores shows that the matrix setup due to AMR regridding takes
p 42.15% computing time. A reduction of the regrid frequency by
factor 10 yields a speedup of 7.10 in the matrix setup timing.

n our UQ samples, the speedup between the cheapest and most
xpensive model is at least 2.0 and at most 3.3.
Another interesting case we have studied is the rf electron gun
model of the AWA. Relevant parameters for this model are the en-
ergy binning NE and the time step ∆t . The particle multiplication
factor pf , that basically controls the number of particles per grid
cell, is only important for the longitudinal beam size. Although NE
and pf have together an average main sensitivity of 86.22%, ∆t
is the dominating parameter close to the cathode. An adaptive
energy binning and time step scheme that is based on Sobol’
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Fig. 18. Evolution of the estimated first order Sobol’ indices in the rf electron gun model of the AWA. The error bars denote the 95% bootstrapped (B = 100)
confidence interval (cf. Section 3.7). The main sensitivities are evaluated for the energy spread ∆E, the projected emittances εx , εs and the rms beam sizes σx , σs .
he bars are coloured with respect to the time step ∆t , particle multiplication factor pf and the number of energy bins NE . The impact of the parameters on the
uantities in longitudinal direction converges.
ensitivity indices is therefore a possible future enhancement to
educe the time-to-solution for a target accuracy.
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