
A

E

m

e

t

m

q

U

s

w

p

t

s

b

I

d

d

u

a

A

K

c

Manuscript

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof

T
F
s
s
h

T
l

Global Sensitivity Analysis on Numerical Solver Parameters of
Particle-In-Cell Models in Particle Accelerator Systems
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bstract

very computer model depends on numerical input parameters that are chosen according to

ostly conservative but rigorous numerical or empirical estimates. These parameters could for

xample be the step size for time integrators, a seed for pseudo-random number generators, a

hreshold or the number of grid points to discretize a computational domain. In case a numerical

odel is enhanced with new algorithms and modelling techniques the numerical influence on the

uantities of interest, the running time as well as the accuracy is often initially unknown.

sually parameters are chosen on a trial-and-error basis neglecting the computational cost ver-

us accuracy aspects. As a consequence the cost per simulation might be unnecessarily high

hich wastes computing resources. Hence, it is essential to identify the most critical numerical

arameters and to analyze systematically their effect on the result in order to minimize the time-

o-solution without losing significantly on accuracy. Relevant parameters are identified by global

ensitivity studies where Sobol’ indices are common measures. These sensitivities are obtained

y surrogate models based on polynomial chaos expansion.

n this paper, we first introduce the general methods for uncertainty quantification. We then

emonstrate their use on numerical solver parameters to reduce the computational costs and

iscuss further model improvements based on the sensitivity analysis. The sensitivities are eval-

ated for neighbouring bunch simulations of the existing PSI Injector II and PSI Ring as well

s the proposed DAEδALUS Injector cyclotron and simulations of the rf electron gun of the

rgonne Wakefield Accelerator.

ey words: adaptive mesh refinement, Particle-In-Cell, global sensitivity analysis, polynomial

haos expansion, particle accelerator, high intensity
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. Introduction

Numerical models in scientific research disciplines are usually extremely complex and compu-

ationally intensive. A common feature to all is the dependency on numerical model parameters

hat do not represent an actual property of the underlying scientific problem. They are either

rescribed in the source code and, thus, hidden to the user or can be chosen at runtime. Ex-

mples are the seed for pseudo random number generators, an error threshold in a convergence

riterion, the number of grid points in mesh-based models or the step size in time integrators.

atter two are often chosen to satisfy memory constraints or time limits. When applying new al-

orithms and modelling techniques the sensitivity of such input values on the response is usually

tudied by varying only a single parameter. While this captures the main influence of the tested

arameter, possible correlations with other parameters are missed. A remedy is the evaluation

f Sobol’ indices [1] which are variance-based global sensitivity measures to express both indi-

idual and correlated parameter influences. Instead of Monte Carlo estimates, these quantifiers

an easily be obtained by surrogate models based on polynomial chaos expansion (PCE). Uncer-

ainty quantification (UQ) based on PCE is generally used in many areas of scientific computing

nd modelling [2–5] and several frameworks exist such as [6–8]. The coefficients of the truncated

CE that are required to determine Sobol’ indices are mostly computed using the projection

r regression method [9]. Since some numerical parameters are limited to integers, the former

ethod is not applicable.

In this paper we study the sensitivity of adaptive mesh refinement (AMR) and multi bunch

0, 11] parameters in Particle-In-Cell (PIC) simulations of high intensity cyclotrons where we

se the new AMR capabilities of OPAL (Object Oriented Parallel Accelerator Library) [12] as

resented in [13]. We further explore the sensitivity of a rf electron gun model with respect to the

umber of macro particles, the energy binning and the time step. The sensivitities are evaluated

sing ordinary least squares and Bayesian compressive sensing (BCS) [14, 15]. Both methods

re part of the uncertainty quantification toolkit UQTk [16, 17] (version 3.0.4). The results are

ross-checked using Chaospy [7] (version 3.0.5) together with the orthogonal matching pursuit

8, 19] regression model of the Python machine learning library scikit-learn [20, 21] (version

.21.2).

Although we apply UQ on numerical solver parameters, it is a general method used for exam-

le in [5] to evaluate the sensitivities and to predict the quantities of interest due to uncertainties

physical parameters.
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The paper is organised as follows: In Sec. 2.1 we elaborate the physical applications and their

umerical modelling. An introduction to UQ is given in Sec. 3. The experimental setup and its

esults are presented in Sec. 4 and Sec. 5, respectively. In Sec. 6 are the final conclusions.

. Applications

.1. High Intensity Cyclotrons

Cyclotrons are circular machines that accelerate charged particles (e.g. protons) or ions (e.g.

+
2 ). Depending on the particle species and delivered energy, these machines find different appli-

ations ranging from isotope production [22, 23] and neutron spallation [24] to cancer treatment

5, 26]. An example that provides a beam for neutron spallation is the High Intensity Proton

ccelerator (HIPA) facility at Paul Scherrer Institut (PSI) consisting of two cyclotrons, i.e. the

SI Injector II and PSI Ring. At a frequency of 50.65 MHz 10 mA DC (direct current) proton

unches at 870 keV are injected into PSI Injector II in which they are collimated to approximately

.2 mA and accelerated up to 72 MeV (∼ 37 % speed of light), before being transported to the

SI Ring where they reach a kinetic energy of 590 MeV (∼ 79 % speed of light) at extraction.

Another example is the planned facility of the DAEδALUS and IsoDAR (Isotope Decay At

est) experiments for neutrino oscillation and CP violation. It consists of two cyclotrons where

he DAEδALUS Injector Cyclotron (DIC) [27, 28] is the first acceleration stage delivering a

0 MeV/amu H+
2 beam to the Superconducting Ring Cyclotron (DSRC) with extraction energy

f 800 MeV/amu.

Since cyclotrons are isochronous, i.e. the magnetic field is increased radially in order to

eep the orbital frequency constant, i.e. the revolution time per turn is energy-independent

nd, thus, the bunches lie radially on axis. A sketch showing five bunches denoted as circles on

djacent turns is depicted in Fig. 1a. As shown in [11], a small turn separation causes interactions

etween neighbouring bunches which yields to more halo particles (cf. Fig. 1b). In order to resolve

hese effects, the open source beam dynamics code OPAL [12] got recently enhanced with AMR

apabilities [13] which adds more complexity to the numerical model. The influence of the AMR

olver parameter settings on the statistical measures of the particle bunches is yet unknown and

too conservative AMR regrid frequency worsens the time-to-solution. Furthermore, the applied

nergy binnnig technique [10] to fulfill the electrostatic assumption (cf. Sec. 2.1.1) increases the

omputational costs considerably. Hence, the goal of this study is to quantify the impact of AMR

olver and energy binning parameters in order to improve further computational investigations

f these bunch interactions.
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r ∼ E

x

E1

E2

E3

E4

E5

) Five bunches evolving radially on axis due to the

ochronism of the cyclotron. The origin of the coordi-

ate system denotes the center of the machine. The or-

it radius r of each bunch is proportional to its energy

1 < E2 < · · · < E5.

(b) Separation of a particle bunch into core (blue) and

halo (red) particles. In the PSI Ring the overall loss is on

the order of 10−4 which corresponds to a beam intensity

of about 2 µA, i.e. all particles outside of approximately

3σ of a Gaussian distribution with standard deviation σ.

igure 1: Sketch of neighbouring bunches (left) in the context of isochronous cyclotrons and characterization of a

ingle bunch (right).

.1.1. Numerical Model

The numerical model of neighbouring bunch simulations in OPAL, as presented in [11], is

ased on [10]. Due to the energy difference of the particle bunches on neighbouring turns a

ingle transformation into the particle rest frame does not fully satisfy the requirements of the

lectrostatic assumption to solve Poisson’s equation. Instead, each of the N macro particles is

ssigned to an energy bin b due to its momentum βγ according to

b =

⌊
sinh-1 (βγ)− sinh-1

(
mini={1,N}(βγ)i

)

η

⌋
(1)

here the binning parameter η is a measure of the energy spread. In each time step the force on

particle exerted by all others is the sum of the electric field contributions of each energy bin

evaluated in the appropriate rest frame of the particles obtained by a Lorentz transform with

he proper relativistic factor γb. The algorithm is summarised in Alg. 1. The computation of the

lectric field of an energy bin involves only particles of that bin, thus, the charge deposition applies

nly on a subset of particles M ⊂ {1, . . . , N}. However, the field on the mesh is interpolated and

pplied to all N particles.
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lgorithm 1 Electrostatic Particle-In-Cell with B energy bins and N macro particles.

1: En ← 0 ∀n ∈ {1, . . . , N} // Electric field at particle location

2: for b ∈ {1, . . . , B} do // Loop over energy bins

3: x̃n ←LorentzTransform(xn, γb) ∀n ∈ {1, . . . , N}
4: ρ̃i,j,k ←DepositCharge(x̃m, qm) ∀m ∈M ⊂ {1, . . . , N} // Interpolate charge onto mesh

5: Ẽb
i,j,k ←PoissonSolve(ρ̃i,j,k)

6: Ẽb
n ← GatherEfield(Ẽb

i,j,k, x̃n) ∀n ∈ {1, . . . , N} // Get field at particle location

7: Eb
n ←BackLorentzTransform(Ẽb

n, γb) ∀n ∈ {1, . . . , N}
8: xn ←BackLorentzTransform(x̃n, γb) ∀n ∈ {1, . . . , N}
9: En ← En + Eb

n ∀n ∈ {1, . . . , N} // Add field contribution

0: end for

.1.2. RF Electron Gun Model

To study the effect of energy binning we further use the example of the Argonne Wakefield

ccelerator (AWA) [29–31] facility, an experiment setup for beam physics studies and accelerator

echnology developments. The facility is equipped with a photocathode rf electron gun that

mits high intensity electron beams at high accelerating gradients (� 1 MV/m). Due to the high

radients the electrostatic approximation is invalidated and, hence, energy binning is necessary.

n OPAL, we model the particle emission by

ptotal =

√(
Ekin
mc2

+ 1

)2

− 1

px = ptotal sin (ϕ) cos (θ)

py = ptotal sin (ϕ) sin (θ)

pz = ptotal |cos (ϕ)|

ϕ = 2 cos−1
(√
x
)

ith x ∈ [0, 1] and θ ∈ [0, π] uniformly randomly sampled [12].

.2. Quantities of interest

In accelerator physics interesting quantities of interest (QoI) also denoted as observables, of

he co-moving frame are the rms beam size

σω =
√
〈ω2〉 ∀ω = x, y, z

nd the projected emittance

εω =
√
〈ω2〉〈p2

ω〉 − 〈ωpω〉2 (2)
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hat describes the phase space volume per dimension. The bracket 〈·〉 represents the moment. In

rder to quantify halo (cf. Fig. 1b), i.e. the tails of a particle distribution, we use two statistical

efinitions for bunched beams by [32, 33], the spatial-profile parameter

hω =
〈ω4〉
σ4
ω

− 15

7
(3)

nd the phase-space halo parameter

Hω =

√
3

2

√
Iω4
ε2
ω

− 15

7
(4)

ith Eq. (2) and fourth order invariant (cf. also [34])

Iω4 =
〈
ω4
〉 〈
p4
ω

〉
+ 3

〈
ω2p2

ω

〉2 − 4
〈
ωp3

ω

〉 〈
ω3pω

〉
.

n case the bunch has uniform density Eq. (3) is zero due to the constant 15/7. An important

uantity of interest in the rf electron gun model is the energy spread

∆E ∝
√
〈p2
z〉. (5)

. Non-Intrusive Uncertainty Quantification

Simulations of physical phenomena usually rely on measured input data. Depending on the

ccuracy of the measurement and the model sensitivity, the response may vary significantly. UQ

troduces methods to quantify this variability in order to estimate the reliability of the obtained

esults. UQ distinguishes two approaches which are called intrusive and non-intrusive UQ. In

ontrast to intrusive UQ, non-intrusive UQ uses the computational model as a black box. In this

aper we only give a short overview following the description and notation of [1, 5, 9, 35, 36]. A

etailed introduction to UQ in general is found in e.g. [37, 38].

In Sec. 3.1, the surrogate model based on the polynomial chaos expansion (PCE) is explained

general. The sections 3.2 to 3.5 describe methods to obtain the coefficients of the expansion

here special focus is given on the methods applied in this paper. The definition of the Sobol’

dices and their computation with the PCE is given in Sec. 3.6. In order to check the error

ounds of the estimated sensitivities, we use the bootstrap method explained in Sec. 3.7.

.1. Surrogate Model based on Polynomial Chaos Expansion

The PC-decomposition originates from [39], where a random variable of a Gaussian distri-

ution is represented as a series of multivariate Hermite polynomials of increasing order. And

6Jo
ur

na
l P

re
-p

ro
of



a

in

[4

c

(

w

in

r

w

(

c

r

S

s

u

t

a

T

s

n

m

t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
s stated by the Cameron-Martin theorem [40], any functional in L2 space can be represented

a series of Fourier-Hermite functionals. Later, this method was rediscovered and applied by

1] to a stochastic process and then generalized by [42] to other probability measures and their

orresponding orthogonal polynomials.

Let a multivariate polynomial Ψαi(ξ) of dimension d ∈ N \ {0} and multiindex αi =

α1, α2, . . . , αd) ∈ Nd be defined by

Ψαi(ξ) =

d∏

j=1

ψαj (ξj)

ith orthogonal univariate polynomials {ψαj}dj=1. The response of a model m(x) with random

put vector x ∈ Ω1 × · · · × Ωd, where Ωj ∀j = {1, . . . , d} denotes the sample space of the j-th

andom variable, can then be represented as

m(x) =
∞∑

i=0

cαi
Ψαi

(T (x)) (6)

here the basis of a random input component is determined by its probability distribution

cf. Tab. 1) and T : x 7→ ξ denotes an isoprobabilistic transform. In case of dependent input

omponents, for example, T represents the Rosenblatt transform [43] that yields independent

andom variables. Another method for dependent variables presented in [44] applies the Gram-

chmidt orthogonalization.

Under the assumption of only independent input variables, the transform T reduces to a

imple linear mapping of every component of x onto the defined interval of the corresponding

nivariate polynomial, e.g. ξj ∈ [−1, 1] for Legendre polynomials. In numerical computations

he sum in Eq. (6) is truncated at some polynomial degree p, hence the expansion is only an

pproximation of the exact model m(x), i.e.

m̂(x) =
P−1∑

i=0

cαi
Ψαi

(T (x)). (7)

he truncation scheme is not clearly defined. A common rule, which is also used here, is the

o-called total order truncation that keeps all multiindices α for which ||α||1 ≤ p. This yields a

umber of

P =
(p+ d)!

p!d!
(8)

ultiindices. Three other schemes are explained in [35]. In the next sections we describe methods

o compute the coefficients cαi of Eq. (7).
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PDF of ξj Polynomial Basis Support

{ψαj (ξj)} Ωj

Gaussian Hermite ]−∞,∞[

Gamma Laguerre [0,∞[

Uniform Legendre [a, b] with a, b ∈ R

able 1: Examples of the Wiener-Askey polynomial chaos of random variables ξj with appropriate probability

ensity function (PDF) [42].

.2. Projection Method

The (spectral) projection method computes the coefficients of Eq. (7) making use of the or-

hogonality of the basis functions, i.e.
〈
Ψαi

(ξ)Ψαj
(ξ)
〉

= 0 with ∀i 6= j. Thus, the PC coefficients

re given by

cαi =

〈
m(T −1(ξ))Ψαi

(ξ)
〉

〈
Ψ2
αi

(ξ)
〉 .

hile the denominator is evaluated by analytic formulas (see examples in the appendix of [9]),

he numerator is computed by Gaussian quadrature integration where

N = (p+ 1)d

tegration points, i.e. high fidelity model m(x) evaluations, are required.

.3. Linear Regression Method

The coefficients of Eq. (7) can also be computed with regression-based methods

ĉ = arg min
c

1

2

∣∣∣∣∣∣

∣∣∣∣∣∣

N−1∑

j=0

(
m(xj)−

P−1∑

i=0

cαi
Ψαi

(ξj)

)∣∣∣∣∣∣

∣∣∣∣∣∣

2

2

+
λ1

2
||c||22 + λ2 ||c||1 (9)

ith regularization parameters λ1, λ2 ≥ 0, and the l1 norm and l2 norm denoted by ||·||1 and

·||2, respectively. The minimization problem is called ordinary least squares if λ1 = λ2 = 0,

lastic net [45] if λ1, λ2 > 0, ridge regression [46] (or Tikhonov regularization) if only λ1 > 0 and

asso [47] if only λ2 > 0. In matrix form the problem reads

ĉ = arg min
c

1

2
||y −Ac||22 +

λ1

2
||c||22 + λ2 ||c||1 (10)

ith model response y = (m(x0), . . . ,m(xN−1))
ᵀ ∈ RN×1, unknown coefficient vector c =

cα0
, . . . , cαp

)ᵀ ∈ RP×1 and system matrix A ∈ RN×P . In case of λ2 = 0, the coefficients of
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q. (10) are obtained in closed form by

ĉ = (AᵀA+ λ1I)
−1
Aᵀy

ith P × P identity matrix I. In contrast to the projection method (cf. Sec. 3.2), this method

oes not require a fixed number of samples N . However, [9] gives an empirical optimal training

ample size of

N = (d− 1)P (11)

ith P defined in Eq. (8).

.4. Orthogonal Matching Pursuit

The matching pursuit (MP) is a greedy algorithm developed by [18] which was enhanced

y [19] to obtain better convergence. This improved method is called orthogonal MP (OMP).

n terms of PCE, the algorithm searches a minimal set of non-zero coefficients to represent the

odel response, i.e.

ĉ = arg min
c

||y −Ac||22

subject to ||c||0 ≤ Nc
here ||c||0 denotes the number of non-zero coefficients in c with a user-defined maximum Nc

8]. The vectors and matrices are defined according to Eq. (10). It is an iterative procedure

here in the (i + 1)-th step a new coefficient vector ci+1 is searched that maximizes the inner

roduct to the current residual ri = y − yi. We refer to the given references for details.

.5. Bayesian Compressive Sensing

As stated in [14, 15], the linear regression model Eq. (9) can be interpreted in a Bayesian

anner, i.e.

p (c|D) =
p (D|c) p (c)

p (D)

ith posterior distribution p (c|D), likelihood p (D|c), prior p (c) and evidence p (D) of training

ata D = {x, y}N−1
j=0 [36]. The likelihood is assigned a Gaussian noise model

p (D|c) =
1

(2πσ2)
N/2

exp


−

N−1∑

j=0

(m (xi)− m̂ (xi))
2

2σ2




ith variance σ2. It is a measure of how well the high fidelity model is represented by the

urrogate model Eq. (7). In order to favour a sparse PCE solution, a Laplace prior

p (c) =

(
λ

2

)P+1

exp

(
−λ

P∑

i=0

|ci|
)

(12)
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chosen. Using Eq. (12) in the maximum a posteriori (MAP) estimate for c, i.e.

arg max
c

log [p (D|c) p (c)] , (13)

he Bayesian approach is equivalent to Eq. (9) with λ1 = 0 [49], since Eq. (13) is identical to a

inimization of

arg min
c

− log [p (D|c) p (c)] .

n iterative algorithm to obtain the coefficients is described in [15]. It requires a user-defined

topping threshold ε that basically controls the number of kept basis terms, with more being

kipped the higher the value is. The overall method is known as Bayesian Compressive Sensing

BCS) [14, 15].

.6. Sensitivity Analysis

Sobol’ indices [1] are good measures of sensitivity since they provide information about single

nd mixed parameter effects. In addition to these sensitivity measures, there are various other

ethodologies such as Morris screening [50]. A survey is presented in [51] on the example of a

ydrological model. Instead of Monte Carlo, Sobol’ indices are also easily obtained by surrogate

odels based on PCE as discussed in the following subsections.

.6.1. Sobol’ Sensitivity Indices

In [1] Sobol’ proposed global sensitivity indices that are calculated on an analysis of variance

ANOVA) decomposition (Sobol’ decomposition) of a square integrable function f(x) with x ∈
d := [0, 1]d, i.e. [52]

f(x) = f0 +

d∑

i=1

fi(xi) +
∑

1≤i1<···<is≤d
fi1is(xi1 , xis) + · · ·+ f12...d(x1, x2, . . . , xd) (14)

ith mean

f0 =

∫

Id
f(x)dx

nd ∫ 1

0

fi1...is(xi1 , . . . , xis)dxk = 0, (15)

r k = i1, . . . , is and s = 1, . . . , d. Since Eq. (15) holds, the components of Eq. (14) are mutually

rthogonal. Therefore, the total variance of Eq. (14) is

D =

∫

Id
f2(x)dx− f2

0
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hat can also be written as

D =
d∑

i=1

Di +
∑

1≤i1<···<is≤d
Di1is + · · ·+D123...d (16)

here

Di1...is =

∫

Is
f2
i1...is(xi1 , . . . , xis)dxi1 · · · dxis , (17)

ith 1 ≤ i1 < · · · < is ≤ d. Based on Eq. (16) and Eq. (17), the Sobol’ indices are defined as

Si1...is :=
Di1...is

D

ith
d∑

i=1

Si +
∑

1≤i<j≤d
Sij + · · ·+ S12...d = 1. (18)

he first order indices Si are also known as main sensitivities. They describe the effect of a single

put parameter on the model response. The total effect of the i-th design variable on the model

esponse, proposed by [53], is the sum of all Sobol’ indices that include the i-th index, i.e.

STi =
∑

i∈I
Si

ith I = {i = (i1, . . . , is) : ∃k, 1 ≤ k ≤ s ≤ d, ik = i}.

.6.2. Sobol’ Indices using Polynomial Chaos Expansion

Instead of Monte Carlo techniques, Sobol’ indices can be estimated using surrogate models

ased on PCE since the truncated expansion can be rearranged like Eq. (14). The Sobol’ estimates

re then given by [9]

Ŝi1...is =
1

D̂

∑

α∈Ii1,...,is

c2α
〈
Ψ2
α

〉

here

Ii1,...,is =



α :

αk > 0 ∀k = 1, . . . , n, k ∈ (i1, . . . , is)

αk = 0 ∀k = 1, . . . , n, k 6∈ (i1, . . . , is)





nd variance

D̂ =

P−1∑

i=1

c2αi

〈
Ψ2
αi

〉
.

he main and total sensitivities are computed by

Ŝi =
1

D̂

∑

α∈Ii
c2α
〈
Ψ2
α

〉

11Jo
ur

na
l P

re
-p

ro
of



w

w

3

o

h

b

fr

c

t

a

w

a

4

4

in

c

(

g

R

o

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
ith Ii = {α = (α1, . . . , αd) : αi > 0 ∧ ∀k 6= i, αk = 0} and

ŜTi =
1

D̂

∑

α∈Ii
c2α
〈
Ψ2
α

〉
,

ith Ii = {α = (α1, . . . , αd) : αi > 0}, respectively.

.7. Confidence Intervals using Bootstrap

In this subsection we briefly outline the computation of confidence intervals for the estimates

f Sobol’ indices using the bootstrap method [54]. In the context of PCE, the bootstrap method

as already been applied in [55], where it is referred to as bootstrap-PCE (or bPCE). The

ootstrap method, in general, generates B independent samples each of size N by resampling

om the original dataset. Each bootstrap sample, that may contain a point several times, is then

onsidered as a new training sample to compute the coefficients of Eq. (7). In order to calculate

he 95 % confidence interval for Sobol’ indices we follow the description of [56], where the bounds

re given by

Ŝi1...is ± 1.96 · s.e.(Ŝi1...is)

ith 1 ≤ s ≤ d and standard error (s.e.) of B ∈ N>1 bootstrap samples

s.e.(Ŝi1...is) =

√√√√ 1

B − 1

B∑

b=1

(
S

(b)
i1...is

− S∗i1...is
)2

nd bootstrap sample mean

S∗i1...is =
1

B

B∑

b=1

S
(b)
i1...is

.

. Experiment Design

.1. High Intensity Cyclotrons

In order to study the effect of AMR solver parameters and energy binning in neighbour-

g bunch simulations we perform sensitivity experiments with three different high intensity

yclotrons, the PSI Ring [57], the PSI Injector II [58] and the DAEδALUS Injector Cyclotron

DIC) [27, 28]. We always accelerate 5 particle bunches with 106 particles. The coarsest level

rid is kept constant with 243 mesh points which is refined twice. For the PSI Injector II and PSI

ing the particles are integrated in time over one turn using 2880 steps per turn and for the DIC

ver three turns with 1440 steps per turn. The experimental setup is summarized in Tab. 2. In all
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no. turns steps/turn no. bunches particles/bunch PIC base grid no. AMR levels

1 or 3 1440 or 2880 5 106 24× 24× 24 2

Table 2: Experimental setup of the PSI Ring, PSI Injector II and DAEδALUS Injector Cyclotron model.

xperiments the initial particle distribution is read from a checkpoint file to guarantee identical

onditions for all training and validation points of a UQ sample.

A list of the design variables under consideration is given in Tab. 3. While the resolution is

asically controlled by the maximum number of AMR levels, the refinement policy affects its

cation. As described in [13] the OPAL library provides several refinement criteria such as the

harge density per grid point, the potential as well as the electric field. Here, we want to analyze

he effect of the threshold λ ∈ [0, 1] of the electrostatic potential refinement policy, where a grid

ell (i, j, k) on a level l is refined if

|φli,j,k| ≥ λmax
i,j,k
|φli,j,k|

olds. Due to the motion of the particles in space the multi-level hierarchy has to be updated

egularly to maintain the resolution which is defined by the regrid frequency fr. It should be

oted that the regrid frequency defines the number of steps until the AMR hierarchy is updated.

ence, if fr = 1, the AMR levels are updated in each time step. Whenever this happens, the

lectric self-field needs to be recalculated by solving Poisson’s equation. The number of Poisson

olves is controlled by the number of energy bins and therefore by the binning parameter η (cf.

ec. 2.1.1). The lower the value of η, the smaller the bin width and, hence, the more expensive

he model is.

As an upper limit of the regrid frequency fr we choose 120 integration steps. Since we perform

ither 1440 or 2880 steps per turn, this corresponds to an azimuthal angle of 30◦ and 15◦,

espectively. The choice of the binning parameter η in Eq. (1) depends mainly on the energy

ifference between bunches. The upper bound of the sampling range was selected such that we

ave at most as many energy bins as bunches in simulation. However, the sampling from the

ange is not straightforward since there exist more states with fewer energy bins (cf. Fig. 2) due

o Eq. (1). Instead, we sample the binning parameter in subranges of equal bin count in order

o avoid a biased sample set.
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η
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PSI Injector II

DIC

igure 2: Number of energy bins in the PSI Ring, PSI Injector II and DAEδALUS Injector Cyclotron (DIC) with

spect to the binning parameter η. The shown binning curves are with respect to the initial simulation energies

sed in this study. A straightforward uniform sampling from the full range yields a biased sample set.

symbol design variable sampling range

fr regrid frequency [1, 120]

λ refinement threshold [0.5, 0.9]

η

binning Ring (10−3) [4.7, 5.7] ∪ [5.8, 7.6] ∪ [7.7, 11.5] ∪ [11.6, 23.0] ∪ [23.1, 27.1]

binning Inj-2 (10−3) [4.0, 4.9] ∪ [5.0, 6.5] ∪ [6.6, 9.8] ∪ [9.9, 19.7] ∪ [19.8, 23.8]

binning DIC (10−3) [4.1, 5.0] ∪ [5.1, 6.6] ∪ [6.7, 10.0] ∪ [10.1, 20.0] ∪ [20.1, 24.1]

Table 3: List of design variables and their sampling ranges for the neighbouring bunch simulations.

.2. RF Electron Gun Model

Like in the neighbouring bunch model, the time-to-solution in the rf electron gun model is

ominated by the Poisson solver and the time integration. A reduction of the computational

ffort with regard to the Poisson solver is achieved by smaller PIC meshes and fewer energy bins

E . The costs of the time integrator is cheapened with coarser time steps ∆t and fewer macro

articles. Instead of the AMR model, the rf electron gun model uses the Fast Fourier Transform

FFT) Poisson solver of OPAL where we put a Lx×Ly ×Lz uniform mesh of Lx = Ly = 64 and

z = 32 grid points. The final number of emitted macro particles is given by

Np = pfLxLyLz

here the particle multiplication factor pf is an integer. This parameter basically controls the

umber of particles per grid cell and, hence, the noise of the PIC model. The design variables

nd sampling ranges are given in Tab. 4. We model the rf electron gun of the Argonne Wakefield

ccelerator (AWA) that has a length of approximately 30 cm.
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symbol design variable sampling range

pf particle factor [1, 5]

NE number of bins [2, 10]

∆t time step (0.1 ps) [1, 10]

able 4: List of design variables and their sampling ranges for the rf electron gun model. The time step is the

nly floating point variable.

.3. Surrogate Model Selection

In order to avoid overfitting we proceed like [35] where the truncation order of the PC ex-

ansion and the settings of the regression models are chosen such that the relative l2 error
√√√√
∑N−1
i=0 [m(xi)− m̂(xi)]

2

∑N−1
i=0 m2(xi)

(19)

etween the surrogate m̂(x) and high fidelity model m(x) of the training and validation set is

pproximately of equal magnitude. As an additional error measure we also compare the relative

error ∑N−1
i=0 |m(xi)− m̂(xi)|∑N−1

i=0 |m(xi)|
. (20)

he number of samples N in Eq. (19) and Eq. (20) corresponds either to the number of training

t or validation points Nv. The total number of N = 100 samples was randomly partitioned

to disjoint training and validation sets with Nt = 0.5N and Nv = 0.5N , respectively. Since we

ave d = 3 design variables, we satisfy Eq. (11) with Nt = 50 up to polynomial order p = 3.

. Results

The estimated sensitivities are obtained from PC surrogate models where we use either ordi-

ary least squares (OLS) and Bayesian compressive sensing (BCS) of UQTk [16, 17] or orthogonal

atching pursuit (OMP) of scikit-learn [20, 21] together with Chaospy [7] to compute the ex-

ansion coefficients. A summary of the PC model setups is given in Tab. 5. In order to study the

volution of the sensitivities we construct the PC surrogate models at equidistant steps of the

ccelerator models and evaluate their sensitivities. These steps correspond to azimuthal angles

the cyclotrons or longitudinal positions in the rf electron gun model. In the examples below

e only show the first order Sobol’ indices since their sum is already almost one which is the

aximum per definition (cf. Eq. (18)).
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model PC order stopping criterion

ε (BCS) Nc (OMP)

PSI Ring 2 1× 10−7 5

PSI Injector II 2 1× 10−4 7

DIC 2 1× 10−8 6

AWA 2 1× 10−9 7

able 5: PC surrogate model settings for all accelerator model examples. The stopping criterion of Bayesian

ompressive Sensing (BCS) and Orthogonal Matching Pursuit (OMP) is discussed in Sec. 3.5 and Sec. 3.4,

spectively.

.1. High Intensity Cyclotrons

In order to study the effect of the input parameters we evaluate the sensitivities of the halo

arameters Eq. (3) and Eq. (4) with respect to the center bunch of the 5 bunches (cf. Fig. 1a).

he initial kinetic energy of the center bunch in the different models is approximately 98 MeV,

5 MeV and 17 MeV for the PSI Ring, PSI Injector II and DIC, respectively. As shown in Fig. 4,

ig. 8 and Fig. 12, the relative l1 and l2 errors (cf. Eq. (20) and Eq. (19)) between training and

est samples are in good agreement for all cyclotron examples. A similar observation is done at

single angle in Fig. 5, Fig. 9 and Fig. 13. The average errors are given in Tab. 7, Tab. 8 and

ab. 9. The computation methods OLS, BCS and OMP yield similar results. In case of the PSI

njector II, the refinement threshold has more than 80 % impact on the halo. The energy binning

arameter η and regrid frequency fr play a negligible role. The increase of the 95 % bootstrap

onfidence intervals in Fig. 6 correlates with the decrease of the standard deviation in Fig. 3. It is

est observed for hx at around 215◦ or Hx between 195◦ and 255◦. In contrast to the PSI Injector

I, the DIC also strongly depends on the regrid frequency. It has an average main sensitivity of

pproximately 60 % for hx. The parameters also exhibit more correlations as observed between

he main and total sensitivities (cf. Tab. 8). The standard deviations for the DIC are one order

f magnitude smaller than for the PSI Injector II, causing the confidence intervals to increase

s illustrated in Fig. 10. This effect is even stronger in the PSI Ring where Coulomb’s repulsion

less dominant and the halo parameters are smaller (cf. Fig. 11) compared to the PSI Injector

I. The standard deviation is in the order of O(10−4) denoting no significant influence of the

put parameters on the model response, hence, the confidence intervals in Fig. 14 exhibit large
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anges. For this reason we can make no reliable statement about the sensitivities for the PSI Ring.

evertheless, these findings give rise to computational savings. Due to the small deviations, it

sufficient for the PSI Ring to select a cheap model. According to Tab. 6, the cheapest model

mong all N = 100 samples is 2.47 times faster than the most expensive model.

model design variables time [s]

fr λ η

PSI Ring
111 0.8272 0.0227 7938

3 0.5022 0.0052 19 613

PSI Injector II
4 0.6455 0.0224 10 526

3 0.5022 0.0045 21 422

DIC
90 0.8584 0.0157 9560

74 0.5958 0.0216 31 709

Table 6: Most expensive and cheapest cyclotron models with respect to runtime among all N = 100 samples.

101

m
ea

n

hx Hx hy Hy

50 100 150 200 250 300 350 400
azimuth [deg]

10−4

10−2

st
d

igure 3: Evolution of the mean and standard deviation (std) of the spatial-profile parameters hx, hy and the

hase-space halo parameters Hx, Hy as defined in Eq. (3) and Eq. (4), respectively. Based on the mean of Hx,

e location of the dipoles in the PSI Injector II can be detected, i.e. at 90◦, 180◦, 270◦ and 360◦.
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igure 4: Evolution of the relative l2 and l1 error between the surrogate and the true model of the PSI Injector

. The full lines are the errors to the surrogate model obtained with the training set and the dashed lines are the

rrors to the surrogate model computed with the validation set. For each quantity, the dashed and full lines are

lose to each other, indicating no overfitting of the surrogate model.
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igure 5: Comparison between the high fidelity (x-axis) and PC surrogate model (y-axis) at 390◦ of the PSI

jector II simulation. The blue and red dots indicate the training and validation points, respectively. In the best

ase all points coincide with the dashed black line.
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igure 6: Evolution of the estimated first order Sobol’ indices in the PSI Injector II. The error bars denote

e 95 % bootstrapped (B = 100) confidence interval (cf. Sec. 3.7). The main sensitivities are evaluated for the

patial-profile parameters hx, hy and the phase-space halo parameters Hx, Hy as defined in Eq. (3) and Eq. (4),

spectively. The bars are coloured with respect to the regrid frequency fr, AMR refinement threshold λ and

nergy binning parameter η. The refinement threshold has the highest impact on the halo measures.
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QoI method l1 error [%] l2 error [%] Sobol’ sensitivity indices

train test train test Ŝfr ŜTfr Ŝλ ŜTλ Ŝη ŜTη

hx

OLS 0.23 0.33 0.33 0.44 0.03 0.06 0.91 0.94 0.02 0.04

BCS 0.26 0.30 0.38 0.44 0.03 0.05 0.92 0.95 0.02 0.04

OMP 0.24 0.32 0.34 0.45 0.03 0.04 0.92 0.95 0.02 0.04

Hx

OLS 0.15 0.22 0.21 0.29 0.08 0.16 0.80 0.89 0.01 0.05

BCS 0.16 0.20 0.24 0.28 0.07 0.15 0.81 0.90 0.01 0.05

OMP 0.15 0.21 0.22 0.30 0.07 0.16 0.80 0.90 0.01 0.05

hy

OLS 0.18 0.27 0.25 0.36 0.06 0.10 0.88 0.92 0.01 0.04

BCS 0.20 0.24 0.30 0.35 0.05 0.09 0.88 0.92 0.01 0.04

OMP 0.19 0.26 0.27 0.37 0.05 0.08 0.89 0.92 0.01 0.04

Hy

OLS 0.11 0.17 0.15 0.22 0.06 0.10 0.88 0.92 0.01 0.03

BCS 0.12 0.15 0.17 0.21 0.06 0.10 0.88 0.92 0.01 0.03

OMP 0.11 0.16 0.16 0.22 0.05 0.09 0.89 0.93 0.01 0.04

able 7: Average relative l1 and l2 errors between the high fidelity model and the PC surrogate models for the

aining and validation sets as well as the average main and total sensitivities for the PSI Injector II. OLS:

rdinary Least Squares; BCS: Bayesian Compressive Sensing; OMP: Orthogonal Matching Pursuit.
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igure 7: Evolution of the mean and standard deviation (std) of the spatial-profile parameters hx, hy and the

hase-space halo parameters Hx, Hy as defined in Eq. (3) and Eq. (4), respectively. The mean of all quantities

hows a more or less periodic pattern along the three turns of the DAEδALUS Injector Cyclotron.
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igure 8: Evolution of the relative l2 and l1 error between the surrogate and the true model of the DAEδALUS

jector Cyclotron. The full lines are the errors to the surrogate model obtained with the training set and the

ashed lines are the errors to the surrogate model computed with the validation set. For each quantity, the dashed

nd full lines are close to each other, indicating no overfitting of the surrogate model.

23Jo
ur

na
l P

re
-p

ro
of



F

D

re

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
7.390 7.392

hx

7.389

7.390

7.391

7.392

ĥ
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igure 9: Comparison between the high fidelity (x-axis) and PC surrogate model (y-axis) at 1120◦ of the

AEδALUS Injector Cyclotron simulation. The blue and red dots indicate the training and validation points,

spectively. In the best case all points coincide with the dashed black line.
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igure 10: Evolution of the estimated first order Sobol’ indices in the DAEδALUS Injector Cyclotron. The error

ars denote the 95 % bootstrapped (B = 100) confidence interval (cf. Sec. 3.7). The main sensitivities are evaluated

r the spatial-profile parameters hx, hy and the phase-space halo parameters Hx, Hy as defined in Eq. (3) and

q. (4), respectively. The bars are coloured with respect to the regrid frequency fr, AMR refinement threshold

and energy binning parameter η. Beside the refinement threshold, the regrid frequency has also a significant

pact on the halo measures.
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QoI method l1 error [10−2%] l2 error [10−2%] Sobol’ sensitivity indices

train test train test Ŝfr ŜTfr Ŝλ ŜTλ Ŝη ŜTη

hx

OLS 0.29 0.45 0.38 0.61 0.59 0.71 0.27 0.33 0.02 0.09

BCS 0.30 0.46 0.39 0.61 0.60 0.72 0.25 0.33 0.02 0.09

OMP 0.30 0.45 0.39 0.60 0.62 0.72 0.26 0.32 0.01 0.07

Hx

OLS 0.21 0.31 0.28 0.41 0.29 0.40 0.57 0.67 0.02 0.06

BCS 0.23 0.32 0.30 0.42 0.29 0.40 0.57 0.67 0.02 0.05

OMP 0.23 0.31 0.31 0.40 0.25 0.34 0.64 0.73 0.01 0.02

hy

OLS 0.34 0.55 0.44 0.72 0.11 0.24 0.67 0.76 0.07 0.15

BCS 0.35 0.55 0.45 0.71 0.11 0.24 0.67 0.76 0.07 0.15

OMP 0.36 0.54 0.46 0.69 0.10 0.22 0.71 0.77 0.06 0.13

Hy

OLS 0.24 0.37 0.31 0.47 0.47 0.58 0.39 0.48 0.02 0.07

BCS 0.25 0.38 0.32 0.49 0.47 0.58 0.39 0.48 0.02 0.07

OMP 0.25 0.37 0.33 0.47 0.44 0.53 0.46 0.53 0.01 0.04

able 8: Average relative l1 and l2 errors between the high fidelity model and the PC surrogate models for

e training and validation sets as well as the average main and total sensitivities for the DAEδALUS Injec-

r Cyclotron. OLS: Ordinary Least Squares; BCS: Bayesian Compressive Sensing; OMP: Orthogonal Matching

ursuit.
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igure 11: Evolution of the mean and standard deviation (std) of the spatial-profile parameters hx, hy and the

hase-space halo parameters Hx, Hy as defined in Eq. (3) and Eq. (4), respectively. The variability of these

uantities in the PSI Ring cyclotron is on the order of O(10−4) which is two orders of magnitude smaller than

r the PSI Injector II (cf. Fig. 3).
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igure 12: Evolution of the relative l2 and l1 error between the surrogate and the true model of the PSI Ring

yclotron. The full lines are the errors to the surrogate model obtained with the training set and the dashed lines

re the errors to the surrogate model computed with the validation set. For each quantity, the dashed and full

nes are close to each other, indicating no overfitting of the surrogate model.
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igure 13: Comparison between the high fidelity (x-axis) and PC surrogate model (y-axis) at 471◦ of the PSI

ing simulation. The blue and red dots indicate the training and validation points, respectively. In the best case

ll points coincide with the dashed black line.
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igure 14: Evolution of the estimated first order Sobol’ indices in the PSI Ring. The error bars denote the 95 %

ootstrapped (B = 100) confidence interval (cf. Sec. 3.7). The main sensitivities are evaluated for the spatial-profile

arameters hx, hy and the phase-space halo parameters Hx, Hy as defined in Eq. (3) and Eq. (4), respectively.

he bars are coloured with respect to the regrid frequency fr, AMR refinement threshold λ and energy binning

arameter η. Due to the high uncertainty of the sensitivities, no reliable conclusion can be drawn for this machine.
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QoI method l1 error [10−2%] l2 error [10−2%] Sobol’ sensitivity indices

train test train test Ŝfr ŜTfr Ŝλ ŜTλ Ŝη ŜTη

hx

OLS 0.85 0.78 1.13 1.01 0.15 0.19 0.50 0.54 0.27 0.34

BCS 0.92 0.80 1.24 1.06 0.15 0.19 0.50 0.54 0.27 0.34

OMP 0.86 0.78 1.14 1.01 0.14 0.16 0.50 0.51 0.34 0.36

Hx

OLS 0.47 0.45 0.62 0.58 0.11 0.16 0.59 0.62 0.22 0.29

BCS 0.60 0.50 0.79 0.65 0.11 0.16 0.59 0.62 0.22 0.29

OMP 0.48 0.45 0.64 0.57 0.07 0.13 0.63 0.64 0.24 0.30

hy

OLS 0.80 0.76 1.05 0.98 0.10 0.19 0.60 0.63 0.20 0.28

BCS 0.96 0.80 1.28 1.06 0.10 0.19 0.60 0.63 0.20 0.28

OMP 0.81 0.77 1.07 0.98 0.09 0.17 0.59 0.61 0.24 0.31

Hy

OLS 0.42 0.39 0.55 0.50 0.13 0.22 0.51 0.55 0.25 0.34

BCS 0.47 0.39 0.62 0.49 0.13 0.23 0.50 0.55 0.25 0.34

OMP 0.43 0.40 0.56 0.50 0.10 0.23 0.52 0.54 0.24 0.37

able 9: Average relative l1 and l2 errors between the high fidelity model and the PC surrogate models for the

aining and validation sets as well as the average main and total sensitivities for the PSI Ring. OLS: Ordinary

east Squares; BCS: Bayesian Compressive Sensing; OMP: Orthogonal Matching Pursuit.
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.2. RF Electron Gun Model

In order to approximate the high fidelity model we use PC surrogate models of second order

here the BCS method uses a tolerance of ε = 10−9 and the OMP method is stopped once 7

on-zero coefficients are found. In Fig. 16 are the relative l2 and l1 errors evaluated along the

f electron gun model. The mean errors are summarized in Tab. 10. It shows that the l1 and l2

rrors on the test and training points match with an absolute difference of O(10−2) and O(10−1),

espectively. An example of a comparison between the PC surrogate and high fidelity model is

lustrated in Fig. 17.

The first order Sobol’ indices and their 95 % bootstrapped confidence intervals are illustrated

Fig. 18. Except to the sensitivities of the horizontal projected emittance εx, we observe a

onvergence of the model parameter influences. The energy spread ∆E and the projected emit-

ance εs stronlgy depend on the time step (Ŝ[εs], Ŝ[∆E] > 0.90). This high influence is due to

he momentum component in their definitions (cf. Eq. (5) and Eq. (2)) and the fact that the

maller the time step, the better the process of acceleration (i.e. the evolution of the momentum)

resolved. The rms beam size in longitudinal direction is dominated by the energy binning

Ŝ[NE ] ≈ 0.45) and the particle multiplication factor (Ŝ[pf ] ≈ 0.41). While a higher pf value

proves the statistics of the beam size and reduces the numerical noise of PIC, the energy

inning is coupled with Coulomb’s repulsion that affects the beam size. In transverse direction,

E and ∆t are important instead. The convergence of the relative errors is correlated with the

onvergence of the variances of the quantities of interest as observed in Fig. 15. The model might

herefore be improved with an adaptive time stepping scheme that addresses this effect. The

heapest AWA rf electron gun model, i.e. ∆t = 1 ps, NE = 2 and pf = 1, is 15 times faster than

he most expensive model which has ∆t = 0.1 ps, NE = 10 and pf = 5.
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QoI method l1 error [%] l2 error [%] Sobol’ sensitivity indices

train test train test Ŝ∆t ŜT∆t Ŝpf ŜTpf ŜNE
ŜTNE

σx

OLS 0.03 0.04 0.04 0.05 0.32 0.32 0.12 0.12 0.56 0.56

BCS 0.04 0.04 0.05 0.05 0.32 0.32 0.12 0.12 0.56 0.56

OMP 0.03 0.04 0.04 0.05 0.32 0.32 0.12 0.12 0.55 0.56

εx

OLS 0.13 0.16 0.16 0.20 0.43 0.44 0.09 0.10 0.46 0.47

BCS 0.14 0.15 0.17 0.19 0.43 0.44 0.09 0.10 0.46 0.47

OMP 0.13 0.16 0.17 0.20 0.44 0.45 0.10 0.10 0.45 0.46

σs

OLS 0.02 0.02 0.03 0.03 0.13 0.14 0.41 0.41 0.45 0.46

BCS 0.02 0.03 0.03 0.03 0.13 0.14 0.41 0.41 0.45 0.46

OMP 0.02 0.02 0.03 0.03 0.13 0.13 0.39 0.39 0.48 0.48

εs

OLS 0.69 0.62 1.04 0.93 0.95 0.96 0.01 0.01 0.04 0.05

BCS 0.93 0.86 1.22 1.12 0.95 0.96 0.01 0.01 0.04 0.04

OMP 0.69 0.63 1.04 0.95 0.95 0.96 0.01 0.01 0.04 0.04

∆E

OLS 0.11 0.12 0.16 0.17 0.94 0.94 0.01 0.01 0.05 0.05

BCS 0.14 0.15 0.18 0.19 0.94 0.94 0.01 0.01 0.05 0.05

OMP 0.11 0.12 0.16 0.17 0.94 0.94 0.01 0.01 0.05 0.05

able 10: Average relative l1 and l2 errors between the high fidelity model and the PC surrogate models for the

aining and validation sets as well as the average main and total sensitivities for the rf electron gun model of the

WA. OLS: Ordinary Least Squares; BCS: Bayesian Compressive Sensing; OMP: Orthogonal Matching Pursuit.
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igure 15: Evolution of the mean and standard deviation (std) of the energy spread ∆E, the projected emittances

x, εs and the rms beam sizes σx, σs for rf electron gun model of the AWA.
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igure 16: Evolution of the relative l2 and l1 error between the surrogate and the true model of the AWA rf

lectron gun. The full lines are the errors to the surrogate model obtained with the training set and the dashed

nes are the errors to the surrogate model computed with the validation set. For each quantity, the dashed and

ll lines are close to each other, indicating no overfitting of the surrogate model.
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igure 17: Comparison between the high fidelity (x-axis) and PC surrogate model (y-axis) at the exit of the rf

lectron gun model of the AWA, i.e. s ≈ 30 cm. The blue and red dots indicate the training and validation points,

spectively. In the best case all points coincide with the dashed black line.
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igure 18: Evolution of the estimated first order Sobol’ indices in the rf electron gun model of the AWA. The

rror bars denote the 95 % bootstrapped (B = 100) confidence interval (cf. Sec. 3.7). The main sensitivities are

valuated for the energy spread ∆E, the projected emittances εx, εs and the rms beam sizes σx, σs. The bars are

oloured with respect to the time step ∆t, particle multiplication factor pf and the number of energy bins NE .

he impact of the parameters on the quantities in longitudinal direction converges.

. Conclusions

In this paper we discussed uncertainty quantification based on polynomial chaos expansion

nd gave a brief introduction to four numerical methods to compute the polynomial coefficients.

he choice of the method depends on the problem and its dimension. While the projection

ethod is the most accurate, the number of high-fidelity evaluations grows exponentially with

he dimension which is not the case for the other presented methods. Bayesian compressive

ensing and matching orthogonal pursuit favour sparse solutions by the selection of the most

portant contributions. The least squares method solves a linear system which may fail in case

37Jo
ur

na
l P

re
-p

ro
of



t

v

A

u

in

t

b

b

n

M

is

p

w

a

t

r

fo

r

m

d

a

r

F

t

o

e

e

b

d

a

b

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
he matrix is ill-conditioned which happens when input dimensions can only take a few discrete

alues. This can be the case with integer input, for example, when specifying the number of

MR levels or the grid sizes for the Poisson solver.

Beside a cheap surrogate model that mimics the high fidelity model, polynomial chaos based

ncertainty quantification has the additional benefit to easily evaluate the Sobol’ sensitivity

dices. As demonstrated in this paper, this technique is not only suitable to gain knowledge about

he sensitivity of physical parameters (e.g. initial beam properties) on the quantities of interest

ut also numerical parameters of computer codes. Since some tested numerical parameters might

e limited to integers, the projection method to obtain the polynomial coefficients is, however,

ot applicable. Instead, regression-based methods, Bayesian Compressive Sensing or Orthogonal

atching Pursuit and others have to be applied. A further difficulty with numerical parameters

a fair random sampling. In some cases (cf. Fig. 2) a straightforward, uniform sampling of the

arameter yields biased input data and, hence, may induce wrong conclusions. To circumvent,

e perform a stratified sampling that guarantees a well-balanced distribution.

The sensitivity studies of the three high intensity cyclotrons show that the sensitivity results

re different among accelerators of the same type. While the AMR threshold is the most impor-

ant parameter in the PSI Injector II with a sensitivity of about 90 %, the regrid frequency is

elevant in the DAEδALUS Injectory Cyclotron (DIC), too. Large bootstrap confidence intervals

r the Sobol’ indices indicate a failure of the analysis since the contributed variation of the model

esponse is rather due to noise than the tested input parameters. In such a case no reliable state-

ents based on the sensitivity estimates can be done. In contrast to our intuition the standard

eviation of the halo parameters remain pretty constant throughout one turn in the PSI Ring

nd PSI Injector II and the considered three turns in the DIC. Nevertheless, these findings give

ise to computational savings. Without losing significantly on accuracy (cf. Fig. 3, Fig. 7 and

ig. 11), energy binning can be totally switched off for these cyclotrons. In addition, this reduces

he amount of AMR hierarchy updates which reduces the time-to-solution even further since the

perators of the adaptive multigrid solver to solve Poisson’s equation do not need to be set up in

very time step. To illustrate this, we take the benchmark example in [13] that solves Poisson’s

quation 100 times using a three level AMR hierarchy with a base level of 5763 grid points. The

enchmark running on 14 400 CPU (Central Processing Unit) cores shows that the matrix setup

ue to AMR regriding takes up 42.15 % computing time. A reduction of the regrid frequency by

factor 10 yields a speedup of 7.10 in the matrix setup timing. In our UQ samples, the speedup

etween the cheapest and most expensive model is at least 2.0 and at most 3.3.
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Another interesting case we have studied is the rf electron gun model of the AWA. Relevant

arameters for this model are the energy binning NE and the time step ∆t. The particle multi-

lication factor pf , that basically controls the number of particles per grid cell, is only important

r the longitudinal beam size. Although NE and pf have together an average main sensitivity of

6 %, ∆t is the dominating parameter close to the cathode. An adaptive energy binning and time

tep scheme that is based on Sobol’ sensitivity indices is therefore a possible future enhancement

o reduce the time-to-solution for a target accuracy.
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