
New J. Phys. 22 (2020) 093016 https://doi.org/10.1088/1367-2630/abac3b

OPEN ACCESS

RECEIVED

11 May 2020

REVISED

21 July 2020

ACCEPTED FOR PUBLICATION

4 August 2020

PUBLISHED

8 September 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Multigap superconductivity in the Mo5PB2 boron–phosphorus
compound

T Shang1 , W Xie2, D J Gawryluk1 , R Khasanov3, J Z Zhao4,5, M Medarde1, M Shi6,
H Q Yuan2,7 , E Pomjakushina1 and T Shiroka3,8

1 Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
2 Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou, 310058, People’s Republic of China
3 Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
4 Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology, Mianyang, 621010, People’s

Republic of China
5 Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
6 Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
7 Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, People’s Republic of China
8 Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland

E-mail: tian.shang@psi.ch

Keywords: multigap, superconductivity, muon-spin rotation and relaxation

Abstract
The tetragonal Mo5PB2 compound was recently reported to show superconductivity with a critical
temperature up to 9.2 K. In search of evidence for multiple superconducting gaps in Mo5PB2,
comprehensive measurements, including magnetic susceptibility, electrical resistivity, heat
capacity, and muon-spin rotation and relaxation measurements were carried out. Data from both
low-temperature superfluid density and electronic specific heat suggest a nodeless
superconducting ground state in Mo5PB2. Two superconducting energy gaps Δ0 = 1.02 meV
(25%) and 1.49 meV (75%) are required to describe the low-T electronic specific-heat data. The
multigap features are clearly evidenced by the field dependence of the electronic specific-heat
coefficient and the Gaussian relaxation rate in the superconducting state (i.e., superfluid density),
as well as by the temperature dependence of the upper critical field. By combining our extensive
experimental results with numerical band-structure calculations, we provide compelling evidence
of multigap superconductivity in Mo5PB2.

1. Introduction

The T5M3 family, where T is a transition or rare-earth metal and M a (post)-transition metal or a metalloid
element, features three distinct structural symmetries: orthorhombic Yb5Sb3-type (Pnma, no. 62),
tetragonal Cr5B3-type (I4/mcm, no. 140), and hexagonal Mn5Si3-type (P63/mcm, no. 193). The tetragonal
Cr5B3-type structure is adopted by a broad range of binary and ternary compounds. Among these, the
layered ternary compounds of transition metals with boron and silicon (or boron and phosphorus), with a
T5XB2 stoichiometry (X = P or Si), exhibit many interesting properties. For example, Co5SiB2 exhibits a
paramagnetic ground state, found to persist down to liquid He temperature [1]. On the other hand, when T
is occupied by other 3d metals, such as Mn or Fe, both T5SiB2 and T5PB2 are ferromagnets with high Curie
temperatures. Therefore, currently they are being considered for room-temperature magnetocaloric
applications or as rare-earth-free permanent magnets [2–5]. Unlike these high-temperature ferromagnets,
the 4d and 5d compounds Nb5SiB2, Mo5SiB2, and W5SiB2 are superconductors, with transition
temperatures in the 5 to 8 K range [6–9]. Later on, the Cr5B3-type Ta5GeB2 boro-germanide was shown to
become a superconductor below Tc ∼ 3.8 K [10]. Very recently, a new member of the Cr5B3-type series,
namely Mo5PB2, was synthesized and shown to exhibit superconductivity (SC) with a critical temperature
Tc = 9.2 K [11], the highest Tc recorded in this family of compounds. According to electrical resistivity
measurements under various applied magnetic fields, its upper critical field, μ0Hc2 ∼ 1.7 T, seems to be
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much higher than that of Mo5SiB2 (0.6 T) or W5SiB2 (0.5 T) [7, 8]. In addition, over a wide temperature
range, the temperature-dependent Hc2(T) of Mo5PB2 seems inconsistent with the Ginzburg–Landau- or
Werthamer–Helfand–Hohenberg models, implying multiple superconducting gaps in Mo5PB2 [11]. To
date, a detailed analysis of the Hc2(T) data is still missing. Yet, possible multigap features were already
suggested by zero-field heat-capacity measurements and electronic band-structure calculations [11]. Indeed,
its zero-field specific-heat seems more consistent with a two-gap- rather than with a single-gap model, as
confirmed also by the present work. First-principle calculations indicate Mo5PB2 to be a multiband metal,
whose density of states (DOS) at the Fermi level is dominated by the Mo 4d-orbitals. Although electronic
band-structure calculations are available for Mo5PB2 and its superconductivity has been studied via
macroscopic techniques (e.g., specific heat), the microscopic nature of its SC remains largely unexplored. In
particular, the multigap feature of Mo5PB2 demands stronger evidence. To this aim, we performed an
extensive study of the superconducting properties of Mo5PB2 by means of electrical resistivity,
magnetization, thermodynamic- and, in particular, by muon-spin rotation and relaxation (μSR) methods.
We find that Mo5PB2 exhibits a fully-gapped superconducting state with preserved time-reversal symmetry.
Its multigap features are strongly evidenced by the field-dependent electronic specific-heat coefficient, as
well as by the superconducting μSR relaxation, the latter being highly consistent with the temperature
dependence of the upper critical field.

2. Methods

Polycrystalline samples of Mo5PB2 were prepared by solid-state reaction methods, the procedures used to
synthesize the material being reported in detail elsewhere [11]. Room-temperature x-ray powder diffraction
(XRD) measurements were used to check the quality of the Mo5PB2 samples, by employing a Bruker D8
diffractometer with Cu Kα radiation. The magnetic susceptibility, electrical resistivity, and heat-capacity
measurements were performed on a 7-T Quantum Design magnetic property measurement system
(MPMS-7) and a 14-T physical property measurement system (PPMS-14) equipped with a 3He cryostat.

The bulk μSR measurements were carried out at the general-purpose and the multipurpose (Dolly)
surface-muon spectrometers at the Swiss muon source of Paul Scherrer Institute, Villigen, Switzerland [12].
For the low-temperature measurements on Dolly (down to ∼0.3 K), the samples were mounted on a thin
copper foil (ca ∼30 μm thick) using diluted GE varnish. Transverse-field (TF) μSR measurements were
carried out to investigate the superconducting properties (mostly the gap symmetry) of Mo5PB2. To track
the additional field-distribution broadening due to the flux-line-lattice (FLL) in the mixed superconducting
state, we followed a field-cooling (FC) protocol, where the magnetic field is applied in the normal state,
before cooling the sample down to base temperature. Afterwards, the TF-μSR spectra were collected at
various temperatures upon warming. The μSR data were analyzed by means of the musrfit software
package [13].

The electronic band structure of Mo5PB2 was calculated via the density functional theory, within the
generalized gradient approximation of Perdew–Burke–Ernzerhof realization [14], as implemented in the
Vienna ab initio simulation package [15, 16]. The projector augmented wave pseudopotentials were adopted
for the calculation [17, 18]. Electrons belonging to the outer atomic configuration were treated as valence
electrons, here corresponding to 6 electrons in Mo (4d55s1), 5 electrons in P (3s23p3s), and 3 electrons in B
(2s22p1). The kinetic energy cutoff was fixed to 500 eV. The lattice parameters and the atomic positions
experimentally determined from Rietveld refinements were chosen for the calculations. For the
self-consistent calculation, the Brillouin zone integration was performed on a Γ-centered mesh of
10 × 10 × 10k-points.

3. Results and discussion

3.1. Crystal structure and phase purity
The crystal structure and the purity of Mo5PB2 polycrystalline samples were checked via powder XRD at
room temperature. Figure 1 shows a refinement of the XRD pattern, performed by means of the FullProf
Rietveld-analysis suite [19]. The refinement confirms that Mo5PB2 crystallizes in the tetragonal Cr5B3-type
structure, also known as T2-phase. The refined lattice parameters, a = b = 5.971 05(5) Å and
c = 11.070 08(11) Å, are in good agreement with the results reported in the literature [11]. Similar to
previous work, also our data (see figure 1) indicate that, besides the main Mo5PB2 phase (80%), there are
also extra reflections belonging to minor foreign phases: Mo3P (16%) and MoB/Mo2B (4%). Once formed,
due to their very high melting temperature (above 2000 ◦C), such extraneous phases are very stable and
almost impossible to remove, even after multiple additional annealings. These minor phases, too, are
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Figure 1. Room-temperature x-ray powder diffraction pattern and Rietveld refinement for Mo5PB2. The red circles and the solid
black line represent the experimental pattern and the Rietveld refinement profile, respectively. The gray line at the bottom shows
the residuals, i.e., the difference between calculated and experimental data. The vertical bars mark the calculated Bragg-peak
positions for Mo5PB2 (green), Mo3P (yellow), and MoB/Mo2 B (blue). The crystal structure (unit cell) is shown in the inset.

Figure 2. Temperature dependence of the electrical resistivity of Mo5PB2 collected in zero field up to room temperature. The
black dash-dotted and red solid lines through the data are fits to the Bloch–Grüneisen formula with (BGM) and without (BG)
Mott correction, respectively. The inset shows a closeup of the low-temperature region, highlighting the superconducting
transition.

superconductors, with critical temperatures below 5.5 K [20–22]. Nevertheless, upon investigating
the Mo5PB2 samples, no superconducting signal from the MoB or Mo2B phases could be identified.
Therefore, they do not influence the determination of the superconducting parameters of Mo5PB2. As for
Mo3P, its contribution was properly subtracted when analyzing the zero-field specific-heat data (see details
below and in reference [11]). The refined Mo5PB2 crystal structure, shown in the inset, comprises three
different layers (MoB, Mo, and P), stacked alternatively along the c-axis and resembling a quasi-two
dimensional structure. Clearly, in the unit cell there are two distinct crystallographic sites for the Mo atoms
and a single site for the P or B atoms.

3.2. Electrical resistivity
The temperature dependence of the electrical resistivity ρ(T), collected in zero magnetic field from 300
down to 2 K, reveals the metallic character of Mo5PB2 (see figure 2). The electrical resistivity in the low-T
region is shown in the inset. Here, the superconducting transition, with Tonset

c = 9.5 K and Tzero
c = 9.2 K,

is clearly visible and the data are consistent with previous work [11]. The normal-state electrical
resistivity is well modeled by the Bloch–Grüneisen–Mott (BGM) formula

ρ(T) = ρ0 + 4A(T/ΘR
D)5

∫ ΘR
D/T

0
z5dz

(ez−1)(1−e−z ) − αT3 [23, 24]. Here, ρ0 represents the residual resistivity, while

the second term describes the electron–phonon scattering, with ΘR
D being the characteristic Debye

temperature and A a coupling constant. The third term represents a contribution from the s–d interband
scattering, α being the Mott coefficient [25, 26]. As shown in figure 2, the Mott correction is clearly
required. Indeed, the black dash-dotted line, a fit to the BG formula without the Mott term, deviates
significantly from the experimental data above 150 K. The fit to BGM (red solid line) results in
ρ0 = 41.1(2) μΩ cm, A = 250(8) μΩ cm, ΘR

D = 236(5) K, and α = 2.2(1) × 10−6 μΩ cm K−3. A similar α
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Figure 3. Temperature dependence of the Mo5PB2 heat capacity, measured in zero field from 2 to 300 K. The solid line
represents a fit to a combined Debye- and Einstein model, with the dashed- and dash-dotted lines referring to the two
components. Inset: specific heat C/T vs T2 in the low-T regime; the dashed-line is a fit to C/T = γn + βT 2 + δT 4, where γn is
the electronic specific-heat coefficient, while the two other terms account for the phonon contribution to the specific heat. The
determined values are γn = 22.3(2) mJ mol−1 K−2, β = 0.17(3) mJ mol−1 K−4 and δ = 1.3(9) × 10−4 mJ mol−1 K−6.

value was also found in Mo3P (3.4 μΩ cm K−3) [22], indicating that, most likely, the s–d scattering is due to
Mo d- and to P s-electrons.

3.3. Heat capacity
The Debye temperature can also be estimated from the heat capacity measurements. As shown in figure 3, a
pure Debye model cannot fit the C(T) data properly. However, when combined with an Einstein model, it
reproduces the C(T) data fairly accurately. In this case, the solid line is a fit to the Debye- and Einstein
model C(T) = γnT + n[vCD(T) + (1 − v)CE(T)], with relative weights v and (1 − v). Here, n = 8 is the
number of atoms per formula-unit in Mo5PB2. The first term represents the electronic specific heat,
which can be extracted from the low-T data (see inset in figure 3). The second and the third terms represent
the acoustic- and optical phonon-mode contributions, described by the Debye-

CD(T) = 9R(T/ΘC
D)3

∫ ΘC
D/T

0
z4 ezdz
(ez−1)2 and Einstein model CE(T) = 3R(ΘC

E/T)2 exp(ΘC
E /T)

[exp(ΘC
E /T)−1]2

, respectively [27].

Here R = 8.314 J mol−1 K−1 is the molar gas constant, while ΘC
D and ΘC

E are the Debye and Einstein
temperatures. The solid line in figure 3 represents the best fit, corresponding to ΘC

D = 300(5) K,
ΘC

E = 530(5) K, and v = 0.56. The obtained Debye temperature is slightly higher than that derived from
electrical resistivity data (see figure 2). In fact, unlike electrical transport, heat capacity reflects better the
bulk properties and, therefore, is more susceptible to extrinsic phases. In our case, the higher Debye
temperature determined from heat-capacity measurements is most likely related to the MoB or Mo2B
phases, since the light B atoms usually exhibit rather high phonon frequencies, corresponding to large
Debye temperatures (e.g., ΘD ∼ 400 K for MoB) [28].

3.4. Magnetization
The superconductivity of Mo5PB2 was also evidenced by magnetization measurements. The
temperature-dependent magnetic susceptibility χ(T) measured in a field of 1 mT using both field-cooled
and zero-field-cooled (ZFC) protocols, is shown in figure 4(a). A sharp diamagnetic transition at Tc = 9.3 K
indicates the onset of superconductivity in Mo5PB2, in agreement with the values determined from
electrical resistivity and heat capacity. The well separated ZFC- and FC-susceptibility curves imply a strong
flux-pinning effect in Mo5PB2. By assuming a cuboid (or, in general, an ellipsoid) sample shape with a/b ∼
1 and c/a ∼ 0.5, the estimated demagnetization factor is ∼0.5, with the field applied along the c-direction
[29, 30]. After accounting for the demagnetization factor, the superconducting shielding fraction of Mo5PB2

is about 92%. To determine the lower critical field μ0Hc1 of Mo5PB2, essential for performing μSR
measurements on type-II superconductors, the field-dependent magnetization M(H) was measured at
various temperatures up to Tc. Some representative M(H) curves, recorded using a ZFC-protocol, are
shown in the inset of figure 4(b). The estimated μ0Hc1 values vs temperature are summarized in the main
panel, where the zero-temperature lower critical field μ0Hc1(0) = 30.4(4) mT is also determined. This is
highly consistent with 30.8 mT, the value calculated from the magnetic penetration depth λ0 (see below).

3.5. TF-μSR and superconducting order parameter
The TF-μSR measurements were carried out in a field of 80 mT, twice the μ0Hc1(0) value. Two
representative TF-μSR spectra of Mo5PB2, collected at 0.3 K and 10 K (i.e., in the superconducting
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Figure 4. (a) Temperature-dependent magnetic susceptibility of Mo5PB2, measured in an applied field of 1 mT using the ZFC-
and FC protocols. (b) Estimated lower critical field μ0Hc1 vs temperature. The solid line is a fit to the phenomenological equation
μ0Hc1(T) = μ0Hc1(0)[1 − (T/Tc)2]. The inset shows representative field-dependent magnetization curves M(H ) recorded at
various temperatures up to Tc. For each temperature, the lower critical field μ0Hc1 was determined as the magnetic field where
the diamagnetic response deviates from the linear relation vs the magnetic field.

and the normal state) are shown in figure 5(a). In the normal state, the spectra have essentially no damping,
reflecting the uniform field distribution, as well as the nonmagnetic nature of Mo5PB2. Below Tc, instead,
the significantly enhanced damping occurring in the mixed state reflects the inhomogeneous field
distribution due to the development of FLL [31–34]. This additional SC-related broadening is clearly visible
in figure 5(b), where the fast-Fourier-transform spectrum of the corresponding TF-μSR data is shown. To
describe the asymmetric field distribution taking place below Tc, the μSR spectra can be modeled by means
of the expression:

ATF(t) =
n∑

i=1

Ai cos(γμBit + φ)e−σ2
i t2/2 + Abg cos(γμBbgt + φ). (1)

Here Ai and Abg represent the initial muon-spin asymmetries for muons implanted in the sample and
sample holder, respectively, with the latter giving rise to a background signal not undergoing any
depolarization. Bi and Bbg are the local fields sensed by the implanted muons in the sample and the sample
holder (the latter normally experiencing the unchanged external field), γμ/2π = 135.53 MHz T−1 is the
muon gyromagnetic ratio, φ is a shared initial phase, and σi is the Gaussian relaxation rate of the ith
component.

Generally, the field distribution in the SC state is material dependent: the more asymmetric it is, the
more components are required to describe it. Here we found that, to properly describe the TF-μSR spectra
in the superconducting state of Mo5PB2, at least two oscillations are required. This is illustrated in
figure 5(b), where two broad peaks, above and below the applied magnetic field (80 mT), can be clearly
seen. Both peaks are much broader than the single peak shown in figure 5(c), corresponding to the field
distribution in the normal state. The solid lines in figure 5 represent fits to equation (1) with n = 2, while
the dash-dotted lines in figure 5(b) evidence the single components at 0.3 K and the background signal.
The derived Gaussian relaxation rates as a function of temperature are summarized in the inset of figure 6.
At base temperature (0.3 K), σ1 = 7.72(16)μs−1 and σ2 = 2.32(10)μs−1 reflect the A1 and A2 field
distributions in figure 5(b), respectively. Above Tc, the relaxation rate is small and
temperature-independent, but below Tc it starts to increase due to the onset of FLL and the increased
superfluid density. At the same time, also a diamagnetic field shift appears below Tc, given by
ΔB(T) = 〈B〉 − Bappl., with 〈B〉 = (A1B1 + A2B2)/Atot, Atot = A1 + A2, and Bappl. = 80 mT
(see inset in figure 6). The effective Gaussian relaxation rate can be estimated from

σ2
eff/γ

2
μ =

∑2
i=1 Ai[σ2

i /γ
2
μ −

(
Bi − 〈B〉

)2
]/Atot [34]. Then, the superconducting Gaussian relaxation
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Figure 5. (a) TF-μSR time spectra collected at 0.3 K and 10 K in an applied field of 80 mT, with the respective Fourier
transforms shown in (b) and (c). Solid lines are fits to equation (1) using two oscillations, which are also shown separately as
dash-dotted lines in (b), together with a background contribution. The dashed vertical line indicates the applied magnetic field.
In (b), note the clear field-distribution broadening due to FLL below Tc.

rate, encoded in the σFLL value, can be extracted by subtracting the nuclear contribution according to

σFLL =
√
σ2

eff − σ2
n. Here, σn ∼ 0.11μs−1 is the nuclear relaxation rate, almost constant in our narrow

temperature range, as confirmed by zero-field (ZF) μSR data (see figure 12). For small applied magnetic
fields (Happl/Hc2 ∼ 0.04 � 1), the magnetic penetration depth λ can be calculated from
σ2

sc(T)/γ2
μ = 0.003 71Φ2

0/λ
4(T) [35, 36]. Figure 6 shows the temperature dependent inverse square of the

magnetic penetration depth [proportional to the superfluid density, i.e., λ−2(T) ∝ ρsc(T)] for Mo5PB2. The
superfluid density ρsc(T) was further analyzed by using different models, generally described by:

ρsc(T) = 1 + 2

〈∫ ∞

Δk

E√
E2 −Δ2

k

∂f

∂E
dE

〉
FS

. (2)

Here, f = (1 + eE/kBT)−1 is the Fermi function and 〈〉FS represents an average over the Fermi surface [37].
Δk(T) = Δ(T)δk is an angle-dependent gap function, where Δ is the maximum gap value and δk is the
angular dependence of the gap, equal to 1, cos 2φ, and sin θ for an s-, d-, and p-wave model, respectively,
with φ and θ being the azimuthal angles. The temperature dependence of the gap is assumed to follow
Δ(T) = Δ0 tanh{1.82[1.018(Tc/T − 1)]0.51} [37, 38], where Δ0 is the gap value at 0 K.

Four different models, including single-gap s-, p-, and d-wave, and two-gap s + s-wave, were used to
describe the λ−2(T). For an s- or p-wave model, the best fits yield the same zero-temperature magnetic
penetration depth λ0 = 121(2) nm, but different gap values, 1.42(2) and 1.87(2) meV, respectively. For the
d-wave model, the estimated λ0 and gap value are 104(2) nm and 1.75(2) meV. As can be clearly seen in
figure 6, the significant deviation of the p- or d-wave model from the experimental data below 5 K and the
temperature-independent behavior of λ−2(T) for T < 1/3Tc ∼ 3 K strongly suggest a fully-gapped
superconductivity in Mo5PB2. According to previous studies [11], two gaps are required to quantitatively
describe the specific-heat data (as confirmed also here). Here, by fixing the weight w = 0.25, as determined
from the electronic specific heat (see below), the two-gap s + s-wave model provides almost identical results
to the single-gap s-wave model. The two derived gap values Δf

0 = 1.11(2) and Δs
0 = 1.57(1) meV are very

similar to those determined from electronic specific heat.
Since the weight of the second gap is relatively small (0.25–0.3) and the gap sizes are not significantly

different (Δf
0/Δs

0 ∼ 0.71), this makes it difficult to discriminate between a single- and a two-gap
superconductor based on the temperature-dependent superfluid density alone [39, 40]. Nevertheless,
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Figure 6. Superfluid density vs temperature, as determined from TF-μSR measurements in Mo5PB2 in an applied magnetic field
of 80 mT. The inset shows the temperature dependence of the muon-spin relaxation rate σi(T) and diamagnetic shift
ΔB(T) = 〈B〉 − Bappl. . Two σs are required to describe the TF-μSR data [see figure 5(b)]. The different lines in the main panel
represent fits to various models, including single-gap s-, p-, and d-wave, and two-gap s + s-wave (see text for details). Note that,
after subtracting a possible Mo3P contribution in quadrature, the resulting data practically overlap with the originally measured
λ−2(T).

Figure 7. Normalized electronic specific heat Ce/γnT of Mo5PB2 as a function of T/Tc. Inset: enlarged plot of the low-T
(0.1 � T/Tc � 0.4) normalized electronic specific heat in semi-logarithmic scale. The solid red and black lines represent the
electronic specific heat calculated by considering a fully-gapped s-wave model with two gaps or a single gap, respectively. The
dash-dotted- and dashed blue lines in the main panel represent the individual contributions from the large and small
superconducting gaps. The goodness of fit is χ2

r = 1.9 (two-band model) and 7.9 (single-band model).

as we show further, the two-gap feature of Mo5PB2 is clearly reflected also in its field-dependent
superconducting relaxation rate σFLL(H). Since normally the different gaps respond differently to an
external field, σFLL(H) exhibits different features in a two-gap superconductor compared to a single-gap
superconductor.

To reveal the multigap superconductivity of Mo5PB2, we also analyzed the zero-field electronic
specific-heat data. After subtracting from the raw specific-heat data the phonon contribution (see details in
the inset of figure 3) and the spurious Mo3P contribution (see details in reference [11]), the resulting
electronic specific heat divided by the normal-state electronic specific-heat coefficient, i.e., Ce/γnT, is
reported in figure 7. Since the previous analysis of λ−2(T) already excluded the occurrence of nodes in the
SC gap, the temperature-dependent electronic specific heat was analyzed by using a fully-gapped model.
The solid black line in figure 7 represents a fit to the s-wave model with a single gap Δ0 = 1.38(2) meV
(i.e., equivalent to the standard BCS value 1.76kBTc). It reproduces very well the experimental data above
T/Tc ∼ 0.4. Yet, at lower temperatures, the single-gap model shows a less satisfactory agreement (see inset).
At the same time, the two-gap model exhibits a much better agreement across the full temperature range, in
particular for T/Tc < 0.4 (see inset), reflected in a much smaller χ2

r value. The solid red line in figure 7 is a

fit to the two-gap s-wave model, Ce(T)/T = wCΔf

e (T)/T + (1 − w)CΔs

e (T)/T [41]. Here CΔf

e (T)/T and
CΔs

e (T)/T are the single-gap specific-heat contributions, with Δf the first- (small) and Δs the second
(large) gap, and w the relative weight. The two-gap model gives Δf

0 = 1.02(2) meV, Δs
0 = 1.49(2) meV, and

w = 0.25, the two superconducting gap values being consistent with previous results [11]. The large-gap
value, as well as the gap value determined from TF-μSR, are both greater than ΔBCS expected from the BCS
theory in the weak-coupling regime, hence indicating strong-coupling superconductivity in Mo5PB2.
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Figure 8. (a) TF-μSR time spectra for Mo5PB2 measured in the superconducting state (T = 1.55 K) in a field of 80 and 600 mT.
(b) Field-dependent superconducting Gaussian relaxation rate σFLL(H ). The solid and dash-dotted lines represent fits to
two-band and single-band models, respectively. The poor agreement between theory and experiment below Hc1 reflects the
magnetic field expulsion from the sample due to the Meissner effect.

3.6. Field-dependent measurements: evidence of multigap superconductivity
To get further insight into the multigap SC revealed by zero-field electronic specific heat, we also carried out
a series of measurements (including TF-μSR, heat capacity, magnetization, and electrical resistivity) at
different magnetic fields. The later three were also used to determine the upper critical field Hc2(T).

σFLL vs H. TF-μSR measurements at different magnetic fields (up to 780 mT) were performed in the
superconducting state of Mo5PB2. As an example, the TF-μSR spectra collected at 80 and 600 mT are
shown in figure 8(a). Again the spectra were analyzed using the model described by equation (1). The
resulting superconducting Gaussian relaxation rates σFLL versus the applied magnetic field are summarized
in figure 8(b). In case of a single-gap superconductor, σFLL(H) generally follows
σFLL = 0.172 γμΦ0

2π (1 − h)[1 + 1.21(1 −
√

h)3]λ−2 [35, 36], where h = Happl/Hc2, with Happl being the
applied magnetic field. By fixing μ0Hc2 = 1.77 T (at 1.55 K) (see figure 10), the single-band model clearly
deviates from the experimental data at magnetic fields above 300 mT [see dash-dotted line in figure 8(b)].
In a two-band model, each band is characterized by its own coherence length [i.e., ξf (first) and ξs

(second)] and a weight w [or (1 − w)], accounting for the relative contribution of each band to the total
σFLL and, hence, to the superfluid density [39, 42]. By fixing w = 0.25, as estimated from electronic
specific-heat data (figure 7), the two-band model [solid red line in figure 8(b)] is in better agreement with
the experiment and provides λ0 = 99(2) nm, ξf = 18.5(5) nm, and ξs = 13.2(2) nm. The upper critical field
of 1.89(5) T, calculated from the coherence length of the second band, μ0Hc2 = Φ0/(2πξ2), is also
comparable to the upper critical field determined from bulk measurements. The virtual upper critical field
μ0H∗

c2 = 0.96(5) T, calculated from the coherence length of the first band ξf , is in good agreement with the
field value where both Hc2(T) (figure 10) and γH(H) (figure 11) show a flex or change the slope,
respectively.

Upper critical field. The upper critical field Hc2 of Mo5PB2 was determined from measurements of the
electrical resistivity ρ(T, H), magnetization M(T, H), and specific heat C(T, H)/T under various applied
magnetic fields up to 2.5 T, as shown in figures 9(a)–(c). Under applied field, the superconducting
transition shifts towards lower temperatures and becomes broader. The Hc2 values, determined using
different techniques, are highly consistent and are summarized in figure 10 as a function of the reduced
temperature Tc/Tc(0) [here, Tc(0) is the transition temperature in zero field]. The Hc2(T) was analyzed by
means of Ginzburg–Landau (GL) [43], Werthamer–Helfand–Hohenberg (WHH) [44], and two-band (TB)
models [45]. As shown in the inset of figure 10, the GL model reproduces the experimental data up to
μ0H ∼ 1.4 T, while the WHH model stops already at 0.5 T. At higher magnetic fields, both models show
large deviations, leading to underestimated values of μ0HGL

c2 (0) = 1.7(1) T and μ0HWHH
c2 (0) = 1.3(1) T.
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Figure 9. Temperature-dependent (a) electrical resistivity ρ(T, H), (b) magnetization M(T, H), and (c) specific-heat data
C(T, H)/T, collected at various magnetic fields up to 2.5 T. For the ρ(T, H) measurements, Tc was defined as the onset of zero
resistivity; while for the M(T, H) and C(T, H)/T measurements, Tc was defined as the onset and the midpoint of the
superconducting transition, respectively. All Tc(0) values are marked by arrows.

Figure 10. (a) Upper critical field μ0Hc2 vs reduced transition temperature Tc/Tc(0) for Mo5PB2. The Tc values were determined
from measurements shown in figure 9. Inset shows the critical field vs Tc, as determined from ρ(T, H) and data taken from
reference [11]. Three different fits, using the GL- (dash-dotted line), WHH- (dashed line), and TB model (solid line) are also
shown in the inset. The error bars are determined as the superconducting transition widths ΔTc in the specific-heat data. The
shaded region indicates the upper- and lower Hc2 limits, as determined using the two-band model.

Such discrepancy most likely hints at multiple superconducting gaps in Mo5PB2, as evidenced also by the
positive curvature of Hc2(T) at low fields, a typical feature of multigap superconductors, as e.g., MgB2 [46,
47] or Lu2Fe3Si5 [48]. As shown in figure 10, around Tc/Tc(0) ∼ 0.5 (μ0H ∼ 0.93 T), Hc2(T) undergoes a
clear change in curvature, which coincides with μ0H∗

c2 = 0.96 T of the first superconducting band (see
figure 8). The remarkable agreement of the TB model with the experimental data across the full
temperature range is clearly seen in figure 10, from which we find μ0HTB

c2 (0) = 2.0(2) T and
ξ(0) = 12.8(6) nm. Note that the Tc and μ0Hc2 values of the spurious Mo3P phase [22] are both much
smaller than those of Mo5PB2. Consequently, the two-gap feature of Hc2(T) is intrinsic to Mo5PB2. The
lower critical field μ0Hc1 is related to the magnetic penetration depth λ and the coherence length ξ via
μ0Hc1 = (Φ0/4πλ2)[ln(κ) + 0.5], where κ = λ/ξ is the GL parameter [36]. By using μ0Hc1 = 30.4(4) mT
and μ0Hc2 = 2.0(2) T, the resulting magnetic penetration depth λGL = 122(2) nm, is almost identical
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Figure 11. Normalized specific-heat coefficient γH/γn vs reduced magnetic field H/Hc2(0) for Mo5PB2. At a given applied field,
γH is obtained as the linear extrapolation of C/T vs T2 in the superconducting state to zero temperature (see inset). The dashed
and dash-dotted lines represent the γ(H ) expected for a single-gap model with isotropic or line nodal gap structure, respectively.
The data for the reference samples are adopted from references [49–53].

Figure 12. Representative ZF-μSR spectra in the normal (10 K) and the superconducting state (2 K) of Mo5PB2. Solid lines are
fits to the equation described in the text. None of the datasets shows noticeable changes with temperature.

to the experimental value 121(2) nm determined from TF-μSR data (see section 3.5). A large GL parameter,
κ ∼ 9.5, clearly indicates that Mo5PB2 is a type-II superconductor.

γH vs H. The multigap SC of Mo5PB2 is further confirmed by the field-dependent electronic specific
heat coefficient γH(H). Since the virtual μ0H∗

c2 corresponds to the critical field which suppresses the small
superconducting gap, we expect also γH(H) to change its slope around μ0H∗

c2. The normalized γH/γn

values vs the reduced magnetic field H/Hc2(0) are shown in figure 11 (here γn is the zero-field normal-state
value). Note that, the field dependence of γH/γn measured at 0.4 K exhibits similar features to that
evaluated at zero temperature. For Mo5PB2, γH(H) clearly deviates from the linear field dependence
expected for fully-gapped superconductors with a single gap, as e.g., Re24Nb5 (dashed line) [52, 54], or from
the square-root dependence

√
H (dash-dotted line), expected for nodal superconductors [55, 56]. Instead,

Mo5PB2 exhibits similar features to other well known multigap superconductors, as e.g., FeSe [51], MgB2

[49], or NbSe2 [53]. The γH(H) curve of Mo5PB2 (scatter plot) exhibits a significant change of slope around
H/Hc2(0) ∼ 0.45 (i.e., μ0H ∼ 0.9 T), which is highly consistent with μ0H∗

c2.

3.7. Zero-fieldμSR
We also performed ZF-μSR measurements in both the normal- and the superconducting states of Mo5PB2.
As shown in figure 12, neither coherent oscillations nor fast decays could be identified in the spectra
collected above (12 K) and below Tc (2 K), hence implying the lack of any magnetic order or fluctuations.
The weak muon-spin relaxation in absence of an external magnetic field is mainly due to the randomly
oriented nuclear moments, which can be modeled by a Gaussian Kubo–Toyabe relaxation function,

GKT = [ 1
3 + 2

3 (1 − σ2
ZFt2)e−σ2

ZFt2/2] [31, 57]. Here, σZF is the zero-field Gaussian relaxation rate. The solid
lines in figure 12 represent fits to the data by considering also an additional zero-field Lorentzian relaxation
ΛZF, i.e., AZF(t) = AsGKT e−ΛZFt + Abg. The relaxations in the normal- and the superconducting states are
almost identical, as confirmed by the practically overlapping ZF-μSR spectra above and below Tc.
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Figure 13. (a) Electronic band structure of Mo5PB2, calculated by ignoring the spin–orbit coupling. The various bands which
cross the Fermi level are plotted in different colors. Total- and partial density of states near the Fermi level for (b) different atoms
and (c) the six different bands.

This lack of evidence for an additional μSR relaxation below Tc excludes a possible time-reversal symmetry
breaking in the superconducting state of Mo5PB2.

3.8. Electronic band-structure calculations and discussion
Apart from the zero-field electronic specific heat (see figure 7 and reference [11]), at a microscopic level, the
multigap superconductivity of Mo5PB2 was also probed by field-dependent μSR relaxation σsc(H) in the
superconducting state (figure 8). Macroscopically, further evidence was brought by the
temperature-dependent upper critical field μ0Hc2(T) (figure 10) and the field-dependent electronic specific
heat coefficient γH(H) (figure 11). Our data clearly indicate that Mo5PB2 is a multiband superconductor
with two distinct superconducting gaps, both opening below Tc. Although extraneous phases, such as Mo3P,
might potentially influence the reported results, we found that their influence is negligible (both
qualitatively and quantitatively). Below we show that the multigap SC is also supported by electronic
band-structure calculations.

As can be seen in figure 13, six different bands are identified to cross the Fermi level. Among these,
bands 1 (red-), 2 (green-) and 3 (blue line), all stemming primarily from the Mo 4d orbitals, contribute
significantly to the density of states at the Fermi level (see table 1). We expect the multiband features of
Mo5PB2 to be closely related to the different site symmetries of Mo atoms in the unit cell, namely, Mo1 (4c)
and Mo2 (16l). According to band-structure calculations, the contribution of 16l-Mo atoms to the DOS is
preponderant compared to that of 4c-Mo atoms [see figure 13(b)].The Fermi velocities vF of these bands,

11



New J. Phys. 22 (2020) 093016 T Shang et al

Table 1. Calculated Fermi velocity vF for the different bands near
the Fermi level and the band contributions to the total DOS. Here
vF is in 105 m s−1 units.

Index DOS (%) vF (Γ–X) vF (Γ–Z)

1 19.72 5.82 6.39 — — 7.92
2 42.84 2.59 8.03 3.48 2.61 5.32
3 18.58 — — 5.29 4.43 5.32
4 7.35 — — 2.89 2.10 7.05
5 10.86 — — — — 2.88
6 0.48 — — — — 5.49

Table 2. Normal- and superconducting-state properties of Mo5PB2. The
London penetration depth λL, effective mass m�, carrier density ns, BCS
coherence length ξ0, electronic mean-free path le, Fermi velocity vF, and
effective Fermi temperature TF are also listed.

Property Value (uncert.) Property Value (uncert.)

Tc
a 9.20(2) K μ0Hc2 2.0(2) T

ρ0 41.1(2) μΩ cm μ0H∗
c2 0.96(5) T

ΘR
D 236(5) K ξ(0) 12.8(6) nm

μ0Hc1 30.4(4) mT κ 9.5(5)
μ0HμSR

c1 30.8(6) mT λ0 121(2) nm
γn 22.3(2) mJ mol−1 K−2 λ0

b 99(2) nm
ΘC

D 300(5) K λGL 122(2) nm
ΘC

E 530(5) K λL 54(4) nm
Δ0 (p-wave) (μSR) 1.87(2) meV le 8.4(6) nm
Δ0 (d-wave) (μSR) 1.76(2) meV ξ0 34.2(6) nm
Δ0 (s-wave) (μSR) 1.42(1) meV m� 5.7(5)me

w 0.25 ns 5.9(7) ×1028 m−3

Δf
0 (μSR)c 1.11(2) meV vF 2.3(2) ×105 ms−1

Δs
0 (μSR)c 1.57(1) meV TF 2.1(2) ×104 K

Δf
0(C)c 1.02(2) meV

Δs
0(C)c 1.49(2) meV

aSimilar values were determined via electrical resistivity, magnetic
susceptibility, and heat-capacity measurements.
bDerived from a two-band-model fit to σFLL(H ) at 1.5 K.
cDerived from a two-gap model analysis.

calculated along the Γ–X and Γ–Z directions, are summarized in table 1. Considering also the relative
weights, the average vF is comparable to the experimental value (see table 2).

The deviation of σsc(H) (figure 8) from a single-band model and the appearance of an upward
curvature in the upper critical-field data (figure 10), both reflect the occurrence of two distinct coherence
lengths for two different bands, here leading to distinct upper critical fields. The Ginzburg–Landau
coherence length determined from the upper critical field, ξ(0) =

√
Φ0/(2πHc2), is proportional to the

BCS coherence length ξ0, i.e., ξ(0) = 0.855
√
ξ0le [37]. At zero temperature, the BCS coherence length is also

related to the superconducting energy gap Δ0 and the Fermi velocity vF, i.e., ξ0 = �vF/πΔ0. Therefore, for
a multigap superconductor such as Mo5PB2, vf

F/v
s
F = ξf

0Δ
f
0/ξ

s
0Δ

s
0. According to the zero-field electronic

specific-heat results, Δf
0/Δ

s
0 = 1.02/1.49, while the analysis of σsc(H) with a two-band model yields

ξf (1.5 K) = 18.5(5) nm and ξs(1.5 K) = 13.2(2) nm. Assuming ξf/ξs = ξf
0/ξ

s
0, we find vf

F/v
s
F = 0.95, which

is highly consistent with the theoretical estimates reported in table 1. For instance, along the Γ–Z direction,
the dominant bands (1, 2, and 3) show very similar vF values.

4. Conclusion

In summary, we studied the multigap superconductor Mo5PB2 by means of electrical resistivity,
magnetization, heat capacity, and μSR, as well as via numerical calculations. The temperature dependence
of the zero-field electronic specific heat and superfluid density reveal a nodeless superconductivity, well
described by an isotropic s-wave model. The multigap features, originally inferred from zero-field
specific-heat data are here further supported by the field-dependent electronic specific-heat coefficient and
the superconducting Gaussian relaxation rate, as well as by the temperature dependence of the upper
critical field. The lack of spontaneous magnetic fields below Tc indicates that time-reversal symmetry is
preserved in the superconducting state of Mo5PB2. By combining the extensive experimental results
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presented here with numerical band-structure calculations, we provide solid evidence for the multigap
superconductivity in Mo5PB2.
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