The structural origin of enhanced stability of Na$_{3.32}$Fe$_{2.11}$Ca$_{0.23}$(P$_2$O$_7$)$_2$

cathode for Na-ion batteries

Yumei Liua,b, Zhenguowa, Sylvio Indrisc, Weibo Huac,d,*, Nicola P.M. Casattie, Akhil Tayalf, Mariyam Susana Dewi Darmac, Gongke Wanga, Yuxia Liub, Chunjin Wub, Yao Xiaoa,*, Benhe Zhonga, Xiaodong Guoa,**

a School of Chemical Engineering, Sichuan University, Chengdu 610065, China
b Institute of Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
c State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 China
d Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
e School of Materials Science and Engineering, Henan Normal University, China
f The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China

** Corresponding author: Institute of Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

* Corresponding author: Institute of Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

A R T I C L E I N F O

Keywords:
Sodium-ion cathode
Structural stability
Thermal property
Solid-solution reaction
Electrochemistry
Lattice parameters

A B S T R A C T

The storage of renewable energy depends largely on sustainable technologies such as sodium-ion batteries with high safety, long lifespan, low cost, and non-toxicity. Pyrophosphate Na$_{3.32}$Fe$_{2.11}$Ca$_{0.23}$(P$_2$O$_7$)$_2$ cathode could meet this requirement, however, its structural stability needs to be further enhanced for practical purposes. To overcome this problem, Na-deficient Na$_{3.32}$Fe$_{2.11}$Ca$_{0.23}$(P$_2$O$_7$)$_2$ with exceptional stability is prepared by Ca selective doping in this work. In operando synchrotron-based X-ray diffraction (SXRD) and in situ X-ray absorption near edge spectroscopy (XANES) results reveal that the prepared Na$_{3.32}$Fe$_{2.11}$Ca$_{0.23}$(P$_2$O$_7$)$_2$ is a single-phase solid-solution reaction with high reversibility. A strong correlation between the voltage curve and lattice parameters is delivered for the first time. Additionally, the atomic-doping-engineering strategy could significantly enhance the thermal and electrochemical stability of the electrode materials, contributing to their good structural reversibility and enhanced operational safety. Specifically, after 1000 cycles at 1 C, the Ca doped electrode achieves a high capacity retention of 81.7%, which is much better than that of the un-doped electrode (15.5%). Our work may pave a new avenue for designing safe and low-cost cathode materials for battery applications with long cycle life.

1. Introduction

Due to growing energy shortages, the sustainable storage of new energy sources in large electric energy storage systems (EESs) has been a key issue worldwide [1–3]. The scale of EES equipped with an energy generator far exceeds that of hybrid electric vehicles (HEV) or electric vehicles (EV). Therefore, cost effectiveness and operational safety become the paramount preconditions. Inexpensive sodium ion battery (SIB) is resource-rich, nontoxic, safe, and is one of the best choices for EESs [4–6]. Because of the larger radius ($r_{\text{Na}^+} = 1.02 \text{ Å} > r_{\text{Li}^+} = 0.76 \text{ Å}$) and the higher molar mass ($M_{\text{Na}^+} = 22.99 \text{ g mol}^{-1}$ > $M_{\text{Li}^+} = 6.94 \text{ g mol}^{-1}$) [7], more energy is needed to overcome the diffusion barrier of Na$^+$ in the host, which makes it much difficult to find a suitable host material. So far, the development of new battery technology remains a serious challenge. Numerous attempts have been made to discover the suitable electrode materials, such as NASICON-type Na$_3$V$_2$(PO$_4$)$_3$ [8,9], Na$_{1.8}$Ni$_{0.2}$Mn$_{0.7}$O$_2$ [10,11], Na$_2$M$_2$Fe(CN)$_6$·3H$_2$O [12,13], and Na$_4$M$_3$(PO$_4$)$_2$P$_2$O$_7$ (M = Co, Mn, and Ni, 0 < $\delta < 1, 0 < x < 1, 0 < y < 2$) [14,15]. Nevertheless, their safety, cost, sustainability, and/or performance are the obstacles for large-scale application.

* Corresponding author: Institute of Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
** Corresponding author: School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, China.
E-mail addresses: weibo.hua@uestc.edu.cn, weibo.hua@kit.edu (W. Hua), xiaodong2009@163.com, xiaodong2009@scau.edu.cn (X. Guo).

https://doi.org/10.1016/j.nanoen.2020.105417
Received 17 August 2020; Received in revised form 18 September 2020; Accepted 21 September 2020
Available online 1 October 2020
2211-2855/© 2020 Published by Elsevier Ltd.
Recently, strategic research gradually shifts from the oxides to Fe-based polyanionic compounds. Unfortunately, the reported compounds (NaFePO₄, Na₂FePO₄F, Na₂FeSiO₄, NaFeSO₄F, and Na₂₅₂₋ₓFe₂₋ₓ(SO₄)ₓ) are severely restricted by adverse structure or climate adaptation or thermal stability [16–20]. Especially (SO₄)²⁻ and F⁻ anions are prone to thermal decomposition (350–400 °C) and/or moisture attack [20]. Exposure of PO₄-based systems to high-temperature (500–550 °C) could cause O₂ evolution forming the pyrophosphate [PO₄]²⁻ or [PO₂₋₃] anions. Thus, the advantages of the earth-abundant Fe³⁺/Fe²⁺ redox couple and the thermo-stable pyrophosphate (P₂O₇)⁶⁻ anion can be preferentially deployed to design advanced cathode materials for SIBs [21]. In 2013, Hwang et al. first reported the promising anion can be preferentially deployed to design advanced cathode materials for SIBs [21]. Na₃₃Fe₂SO₄PO₄·xH₂O (NFPO) is a solid-solution reaction. The enhanced structural stability, cycling stability, lattice parameters, and voltage plateaus, is systematically investigated (SXRD) and a good match between the patterns (calculated and observed) in both samples indicates a satisfactory fit. As shown in Fig. 1a, compared with NFPO, almost all reflections in NFPO-Ca move to a lower angle, suggesting a larger unit-cell volume of NFPO-Ca. Rietveld refinement results show that the lattice parameters of the NFPO compound are a = 6.4126 Å, b = 9.3950 Å, c = 10.9809 Å, and V = 569.9982 Å³, respectively, which are smaller than those of NFPO-Ca (a = 6.4536 Å, b = 9.4068 Å, c = 11.0184 Å, and V = 575.9994 Å³). The reason can be ascribed to the lattice expansion with the larger Ca²⁺ substitution (r(Ca²⁺) = 1.0 Å > r(Fe²⁺) = 0.78 Å) [31,32]. The other refined parameters are compared and summarized in Table S1. In addition, the refined result suggests that Ca is site-selectively doping in Fe2 site (Fig. S1b). Fig. 1c shows that the polyhedral units in the NFPO and NFPO-Ca frameworks are similar. FeO₆ octahedra, FeO₈ tetrahedron, and PO₄ group together create the large Na-ion diffusion channels and interstitial spaces. Part of the Na4 sites along the a-axis is occupied by Fe1 atoms, which is called an anti-site defect [31]. In order to further understand the Na⁺ diffusion channels, a bond valence (BV) method was used to elucidate the possible Na⁺ diffusion pathways in each structure [33]. Both samples show that sodium ions preferentially diffuse via two one-dimensional conduction channels (Fig. 1c). The pathway 1 (Na2→Na3→Na2) and pathway 2 (Na1→Na3→Na1) are consistent with the previous theoretical calculations reported by Chen et al. [23]. These two pathways can provide sufficient space for effective and rapid diffusion of Na-ion. The Mössbauer spectrum of NFPO and NFPO-Ca in Fig. 1b were fitted with four doublets, implying four different crystallographic Fe³⁺ sites: Fe1 (occupying Na4 site), Fe4 site (FeO₆, both corner- and corner-sharing mode), Fe2 sites (FeO₆, corner-sharing mode), and Fe3 site (FeO₆, both corner- and edge-sharing modes), as the displayed crystal structure in Fig. 1c. The Fe atoms in two outer doublets are considered to locate in

2. Results and discussions

2.1. Crystal structure

The high-resolution SXRD patterns of both, NFPO and NFPO-Ca, are indexed to a triclinic structure with PI space group (JCPDS No. 83–0225) [23], as can be seen in Fig. S1a. Rietveld refinement was performed using the Na₃₃Fe₂₋ₓPO₄ₓ(P₂O₇)ₓ model, and a good match between the patterns (calculated and observed) in both samples indicates a satisfactory fit. As shown in Fig. 1a, compared with NFPO, almost all reflections in NFPO-Ca move to a lower angle, suggesting a larger unit-cell volume of NFPO-Ca. Rietveld refinement results show that the lattice parameters of the NFPO compound are a = 6.4126 Å, b = 9.3950 Å, c = 10.9809 Å, and V = 569.9982 Å³, respectively, which are smaller than those of NFPO-Ca (a = 6.4536 Å, b = 9.4068 Å, c = 11.0184 Å, and V = 575.9994 Å³). The reason can be ascribed to the lattice expansion with the larger Ca²⁺ substitution (r(Ca²⁺) = 1.0 Å > r(Fe²⁺) = 0.78 Å) [31,32]. The other refined parameters are compared and summarized in Table S1. In addition, the refined result suggests that Ca is site-selectively doping in Fe2 site (Fig. S1b). Fig. 1c shows that the polyhedral units in the NFPO and NFPO-Ca frameworks are similar. FeO₆ octahedra, FeO₈ tetrahedron, and PO₄ group together create the large Na-ion diffusion channels and interstitial spaces. Part of the Na4 sites along the a-axis is occupied by Fe1 atoms, which is called an anti-site defect [31]. In order to further understand the Na⁺ diffusion channels, a bond valence (BV) method was used to elucidate the possible Na⁺ diffusion pathways in each structure [33]. Both samples show that sodium ions preferentially diffuse via two one-dimensional conduction channels (Fig. 1c). The pathway 1 (Na2→Na3→Na2) and pathway 2 (Na1→Na3→Na1) are consistent with the previous theoretical calculations reported by Chen et al. [23]. These two pathways can provide sufficient space for effective and rapid diffusion of Na-ion. The Mössbauer spectrum of NFPO and NFPO-Ca in Fig. 1b were fitted with four doublets, implying four different crystallographic Fe³⁺ sites: Fe1 (occupying Na4 site), Fe4 site (FeO₆, both corner- and corner-sharing mode), Fe2 sites (FeO₆, corner-sharing mode), and Fe3 site (FeO₆, both corner- and edge-sharing modes), as the displayed crystal structure in Fig. 1c. The Fe atoms in two outer doublets are considered to locate in

![Fig. 1. Structural analysis of NFPO and NFPO-Ca. a) Rietveld refinement against the powder XRD patterns (λ = 0.4931 Å) demonstrating Ca site-selectively doping in Fe2 site; b) Four different Fe sites evidenced by four fitted Fe³⁺ doublets (yellow, green, blue and purple areas) and Fe⁴⁺ species (red areas) in Mössbauer spectrum of two samples, showing the reduction in FeO₄ (green) of NFPO-Ca; c) Crystal structure of NFPO and NFPO-Ca with different polyhedrons FeO₆ (green), FeO₃ (green), and PO₄ (purple), displaying two similar possible pathways of sodium-ions in respective crystal structures.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image)
two different octahedral environments (FeO₆ octahedra) [31]. In these two compounds, although the structural isomorphism is retained, NFPO-Ca still causes a decrease in the green doublet area. The reduction of FeO₆ (green area) indicates that Ca preferentially occupies its Fe site [31]. Furthermore, there are two different Fe sites (Fe2 and Fe3) in their respective FeO₆ octahedra, and which Fe site could be occupied by Ca depends on the connection between P₂O₇ and FeO₆. The crystal structures show that Fe₃₋₀₋₇ octahedron connects P₂O₇ unit through the corner- and edge-sharing configuration, but Fe₂ octahedron has only corner-sharing mode. The latter combination has smaller stereo hindrance, so Ca is more likely to occupy Fe₂ site. This result is in good agreement with the refinement results, see Fig. S1b. According to the values of isomer shift (IS) and quadrupole splitting (QS) (Table S2), the Fe²⁺ percentage of two compounds in a high-spin state is about 88%. More importantly, it is further disclosed that the appearance of trivalent Fe is the main charge compensation to maintain the electrical neutrality.

As shown in Fig. S2a, b, both compounds are composed of particles with micro-size and irregular granular shape, and a larger average particle size is obtained in NFPO-Ca. The high-resolution transmission electron microscopy (HRTEM) images with obvious lattice fringes are displayed in NFPO and NFPO-Ca compounds (Fig. S2c, d). The clear lattice fringes of (0 0 1) plane in NFPO and (0 1 1) plane in NFPO-Ca correspond to the interplanar spacing of around 0.751(2) nm and 0.826(2) nm, respectively. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) results in Table S3 demonstrate that the elemental ratio of Na, Fe, and Ca is in good accordance with the desired value (Na : Fe : Ca = 3.32 : 2.01 : 0.23). The EDS-mapping images show a uniform distribution of elements Na, Fe, P, O, Ca, C, N (Fig. S2g). X-ray photoelectron spectroscopy (XPS) (Fig. S3b) illustrates two different Fe sites (Fe2 and Fe3) in both powders [24], clarifying that Ca³⁺ incorporation does not affect the valence of Fe²⁺, as demonstrated in the Mössbauer spectrum. Moreover, in situ XANES characterization also confirms that +2 is the main valence of Fe in NFPO-Ca electrode before charging, which will be discussed later. The observation of spin-orbital of Ca²⁺ (at around 347.2 eV and 350.9 eV) directly confirms its successful presence in Na₃₋₀₋₇Fe₂₋₀₋₇(P₂O₇)₂ (Fig. S3d) [34]. Moreover, no obvious differences in binding energy are found in the spectra of Na 1s and P 2p (Fig. S3e, f), which indicates that the bonding of Na and P in two compounds are similar. Fourier transform infrared (FT-IR) spectroscopy shows similar stretching and bending modes of (P₂O₇)²⁻ ligands in both compounds (Fig. S4a). The main characteristic vibration of (P₂O₇)²⁻ group is between 1300 and 400 cm⁻¹, with a narrow but multiple vibration modes [35]. Accordingly, three distinct band regions are assigned to the vibrations of P–O (950–1300 cm⁻¹), P–O–P (700–958 cm⁻¹), and O–P–O (400–680 cm⁻¹). Raman spectrum exhibits two predominant vibrational bands at approximately 1350 cm⁻¹ (D band) and 1580 cm⁻¹ (G bands) (carbon specie is from the decomposition oxalate) in Fig. S4b [35]. The intensity ratio (I₅₀/I₁₀) of D band and G band in NFPO and NFPO-Ca are 1.10 and 1.00, respectively, indicating a relatively high graphitization degree in NFPO-Ca. Overall, Ca incorporation does not cause difference in terms of Na bonding, Fe valence, and (P₂O₇)²⁻ group.

2.2. Electrochemical properties

The galvanostatic charge and discharge profiles of NFPO and NFPO-Ca were tested at 1.5–4.15 V (1 C = 110 mA g⁻¹). Two phenomena should be noticed when comparing the electrochemical behaviors. One is the potential drop (Fig. 2a and Fig. S5a) between the first and subsequent charged curves; the other is the whole or partial absence of plateau at around 2.5 V (Fig. 2a and Fig. S5a). Potential drop in NFPO-Ca could originate from Fe irreversibly migrating and occupying the empty Na sites in the first charge. Such behavior alters the site occupancies of Na and Fe, leading to a lower voltage in subsequent cycles [36]. Similar cases also occurred in many Fe-based polyanionic materials, like LiₓFeP₂O₇ (0.07 V drop) and LiₓFeSiO₄ (0.3 V drop). Li/Fe structural disorder or phase transition during the first charged state is responsible for their potential drops [36]. However, the reason for the absence of 2.5 V plateau in this pyrophosphate material is not clear. To bring new insight, the cell test was started with the pre-discharge step (Fig. 2b and

![Graph](image-url)

Fig. 2. Electrochemical performance of NFPO and NFPO-Ca electrodes. a, b) Galvanostatic charge and discharge profiles of NFPO-Ca at 0.1 C between 1.5 V and 4.15 V, starting a) without and b) with pre-discharge; c) Cycling performance of two cathodes at 1 C.
Fig. 5S(a). The results show that the discharge capacity during the pre-discharge is around 10 mAh g⁻¹. Furthermore, the charging curves clearly deliver a complete plateau at 2.5 V in all cycles. The pre-discharge serves to first fill the initial Na vacancies, thereby eliminating the influence of Na vacancy defects in subsequent cycles [37].

Obviously, eliminating the Na vacancies in the original structure could restore the 2.5 V plateau and avoid the potential drop (Fig. 2b and Fig. 5S(a)). These Na vacancies should be interpreted as the spontaneous extraction of Na⁺ under the condition that the composite reacts with moisture in the atmosphere. And this reaction tends to occur when the target product is obtained by ball-milling and annealing treatment [37]. To further understand the effect of Ca substitution, the differential plot of galvanostatic test (dQ/dV) is depicted in Fig. 5Sd. In addition, the marked areas in dQ/dV profiles are enlarged (Fig. 5Se). A smaller voltage drop in NFPO-Ca (ΔV = 0.011 V) than NFPO (ΔV = 0.025 V) indicates its superior structural stability and better reversibility during cycles. Interestingly, dQ/dV profiles between two samples are also different. Compared to NFPO, the 2.5 V plateau in NFPO-Ca remains almost unchanged, while the 3.0 V plateau evidently splits into two peaks at around 2.9 V and 3.12 V. The single-phase reaction in NFPO was reported [23], whereas the electrochemical behavior in NFPO-Ca seems to induce a phase transition at 3.0 V. In situ SXRD was conducted to further understand its reaction mechanism, see the discussion below.

The rate capabilities of two electrodes are shown in Fig. 5Sb, the initial discharge capacities of NFPO and NFPO-Ca exhibit about 81 and 100 mAh g⁻¹ at 0.1 C, respectively. And even at 20 C, NFPO-Ca can still deliver 56 mAh g⁻¹, which is about two times higher than NFPO (29 mAh g⁻¹). Superior rate capability curves of NFPO-Ca than those of NFPO are presented in Fig. 5S6. Clearly, the inert Ca²⁺ doping benefits the rate capabilities without the expense of initial capacity fade. The better rate performance in NFPO-Ca can be ascribed to the enhanced charge transfer capability in NFPO-Ca. As shown in the EIS result (Fig. S7 and Table S5), for the fresh electrodes, NFPO-Ca shows a smaller Rct value (130.5 Ω) than NFPO (215.9 Ω). This result suggests an improved electronic conductivity and enhanced electrochemical reaction kinetics in NFPO-Ca. Moreover, Ca substitution can also enhance Na⁺ diffusion capability due to an expanding lattice volume (see GITT results below). These favorable characteristics contribute to a better rate performance in the NFPO-Ca cathode. Notably, when cycling at 1 C (Fig. 2c), compared to NFPO, NFPO-Ca shows remarkable improvement in the cycling stability, with an impressive capacity retention of 81.7% over 1000 cycles and high Coulombic efficiencies (>99%) for all cycles. By contrast, the NFPO electrode exhibits much lower capacity retention of 15.5% at the end of 1000 cycles. To get more prolonged cycling information, the electrodes are tested over 2000 cycles at 5 C, showing that the capacity retention of NFPO-Ca (82.4%) is higher than that of NFPO (49.1%) in Fig. S5f. High temperature cycling is also an indispensable concern to evaluate the structural stability and operational safety. At 50 °C, the cycling durability of NFPO-Ca is significantly improved compared to NFPO (Fig. S5c). In detail, the NFPO-Ca cathode clearly shows high capacity retention of 91.9% over 200 cycles, while the capacity of NFPO after 120 cycles dramatically decreases. Here, the delivered capacity at 1 C is higher than the one evaluated at ambient temperature, illustrating that NFPO is a thermo-sensitive material. But its structure could be effectively stabilized with Ca doping, which is further verified by studying the thermal behaviors of the charged electrodes using high-temperature XRD, see below.

To further comprehend the practicability, the pyrophosphate NFPO-Ca electrode was fabricated into full cells using our home-made anode compound (NTO) as the counterpart (Fig. S5g-j) [38]. The NTO anode consists of two compounds, including Na₂Ti₆O₁₇ and Na₂Ti₄O₁₁. The full cell NFPO-Ca/NTO delivers a reversible capacity of ~ 80 mAh g⁻¹ with an operating voltage of ~ 2.3 V at 0.1 C (based on the NFPO-Ca cathode mass). After 200 cycles at 2 C, the full cell achieves the capacity retention of up to ~ 76% and a high Coulombic efficiency of above 99%.

Based on the high safety and sustainability of pyrophosphate, it could be expected to be a suitable alternative in future energy storage.

2.3. Reversibility and Na-ion dynamics

To explore the reversibility of electrodes with/without doping ion, cyclic voltammetry (CV) measurements were conducted at multiple scan rates. Two electrodes distinctly display two pairs of redox peaks, corresponding to the successive electrochemical reaction processes (Fig. S9). As the scan rate increases, the cathodic peaks in both electrodes consistently shift toward higher potentials and the anodic peaks shift oppositely. However, compared to the NFPO electrode, the potential difference of the NFPO-Ca electrode is lower, and its CV curve is more symmetrical. This phenomenon suggests smaller potential polarization and higher electrochemical reversibility in NFPO-Ca. Sodium ion diffusion coefficients (D₉Na⁺) are calculated from the initial GITT profiles (Fig. S10a,b). Overall, the variation trends of D₉Na⁺ in both compounds are similar, consistent with reported results [23]. Basically, D₉Na⁺ values show a continuous drop during charging, and a visible fluctuation of diffusion coefficients during discharging (Fig. S10c,f). The inserts of Fig. S10e and f are the magnifications of D₉Na⁺ values in two samples. In NFPO-Ca, D₉Na⁺ values vary from 10⁻¹⁰ to 10⁻¹⁴ cm² s⁻¹, which are basically higher than those in NFPO as a whole. Hence, better electrochemical properties could be expected by rationally designing the structure with doping ions.

2.4. Operational risk evaluation

A charged cathode during battery operation may cause potential safety risk, such as overheating, self-decomposition, and oxygen evolution. The key to knowing the operational safety of any cathode is to study the thermal behavior of the charged cathode [39,40]. In situ high-temperature XRD patterns (Fig. 3a) shows that the triclinic reflections in the XRD diffraction patterns of the highly charged NFPO (Na₃ₓ₋₂ₓFe₂ₓ₋₄ₓO₇₋ₓ)(OH)₂, 0 < x ≤ 1) can be retained up to 400 °C. New reflections such as T01, 2T2 and 022 indexing to α-NaFeP₂O₇ appear at around 450 °C [40]. Further heating to 600 °C, the starting component Na₃ₓ₋₂ₓFe₂ₓ₋₄ₓO₇₋ₓ gradually converts to α-NaFeP₂O₇. This observation demonstrates that at temperatures > 450 °C, the desodiated Na₃₋ₓ₋₂ₓFe₂₋ₓ₋₄ₓO₇₋ₓ cathode experiences an irreversible transition from triclinic phase (P1) to monoclinic phase (P2) (Fig. 3b), as shown in the following equation:

\[\text{Na}_{3-x-2x}\text{Fe}_{2-x-4x}\text{O}_7 \xrightarrow{x=0\text{°C}} \text{NaFe}_6\text{P}_2\text{O}_7 + \text{Na}_{3-2x}\text{Fe}_{1.34}^{m+n}\text{P}_2\text{O}_7 \quad (0 < x \leq 1) \]

Excitingly, the phase transition in the charged NFPO-Ca (Na₃₋ₓ₋₂ₓFe₂₋ₓ₋₄ₓO₇₋ₓ, 0 < x ≤ 1) occurs at a higher temperature of around 500 °C, as shown in Fig. 3a. This result provides direct evidence that NFPO-Ca has better thermal stability than NFPO, which in turn reflects the structural superiority of NFPO-Ca as the reason for its long cycle life. Unlike the (PO₄)³⁻ anions, (P₂O₇)⁴⁻ anions will not thermally decompose and/or release oxygen until 600 °C, demonstrating better safety than phosphate (PO₄)³⁻ anions [40]. With the incorporation of Ca, the thermal stability of NFPO-Ca was enhanced. These two factors establish NFPO-Ca as a safe cathode candidate for future economic sodium-ion batteries. The safety advantage of NFPO-Ca can outperform other cathodes (see Table 1).

3. Mechanisms on structural stability in NFPO-Ca

3.1. Mechanism of sodium-ion storage

Phase evolutions can be identified by CV curves at low scan rates
When lowering the scan rate to 0.05 mV s\(^{-1}\), NFPO-Ca exhibits a stronger peak splitting at 3.0 V (Fig. S11a). This redox reaction is more likely to be identified as two-phase reaction based on previous reports [44]. While Chen et al. reported the formation of solid solution phase in Na\(_{3.42}\)Fe\(_{2.32}\)(P\(_2\)O\(_7\))\(_2\) (0 < x ≤ 1) [23]. In addition, it still remains unclear whether the absence of the 2.5 V plateau affects the structural stability. Hence, to determine the phase evolution and charge compensation mechanism of NFPO-Ca, in situ SXRD and in situ XANES were performed at MS beamline, (Swiss Light Source, Switzerland), and at P64 beamline (PETRA III, Germany), respectively.

![Fig. 3. Thermal stability and phase evolution. a) In situ high-temperature XRD patterns of two charged cathodes, showing the phase transition from triclinic phase to monoclinic NaFeP\(_2\)O\(_7\) occurring at higher temperature in NFPO-Ca; b) Structural crystals before and after phase transition with FeO\(_6\)/FeO\(_4\) polyhedral (green) and PO\(_4\) tetrahedra (purple).](image)

<table>
<thead>
<tr>
<th>Electrode Material</th>
<th>Transition temperature (°C)</th>
<th>Charged State (V)</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na({3.32-x})Fe({2.11})Ca(_{0.23})(P(_2)O(_7))(_2) (0 < x ≤ 1)</td>
<td>500</td>
<td>4.15</td>
<td>Present study</td>
</tr>
<tr>
<td>Na({3.32-x})Fe({2.34})(P(_2)O(_7))(_2) (0 < x ≤ 1)</td>
<td>450</td>
<td>4.15</td>
<td>Present study</td>
</tr>
<tr>
<td>Na({0.75})Mn({0.25})Fe(_{2})O(_6) (δ ≅ 0.67)</td>
<td>100</td>
<td>4.3</td>
<td>[29]</td>
</tr>
<tr>
<td>Li(_2)FePO(_4) (0 < x ≤ 1)</td>
<td>250–390</td>
<td>Oxidized by NO(_2)BF(_4)</td>
<td>[41]</td>
</tr>
<tr>
<td>Li({0.23})N({0.50})–Mn(_{0.32})P(_2)O(_7) (x = 0, 0.1, 0.2)</td>
<td>215, 190, 169</td>
<td>4.34, 4.21, 4.15</td>
<td>[42]</td>
</tr>
<tr>
<td>P2–Na(_2)CoO(_2)</td>
<td>100</td>
<td>4.3</td>
<td>[43]</td>
</tr>
</tbody>
</table>

When lowering the scan rate to 0.05 mV s\(^{-1}\), NFPO-Ca exhibits a stronger peak splitting at 3.0 V (Fig. S11a). This redox reaction is more likely to be identified as two-phase reaction based on previous reports [44]. While Chen et al. reported the formation of solid solution phase in Na\(_{3.42}\)Fe\(_{2.32}\)(P\(_2\)O\(_7\))\(_2\) (0 < x ≤ 1) [23]. In addition, it still remains unclear whether the absence of the 2.5 V plateau affects the structural stability. Hence, to determine the phase evolution and charge compensation mechanism of NFPO-Ca, in situ SXRD and in situ XANES were performed at MS beamline, (Swiss Light Source, Switzerland), and at P64 beamline (PETRA III, Germany), respectively.

The in situ SXRD patterns are displayed in Fig. 4a. The structural evolution of NFPO-Ca mainly presents as apparent reflections shift, and no reflections disappear or new reflections occur during the first cycle. These results reveal that NFPO-Ca experiences a single-phase transition in the process of sodium-ions intercalation and de-intercalation. During charging, the pair of reflections \(10\overline{2}/12\overline{2}\) tends to merge and split again at approximately 3.0 V and 3.25 V, respectively, and vice versa during discharging. The positions of the reflections merging and splitting are basically consistent with the splitting potentials at the CV curve and the \(d^Q/dV\) profile. Peak splitting might be ascribed to the respective voltage locations of different Fe sites. The octahedral FeO\(_6\) (Fe\(_{2}\) site) with edge-sharing configuration generates a higher potential at 3.12 V compared to the corner-sharing mode [19,31]. Furthermore, clear structural evolution (2\(\theta\) = 9.4 ~ 11.8\(^{\circ}\)) occurs continuously and can be reversibly back to the original phase in a cycle, as reflected by in situ SXRD pattern in Fig. S11b. Regarding the whole process, including the first cycle, and the second charge segment, a good preservation of crystal structure is evident, which indicates an excellent reversible sodium-ion intercalation/de-intercalation process. The continuous symmetrical peak evolution could be attributed to the continuous changes in lattice parameters during cycling, see the later section. Moreover, this symmetrical transition indicates a small structural distortion, implying a stable framework of NFPO-Ca. In addition, the in situ SXRD pattern of the second charge at around 2.5 V shows a good recovery to the original state. This observation reveals that the absence of the 2.5 V plateau does not affect
the structural stability of the solid-solution framework. These in situ SXRD patterns consist of more than 300 data sets that track a clear and continuous process of the ongoing reaction in NFPO-Ca. And the ex situ XRD pattern of NFPO-Ca also shows no obvious change after 5 and 20 cycles (Fig. S12). Therefore, it can be believed that the sodium-ion storage mechanism in NFPO-Ca is still a solid-solution reaction, similar to that in NFPO. Furthermore, the absence of the plateau at 2.5 V (Fig. S12) indicates that NFPO-Ca is a good host framework for reversible Na+ insertion.

The pyrophosphate NFPO-Ca material shows a reversible sodium-(de)intercalation process involving Fe3+/Fe2+ redox activity, mainly centering at around 3.0 V (vs. Na/Na+, Fig. 4b). The sloped voltage curve in Fig. 4b also illustrates a single-phase redox mechanism. Except for the first charge profile, a very narrow sloped voltage gap is observed between the charging and discharging stages in NFPO-Ca. This indicates that NFPO-Ca is a good host framework for reversible Na+ (de)insertion. The difference from the first charge may be due to the irreversible local structure change upon Na+ extraction. In situ XANES spectroscopy provides the possibility to understand the valence state changes in Fe in ongoing reactions. As shown in Fig. 4c, for the charge, the Fe K-edge spectra of NFPO-Ca gradually shifts to a higher energy, illustrating the reaction of Fe2+ → Fe3+ + e− [45]. Regarding the discharge, it basically returns to the lower energy position of Fe K-edge in the original path. The difference in the shape of K-edge spectra between charging and discharging can be ascribed as the changes of local structure [46]. It is worth noting that the valence state of Fe3+ ions increases rapidly from ~ +2 to ~ +3 when the voltage increases from ~ 2.85 V to ~ 3.25 V. This indicates that the repulsive force between Fe(III) cations is strongly related to the potential at 3.12 V.

3.2. Lattice parameters variation during the cycle

As presented in Fig. 5a and Fig. S13, the symmetrical evolution of in situ SXRD reflections indicates the symmetric variation of cell parameters in NFPO-Ca. The value of lattice parameter a evolves in a “V” shape, where the initial a value (~ 6.461 Å) continuously reduces to ~ 6.351 Å during charging, and returns to the original state in the reverse direction during discharging. Similar evolution trends are also observed in the parameters b and c (Fig. S13). The values of a and b start from ~ 64.5° and ~ 85.7°, and end at ~ 62.7° and ~ 83.3° in the charged state. The c value curve basically appears as “M” shape, first rising to ~ 11.075 Å and then falling to 11.060 Å. A symmetrical distribution of c value during discharging is displayed, thus forming an “M” shape. In contrast, the trajectory of c value exhibits a distorted “W” shape, with a minimum value of ~ 72.4° at the boundary between charge and discharge.

Very interestingly, for the first time, it is deciphered that the fluctuant b values are closely correlated to the voltage curves. Furthermore, b value also corresponds to the Na content or specific capacity in the NFPO-Ca cathode during cycling. During charging, a segment with peak value of b (~ 9.428 Å) appears in the range of 2.9 V ~ 3.12 V. This voltage region closely matches the locations of the two split voltage peaks in the dQ/dV plot of NFPO-Ca (Fig. S5d). Before and after this segment, the initial b value (9.405 Å) first increases to the plateau value, and then drops to its trough value (~ 9.418 Å) at ~ 3.5 V. After that, the b value again increases rapidly, peaking at 9.447 Å at the end of charging. During discharging, the b value shifts back in a reversible way. At the beginning, the value of b drops rapidly and reaches a plateau (b ≈ 9.424 Å), where the voltage range (3.11 ~ 2.95 V) approximately corresponds to the position of the two split peaks (Fig. S5d). Thereafter, b increases to a peak value (~ 9.431 Å) at 2.9 V and then rapidly drops to its minimum value at the end of the first discharge. Overall, the path of b
value during charging/discharging looks like “multiple rolling hills”. The b value is highly correlated to the voltage curve, and the effect of b value could be further extended to the winding Na-diffusion path that roughly parallel to the a axis, as reflected by the fluctuation of ΔDq in Fig. S10e, f and previous report [23]. Another aspect to note is that the symmetry of the b-value curve is not as good as other curves (a, c, α, β, γ, and V). The reason could be a small amount of Fe migrating to the sodium site, altering the electrostatic repulsion force during charging. This change therefore causes a slight change in the sodium-ion diffusion paths and the lattice parameter b is more sensitive to this change. The calculated volume changes (ΔV) during the first charge and discharge are only 2.5% and 3.0%. Since the cut-off voltage of 1.5 V during discharge is lower than the open-circuit voltage (OCV) above 2.5 V, which means that more sodium ions would be inserted back to the framework. Therefore, the volume shrinkage (ΔV = 2.5%) during charging is lower than the volume expansion (ΔV = 3.0%) during discharging. In short, such a small change in the sodium (de)intercalation in the framework could contribute to a long cycle life of NFPO-Ca.

Figure 5b shows four typical structural models with different states, which can be representative for a typical solid solution reaction during the first cycle. Na vacancy, which is also found in the pristine state at ~2.7 V, could be used to indicate the capacity/voltage plateau. Upon charging, Na vacancy is increasing to the maximum at 4.15 V and the bond length of Fe-O (RFe-O) reaches the smallest value. Obviously, similar values of Na vacancy and RFe-O can be seen when NFPO-Ca discharges to 2.7 V. With further discharge to 1.5 V, more Na ions are inserted and the RFe-O value becomes larger. The change in RFe-O value is supposed to be related to the variation of Fe valence and Na vacancy. The strong correlation between Na vacancy and lattice parameter b can be ascribed to Na-ion diffusion pathway (i.e. parallel to the b-axis).

4. Conclusion

Through Ca site-selective doping, a superior thermal and electrochemical stability has been achieved in NFPO-Ca. The structural superiority offered by Ca doping contributes to a long cycle life, where NFPO-Ca delivers capacity retentions of 81.7% after 1000 cycles at 1 C. Both the charged state electrodes have undergone a thermal phase transition from triclinic (P1) to monoclinic (P2_1/c) phase, but the charged NaN_{3.32}. $xFe_{2.11}Ca_{0.25}(P_2O_7)_2$ $(0 < x \leq 1)$ has better thermal stability than the pristine material.

Furthermore, the complementary relationship between structure, safety, and electrochemical performance of these cathode materials are investigated in detail. The redox mechanism of NFPO-Ca is found to be an ideal solid-solution process. Interestingly, the voltage curve is highly correlated to the variable lattice parameter b value, as reflected by the potential plateaus corresponding to different b value regions. More importantly, the lattice parameter b can also be used as a sensitive indicator of Na content or specific capacity in the electrode materials during cycling. This underlying regulation of b-value and voltage plateau as well as Na content may provide an opportunity to understand the changes in voltage plateaus and specific capacities associated with other systems and the rationale behind. This work pioneers an effective strategy for designing electrode materials that could be extended to other energy materials to prolong battery life and improve operational safety.

CRediT authorship contribution statement

Yumei Liu conceived the idea and oversaw the project. Zhenguo Wu, Sylvio Indris, Weibo Hua interpreted and discussed the data. The experimental data were measured and analysed by Yumei Liu, Sylvio Indris, Weibo Hua, Nicola P. M. Casati, Akhil Tayal, Mariyam Susana Dewi Darma, Gongke Wang, Yuxia Liu, Chunjin Wu, Yao Xiao, Benhe Zhong, and Xiaodong Guo. Yumei Liu, Weibo Hua, and Xiaodong Guo wrote the article. All authors contributed to critical review of the manuscript and have given approval to this final draft.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21878195, 21805198, 21805018), the National Key...
Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.nanoen.2020.105417.

References

Yumei Liu is currently a Ph.D. student in the School of Chemical Engineering at Sichuan University, and she is also a visiting scholar at School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. Her research mainly focuses on Fe-based polyanionic electrode materials for sodium-ion batteries.

Dr. Zhenguo Wu obtained his Ph.D. (2016) from the Sichuan University with Prof. Ben-He Zhong. He is currently an associate researcher at Sichuan University. His research interests include the development of advanced energy materials for lithium-ion and sodium batteries.

Dr. Sylvio Indris is a group leader in the Institute for Applied Materials – Energy Storage Systems (IAM-ESS) at Karlsruhe Institute of Technology (KIT). He received his Ph.D in Physical Chemistry and Electrochemistry from Hannover University in 2001. Then he worked as post-doc at State University of New York at Stony Brook (SUNYSB) and subsequently he was head of a young-investigator group in the Institute of Nanotechnology (INT) of KIT. Sylvio Indris is working on electrode and electrolyte materials for Li-ion batteries with a focus on the elucidation of the fundamental electrochemical reaction mechanisms.

Dr. Weibo Hua is currently a postdoctoral fellow at Karlsruhe Institute of Technology (KIT, Germany) and University of Electronic Science and Technology of China (UESTC). He received his Ph.D. (2019) in Chemistry from KIT and his M.S. (2015) in Chemical Technique from Sichuan University (China). His research interests focus on the scale-up of synthesis methods, the development of advanced electrode materials for Li/Na-ion batteries, and the comprehensive understanding of the intrinsic correlation between the preparation, structure, and performance in these materials. He has a particular interest in synchrotron/neutron-based diffraction and spectroscopic techniques.

Dr. Nicola Casati received his Ph.D. degree in Chemistry in 2005 from the University of Milan. He is the head of the Material Science group at the Paul Scherrer Institute, operating the Materials Science beamline at the Swiss Light Source. With his group he helps designing, performing and understanding complex in situ and operando diffraction experiments on a range of materials, developing the technique and the relative instrumentation. His scientific interest is in mechanically driven chemistry.

Dr. Akhil Tayal currently holds a beamline scientist position at the P64 beamline, Deutsches Elektronen-Synchrotron, Hamburg, Germany. He received his Ph.D. in 2015 for improving the magnetic properties and thermal stability of transition metal nitride thin films. His current research interest encompasses developing the metal nanoparticle catalyst’s performance and stability for the three-way catalytic application. He is also interested in advancing experimental and analytical methods using X-ray absorption spectroscopy (XAFS). Since 2011, he employed the XAFS technique on diverse research topics such as actinide chemistry, functional materials, and transition metal nitrides thin films.

Dr. Mariyam Susana Dewi Darma is currently a research scientist at the Helmholtz Institute Ulm (HIU)-Electrochemical Energy Storage, Germany. She has investigated degradation mechanisms of various type of commercial Li-ion batteries through post-mortem analysis since 2012, employing various techniques including in-situ X-ray Diffraction and electrochemical cycling. Expanding her research interest, she started collaboration in the field of battery modelling since 2018, to shed more light into cell performance under different stress factors.
Dr. Gongke Wang received his PhD degree in physical chemistry in 2012 June at Henan Normal University. He is a professor at school of materials science and engineering in the same university. His research interests include the properties of micro-/nanointerfaces, function and properties of nanomaterials, and biosensor based on nanoparticles self-assembled. In 2012 August, he was presented “the Travel Grant for Asian Young Scientists” in the 15th international congress of thermal analysis and calorimetry in Osaka of Japan. At present, he has co-authored more than 60 research papers in his related research fields.

Dr. Yuxia Liu is currently the associate professor at the Qufu normal university. She got the master degree from Qufu normal university and the doctoral degree from Shandong University. Recently, she studies as the visiting professor in University of Waterloo. She is interested in the studies molecular mechanism and energy storage. She got the natural science fund of China and natural science fund of Shandong province.

Dr. Chunjin Wu is currently a post-doctor research scholar at Korea Institute of Materials Science (KIMS)-Composite Materials Division, Korea. He has started to work on the electrochemical ion energy storage research since 2016. To broaden his research interest, he has devoted to the study of fiber-shaped strain sensors since 2019. In the near future, he would engage in the flexible fiber electrochemical energy storage field.

Prof. Benhe Zhong obtained her bachelor’s degree (1955) from Chengdu institute of technology (Chengdu university of science and technology in the past, integrated into sichuan university). She is a distinguished professor of Sichuan university and a top scientist in the field of phosphorus chemical engineering. She has conducted studies on the basic and industrialization for clean processing and comprehensive utilization of phosphorus resources for about 60 years and gained series of major achievements. In recent years, her research interests involve the development of advanced energy materials and electrodes for lithium-ion batteries, sodium-ion batteries and lithium-sulphur batteries.

Dr. Yao Xiao received his Ph.D. degree from Sichuan University in 2019. He was a visiting scholar at Institute of Chemistry, Chinese Academy of Sciences (ICCAS) from 2016 to 2019. He is currently a postdoctoral fellow at the School of Materials Science and Engineering, Nanyang Technological University, Singapore. His research focuses on nanostructured electrode materials for advanced lithium-ion and sodium-ion batteries.

Dr. Xiaodong Guo is currently a professor in the School of Chemical Engineering at Sichuan University, and a visiting professor in university of Wollongong of Australia. He hosted National Natural youth projects, Surface project, Sichuan Science and Technology Support Plan, enterprise horizontal projects, etc, and participated in 863 national projects, National Key R&D Program of China, etc. He has published over 100 papers in Angew. Chem., Int. Ed., Adv. Mater., Adv. Energy. Mater and Adv. Sci. etc. as the first author/Corresponding author.