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ABSTRACT

The emergence of new high brilliance and high coherence facilities such as X-ray Free Electron Lasers (XFELs)
and 4th generation synchrotrons open a new era in X-ray optics. Dynamical diffraction effects before disregarded
are starting to play a role in the beam control of large scale facilities. In the case of XFEL facilities the temporal
characteristics of the dynamical diffraction by thin perfect crystals can be used as a tool to generate femtosecond
monochromatic pulses, in the case of self-seeding in the hard X-ray regime, but could even be used as method to
characterize materials in this temporal range. In this contribution we present the first steps in the understanding
of the spatial-displacement dependence of forward beams diffracted by thin crystals. The data collected by this
technique is compared with crystal models based in dynamical diffraction theory. This type of study could open
a new field to understand low strain materials in the femtosecond regime.
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1. INTRODUCTION

With the proliferation of new high brilliant sources as X-ray Free Electron Lasers (XFEL) and 4th synchrotron
ring sources a new range of X-rays physics is opening.1,2 The transversal and longitudinal coherence are starting
to play a role in the design of X-ray optics for these new sources. The high coherence couples with the perfection
of the crystals commonly used as optics to collimate, attenuate, monochromatize or diagnose the X-ray beams.
Dynamical diffraction effects have been previously studied as temporal independent effects, so called standing
waves, in perfect crystals. The new sources, and in particular XFEL facilities, reveal the temporal length of these
processes. This is of particular interest at XFELs, where the dynamical diffraction length in thin perfect crystals
is of the order of the femtosecond or even the hundreds of attoseconds. This temporal dependence relates to the
energy of the X-rays and crystal parameters such as chemical composition, thickness or crystal cut.

Conventionally XFELs present X-ray bandwidth of the order of 10 to 30 eV due to the self-amplified spon-
taneous Emission (SASE) process which generates the radiation. This bandwidth depends on the stochastic
shot-to-shot noise of the machine. To improve the energy resolution the use of a monochromator in between un-
dulartor sections, the so called Self-Seeding (SS), was proposed.3 A particular case is forward SS, first proposed
by Geloni and co-workers.4 Forward beam SS is a dynamical diffraction based technique, that uses thin perfect
diamond crystals as temporal monochromators. SS has shown to be able to reduce the bandwidth to 1 eV ,
similar to the case of Si (111) monochromator, and improves stability shot-to-shot. SS has been implemented
at different XFELs sources and is under commissioning at the European XFEL.5

Thin single crystals are not only used at hard XFEL facilities for self-seeding, but also for many different
X-ray diagnostics and X-ray optics instrumentation such as spectrometers, monochromators or attenuators. In
particular, in the case of spectrometers and monochromators the effects of dynamical diffraction can disturb the
propagation of the X-ray beam. But even in the case of the attenuators, for some specific energies and surface
orientations, non symmetric Laue reflections in could be excited.6
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Figure 1. Sketch of the diffraction geometry from a thin crystal for both (a) Bragg and (b) Laue co-planar geometry.
The reciprocal lattice vector H and the surface normal n, are represented in black. The crystal of thickness τ is indicated
with a bounded black line. The diffraction planes of spacing d are represented with stripes parallel lines. The wave vector
of the incident and transmitted beam is k0, while that for the diffracted beam is kH . The incident angle at the diffraction
condition, θB , is indicated.

In the case of MHz repetition rate sources as the European XFEL, Si based X-ray optics can suffer thermal
expansion effects between photon pulses. This thermal expansion in the case of monochromators can change
both the intensity of the transmitted pulse and also the energy bandwidth of the photons. Diamond shows much
better thermal properties making them ideally suited for MHz XFELs. But the production of thick defect-free
crystals is expensive and difficult. For these two reason thin crystals are usually used. Thin crystals however lead
to dynamical diffraction femtosecond processes as the ones presented in this proceeding both in the diffracted
and forward beams.

In this proceeding, we present both experimental and simulations studies of the dynamical diffraction effects
observed in the forward direction for diamond, C, and silicon, Si, thin crystals, as also presented in our previous
Rodriguez-Fernandez et al.7 The experiment were performed at MicroXAS beamline of the Swiss Light Source.
To enhance the spatial resolution a set of KB mirrors with a foci of 2 µm were used. Also this beamline is
capable of a high energy resolution, which is perfect for the imaging of dynamical diffraction effects in thin single
crystals.

2. THEORY

The geometries under consideration are presented in Figure 1. An incoming X-ray wave, k0, hits a medium with
periodic susceptibility, χ(r), and infinite transverse extension.

χ(r) =
∑
H

χHe
−2πiH·r , (1)

If the crystal is oriented such as a family of atomic planes is set to diffraction condition, the incident beam
will be partially diffracted, both in the diffraction direction, kH, and in the forward direction, k0. The precise
redistribution of the beam intensity between transmitted and diffracted directions depends mainly on the energy
and bandwidth of the incoming beam, as well as the geometry of the diffraction and the thickness of the
crystal. This redistribution of the intensity can be described with dynamical diffraction theory and relates to
the excitation of the two diffraction branches α and β of diffraction for the excited reflection.

In the geometry under consideration the incident wave vector k0, the reciprocal lattice of the crystal reflection
and the surface unit normal n are restricted to lie in the same plane, corresponding to the drawing plane of
figure 1. The incoming beam is defined by the wave vector k, which is related to the photon wavelength λ by
k = 2π/λ. The diffraction vector is defined by H = 2π/d, where d is the plane spacing of the corresponding
reflection. The angle between k0 and −H correspond to the incidence angle 90 − θ, and H and −n define the
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asymmetry angle of the reflection to the surface of the crystal, δ. The Bragg condition of diffraction is written
as

k0 − kH = H , (2)

which defines for a given photon energy the Bragg angle θB . In the case of a elastic process, as consider here,
the wave vector of the diffracted kH , diffracted forward k0 and transmitted waves have the same length k. And
its direction is uniquely defined by requiring that the difference vector (kH − (k0 + H)) is parallel to n.8 The
wave vector of the diffracted forward plane wave is the same as that of the incident wave. Other parameters of
the crystal that are relevant for the diffraction process are the crystal thickness τ , the unit cell volume V , and
the Fourier transform of the unit cell structure factors F0, FH and FH̄ , where H̄ is −H, the inverse reciprocal
lattice.

We define a electric displacement field inside the crystal by

D(r) =
∑
H

DHe
−2πikH·r , (3)

When performing the sum over all the Fourier components in the reciprocal lattice vectors H, the fundamental
equation of dynamical theory is obtained:8,9

∑
H

χH−H̄ [(kH ·DH′)kH − k2
HDH′ ] = (k2 − k2

H)DH. (4)

The diffraction process is a two beam problem, this simplifies the problem to

χH̄ [(k0 ·DH)k0 − k2
0DH] = [k2 − k2

H(1− χ0)]D0

χH [(kH ·D0)kH − k2
HD0] = [k2 − k2

H(1− χ0)]DH,
(5)

where DH and D0 are the displacement field in the diffraction and incoming directions. These vector equations
define the physical possible values for D0,H and it can be solve to retrieve the diffracted and forward beam
amplitudes. The system of consist in four equations, two for each surface. In the case of the front or incoming
surface:

(
D0

DH

)(front)

=

(
1 1
c1 c2

)(
D1

D2

)(cryst)

, (6)

and for the rear surface

(
D0

DH

)(rear)

=

(
Υ1 Υ2

c1Υ1 c2Υ2

)(
D1

D2

)(cryst)

, (7)

here the values D1 and D2 define the field inside the crystal, and i denotes the nth layer in the crystal. For
the solution of this system of equations we can obtain the coefficient of reflection R and transmission T for the
process.

For a crystal in Bragg geometry (Figure 1(a)), in which the diffracted wave is emerging from the same crystal
surface as the incoming wave (−θB < δ < θB). The boundary condition in the rear surface impose that the
diffraction wave D2

H should be 0 and D0
0 is the incoming beam that we can consider as 1. These leaves two

variables to be solved R = D0
H and T = D2

0:

T (k, θ) =
c1c2(Υ2 −Υ1)

c2Υ2 − c1Υ1
, R(k, θ) =

Υ2Υ1(c1 − c2)

c2Υ2 − c1Υ1
. (8)
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In the case of Laue geometry the diffracted wave is emerging by the same crystal surface as the transmitted
wave (θB < δ), this sets boundary condition in the incoming surface were D0

H should be 0 and D0
0 equal to 1. If

we solve the system of equation with these conditions we obtain R = D2
H and T = D2

0:

T (k, θ) =
(c1Υ2 − c2Υ1)

Υ2 −Υ1
, R(k, θ) =

Υ2Υ1(c1 − c2)

Υ2 −Υ1
. (9)

The expressions appearing in the above formulas are

Υ1,2 =
−η±
√
s+η2

PψH̄
, c1,2 = e−iϕ1,2τ , ϕ1,2 = k0

2γ0
(ψ0 − η ±

√
s+ η2)

where the index 1, 2 related to the +,− signs, respectively, P is the polarization of the X-ray, which is 1 for
σ and cos(2θ) for π, and

η = 1−b
2 ψ0 + b

2α , s = bψHψH̄ ,

with ψq = −Fq · (4πre)/(V k2) for q = 0, H, H̄, where Fq is the structure factor of the crystal for the reflection
understudy. The b

b = (1 + n·H
n·k0

)−1 ≈ γ0

γH
,

here γ0 and γH denote the direction cosine of the incoming and diffracted beam. And α is

α = 1
k2 (H2 + 2H · k0) ≈ 2 sin(2θB)(θB − θ) ,

The two last approximations are valid for small differences θB − θ.
As discussed in Ref (7), we are considering X-ray beams with small divergence and a finite transverse exten-

sion. These X-ray beams can be described in the Fourier space approach by defining a set of spatial coordinates
(x, y, z), where z is the coordinate along the beam propagation, x is the transverse coordinate in the diffrac-
tion plane, and y is define perpendicular to the diffraction process. A beam is then defined by specifying the
Fourier components of the electric field Ê(k, kx, ky, z) at any longitudinal point z, from which the field on the
corresponding transverse plane and as a function of time is obtained by Fourier transformation

E(t, x, y, z) =

∫
dk dkx Ê(k, kx, ky, z)e

−i2π(ckt−kxx−kyy) . (10)

It is here important to remark that amplitude and phase of the electric field in the transmitted beam is
independent from the position of the crystal along the beam propagation direction. Indeed, the free space
propagator and the through-crystal propagator commute as presented in Ref(7). This means that the total
intensity of the diffracted beam is independent on the crystal z-position.

When a short pulse propagates through a perfect thin crystal oriented to generate a diffracted beam, one
observes beats of X-ray intensity that are delayed with respect to the main high-intensity pulse.4,10 The spatio-
temporal coupling is related to the superposition of photon energies ck and the transverse wave vector components
kx. These beats have been called temporal echoes. In the same way, when a monochromatic X-ray beam of
narrow waist traverses the crystal, part of the X-ray intensity is displaced transversely and appears as lateral
humps, called spatial echoes, in a near field image at the beam waist.11–13

The time delay and the transverse displacement associated to an echo are related linearly by

∆x = c cot(θ)∆t , (11)

see Figures 6 and 9 of Ref.(10).
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Figure 2. (Left) Simulated forward intensity in the detector plane (x) and (Right) fitted projection along the transverse
direction to diffraction (x′) for three thin crystals at 9.4keV : (a) Si (400) reflection in Bragg geometry, (b) C (400)
reflection in Bragg geometry and (c) C (022) reflection in Laue geometry. The simulated crystal had a thickness of 100
µm and 220 µm for Si and C, respectively. The red

3. SIMULATIONS

We performed simulations for the configurations that were measured experimentally. The simulations were
performed in forward geometry for an energy of 9.4 keV The width of the intensity profile of the beam at the
waist was set to the FWHM value 2

√
ln2σx = 1 µm. This was set intentionally smaller than the experimental

beam size at MicroXAS which improves the spatial resolution of the simulated data for the discussion. The
Darwin width of the incoming beam for the simulations is defined by a Si(311) crystal, as in the experimental
example. It must be pointed out that the spectra and temporal shapes assumed for the incoming X-ray pulses
are not realistic for synchrotron or SASE-FEL X-ray sources, but are simplified in the simulation.

Figure 2 presents the time integrated echo signal for the three simulated cases at the diffraction condition.
(a) A Si crystal of thickness τ = 100 µm was assumed in symmetric Bragg geometry for the (400) reflection,
(b) a diamond crystal of thickness τ = 220 µm was assumed for a symmetric Bragg geometry for the reflection
(400), as well as (c) for a symmetric Laue geometry for the (022) reflection.

To analyse the location and intensity of each of the echoes a multiple Gaussian peak function was used of
the form

Sfit
Gauss(x) =

Ne∑
i=0

Ai
$i
e
− 1

2 (
x−xi
$i

)2

. (12)

Ne is the number of echoes that are considered for the modeling. The parameters xi, wi and Ai are the
position, the r.m.s. width and the integrated signal of the i-th echo. The full width at half maximum is given
by FWHM=2

√
2ln2 $i.
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4. EXPERIMENT

Two samples a Si (100) oriented thin crystals of 100µm thickness and a diamond (100) oriented of 220µm
thickness were studied in Bragg geometry for the (400) reflection. For the diamond crystal also a Laue reflection
(022) was studied.

The selection of the beamline was done in relation of the key parameters for this experiment, photon en-
ergy, foci at the detector position (to improve spatial contrast) and bandwidth to match the reflections under
study. Thus the Si(311) two-bounce monochromator and the two bendable Kirckpatrick-Baez (KB) mirrors at
MircorXAS are ideally suited. The focusing was set to 1.5(v)×1.0(h) µm FWHM at the detector plane, 100 mm
distance downstream of the mirror box. The vertical divergence of the focused beam was reduced as much as
possible by closing the vertical slits upstream of the KB mirror box. At the focal position a X-ray microscope
was located. This microscope consists of a YAG:Ce scintillator crystal, a optical magnification of 40x and a
sCMOS pco.2000 aircolled (6.5µm/pixel). The theoretical resolution of the system is 0.166 µm. The diffracted
intensity was observed using an Eiger 500 K detector, located at the 2θ angle for each of the reflections under
study. To perform the data collection, each individual single crystal was mounted on a vertical rotation stage
with a precision of 0.0005◦, located in the path in between the KB mirror exit and the detector. Implicit in this
procedure is that we targeted only reflections with vertical diffraction geometry with σ-polarization.

An energy scan of 8 eV was perform around of the reflection with 0.3 eV resolution. At each of the energy
positions 5 images, each with 0.2s exposure, were recorded with the forward area detector to avoid saturation.
The 5 images were then added up to obtain a single image.

Figure 3 present two images for each of the reflections under study. One 3 eV away of the diffraction condition
and a second one at the diffraction condition where echoes appear. The location of the echoes depend on the
reflection, geometry and element understudy.

5. DISCUSSION AND RESULTS

Figure 4 presents the analysis of the images collected as presented above. For each reflection three energies were
selected, -3 eV, 0 eV and 3 eV with respect to the diffraction condition. In each of this images, a section with
1µm width was cropped and integrated along the perpendicular direction of the detector. In this way the profile
of the diffraction along the transverse direction was obtained.

In analogy to the fitting procedure for the simulated data basing on Eq. (12), the echo signals were modeled
with the function

Sfit
Lorentz(x) =

Nechoes∑
i=0

Ai
ωi

1

1 + (x−xi)2

ω2
i

+ Cbg . (13)

Instead of Gaussians, Lorentzian peak shapes were used to account for the broader peak base, which was observed
even without a crystal placed in the beam.

Using eq 13 to fit the profiles in figure 4, we observed that the profile of the beam along the transverse
direction can be fitted with a single Cauchy distribution far from the diffraction condition. While at the diffrac-
tion condition, the profile must be described with several distributions with their center distributed along the
transverse direction.

Figure 5 presents the comparison between the position of the forward diffracted beams for experimental and
simulated data. the position 0 in both axis represents the main transmitted beam, this position was fitted at an
energy of 3 eV away of the diffraction condition. The position of the maxima close to the transmitted beam is in
good agreement with the simulated positions and deviates slightly with increased distance, both Bragg geometry
cases x = 0.95y. This could be related to a missalignment in the optical microscope. In the Laue case,the slope
could be related to a misalignment of the plane with respect to the diffraction plane due to the precision in the
manual alignment of the sample as also discussed in Ref.(7).
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Figure 3. Collected images of the transmitted beam in the forward direction for three thin crystals at 9.4keV at MicroXAS
beamline. (a) 3 eV away and (b) at the condition of diffraction for Si (400) reflection in Bragg geometry, (c) 3 eV away
and (d) at the condition of diffraction for C (400) reflection in Bragg geometry and (e) 3 eV away and (f) at the condition
of diffraction for C (022) reflection in Laue geometry. The crystal under studied had a thickness of 100 µm and 220 µm
for Si and C, respectively.
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Figure 4. (Top) energy scan perform for each of the three samples (a) Si (400) reflection in Bragg geometry, (b) C (400)
reflection in Bragg geometry and (c) C (022) reflection in Laue geometry. Fit to a section 1µm along the transverse
direction for the image presented in Figure 3 at three position of the energy scan. (x1) −3eV , (x2) 0eV and (x3) +3eV
from the diffraction condition . The inset shows the fit in logarithmic scale for the diffraction condition.

Figure 5. Comparison between fitted spatial displacement for experimental data and simulated cases. (Filled diamonds)
Si (400) 100µm in FBD geometry, (filled squares) C (400) 220µm in FBD geometry and (empty squares) C (022) 220µm
in FLD geometry. Dash line represents a perfect match between experiment and simulation.
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6. OUTLOOK

We have present the dependence of the forward diffracted beam with the transverse direction to diffraction. As
mentioned along the proceeding, this forward diffraction dependence is related to the spatio-temporal coupling.
In the case of thin crystals as the one shown for both diamond and silicon the transverse displacement relates to
tens of femtosecond. In other compounds with higher diffraction coefficient as Ge, InSb, GaAs the effect happens
in thinner crystals with less than 10 µm thicknesses. Temporally these thicknesses relate to times around the
femtosecond.

The spatio-temporal coupling depends highly of the perfection crystalline structure. This means that in the
case of slightly strain crystals the echoes will depend of the different d spacing between the planes. Which could
produce a broadening of the bandwidth appreciable in the echoes position and intensities.
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