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Vortex rings are remarkably stable structures occurring in a large variety of systems: for12

example in turbulent gases, where they are at the origin of weather phenomena1; in flu-13

ids with implications for biology2; in electromagnetic discharges3; and in plasmas4. While14

vortex rings have also been predicted to exist in ferromagnets 5, they have not yet been ob-15

served. Using X-ray magnetic nanotomography6, we imaged three-dimensional structures16

forming closed vortex loops in a bulk micromagnet. The cross-section of these loops consists17

of a vortex-antivortex pair and, based on magnetic vorticity, a quantity analogous to hy-18

drodynamic vorticity, we identify these configurations as magnetic vortex rings. While such19

structures have been predicted to exist as transient states in exchange ferromagnets5, the20
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vortex rings we observe exist as stable, static configurations, whose stability we attribute to21

the dipolar interaction. In addition, we observe stable vortex loops intersected by magnetic22

singularities7, at which the magnetisation within the vortex and antivortex cores reverses.23

We gain insight into the stability of these states through field and thermal equilibration pro-24

tocols. The observation of stable magnetic vortex rings opens possibilities for further studies25

of complex three-dimensional solitons in bulk magnets, enabling the development of applica-26

tions based on three-dimensional magnetic structures.27

In magnetic thin films, vortices are naturally occurring flux closure states, in which the mag-28

netisation curls around a stable core, where the magnetisation tilts out of the film plane 8, 9. These29

structures have been studied extensively over the past decades due to their intrinsic stability 10 and30

their topology-driven dynamics 11–13, which are of both fundamental and technological 14 interest.31

Antivortices, the topological counterpart of vortices, distinguish themselves from vortices by an32

opposite rotation of the in-plane magnetization that is quantified by the index of the vector field –33

which is equal to the winding number of a path traced by the magnetisation vector while moving34

in the counterclockwise direction around the core 15. While vortices have a circular symmetry35

of the magnetisation (figure 1a), antivortices only display inversion symmetry about the center 16
36

(figure 1b), resembling saddle points in the vector field. Experimental studies of magnetic vor-37

tices and antivortices have mostly been restricted to two dimensional, planar systems, in which38

vortex-antivortex pairs have a natural tendency to annihilate 17, unless they are part of larger, stable39

structures, such as cross-tie walls 18.40
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In bulk ferromagnets, the existence of transient vortex rings, that take the form of localised41

solitons and are analogous to smoke rings, has been predicted 5, but such structures have so far42

not been observed. Just as vortex rings in fluids are characterised by their vorticity, ferromagnetic43

vortex ring structures can be identified by considering the magnetic vorticity 19. By analogy with44

fluid vorticity, the magnetic vorticity is a vector field, which can be defined as 5, 19:45

Ωα =
1

8π
εαβγεijkmi∂βmj∂γmk (1)

where mi(r, t) is a component of the unit vector representing the local orientation of the mag-46

netisation m = |M |/Ms, the reduced magnetisation, where Ms is the saturation magnetisation, α47

indicates the vorticity component, and εαβγ is the Levi-Civita tensor, summed over three compo-48

nents x, y, z. The magnetic vorticity vector Ω represents the topological charge flux20 (or Skyrmion49

number21) density. Integrating the magnetic vorticity over a closed two-dimensional surface S, re-50

sults in an integer value
∫
S

Ω · dS = N corresponding to the Skyrmion number, which gives51

the degree of mapping of the magnetization distribution to an order parameter space described by52

the surface of an S2 sphere. When N = 1, the target sphere is wrapped exactly once and each53

direction of the magnetisation vector is present on the surface S. The magnetic vorticity vector54

Ω is therefore non-vanishing in the vicinity of the cores of vortices or antivortices, and is repre-55

sented in Figure 1a-d for vortices and antivortices with different polarisations (the polarisation is56

the orientation of the magnetisation within the core). The vorticity vector is aligned parallel to the57

polarisation of a vortex (a,c) and antiparallel to the polarisation of an antivortex (b,d), indicating58

that it is dependent upon the direction of the magnetisation in the core as well as the index of59

the structure. Consequently, a vortex-antivortex pair with parallel polarisations exhibit opposite60
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vorticities, that circulate in a closed loop (Figure 1e).61

Here, we use the magnetic vorticity to locate and identify magnetization structures within62

a three-dimensional GdCo2 micropillar, imaged using hard X-ray magnetic nanotomography 6.63

Within the bulk of the pillar, we find two types of vorticity loops. The first is characterised by a64

circulating magnetic vorticity forming vortex rings, analogous to smoke rings. The cross-sections65

of these magnetic vortex rings consist of vortex-antivortex pairs with parallel polarisations, as il-66

lustrated in Figure 1e. Consequently, such a pair can be smoothly transformed into a uniformly67

magnetised state and carries zero topological charge. The second type of loop contains singulari-68

ties, or Bloch points7, at which the vorticity abruptly reverses its sign, reflecting the reversal of the69

polarisation of the vortex and antivortex within the cross-section of the ring. Calculating preim-70

ages of the observed structures reveals concentric pre-images that do not link each other, so have a71

vanishing Hopf index (a topological invariant which counts the linking number of pre-images cor-72

responding to different magnetization vector directions). In contrast, structures containing Bloch73

points have preimages similar to recently observed ‘toron’ structures in anisotropic fluids 22.74

The hard X-ray magnetic nanotomography setup is illustrated in Figure 1f. During the mea-75

surement, high resolution X-ray projections of a bulk GdCo2 ferrimagnetic cylinder of diameter 576

µm were measured with dichroic ptychography23 for 1024 orientations of the sample with respect77

to the X-ray beam. The photon energy of the circularly-polarised X-rays was tuned to the Gd L378

edge and, by exploiting the X-ray magnetic circular dichroism effect, sensitivity to the component79

of the magnetisation parallel to the X-ray beam was obtained. In order to gain access to all three80
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components of the magnetisation, X-ray projections were measured for different sample orienta-81

tions about the tomographic rotation axis for two different sample tilts. The internal magnetic82

structure was obtained using an iterative reconstruction algorithm6, which has been demonstrated83

to offer a robust reconstruction of nanoscale magnetic textures24. Further experimental details are84

given in the Methods section.85

In the ferrimagnetic micropillar, the coupling between two antiparallel magnetic sublattices86

leads to an effective soft ferromagnetic behavior25. The lowest energy state of such a magnetic87

cylinder is expected to consist of a single vortex26. In practice, the size of the pillar is large88

enough to reduce the role of surface anisotropy, supporting the stabilisation of more complex,89

often metastable states, that can include a large number of vortices, anti-vortices, domain walls90

and singularities6.91

We compute the magnetic vorticity Ω from the reconstructed magnetisation following equa-92

tion (1). Regions of large vorticity are plotted in Figure 1g, where a number of ‘tubes’ and loops93

corresponding to the cores of vortices and antivortices are visible. In addition, unlike in incom-94

pressible fluids where the divergence must vanish, a non-zero divergence of the magnetisation, M,95

is allowed in ferromagnets, given that Maxwell’s equations only exclude the divergence of B. In96

this way, computing the magnetic vorticity also allows us to locate singularities of the magnetisa-97

tion – known as Bloch points – within the system, which are characterised by a large divergence of98

the magnetic vorticity,∇ ·Ω, due to the abrupt local variation in the orientation of the magnetisa-99

tion. Here, Bloch points and anti-Bloch points are identified by positive (red) and negative (blue)100
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Figure 1: Measuring and reconstructing the magnetic structure and the magnetic vorticity within a

GdCo2 pillar. a-d) Schematic representation of the magnetic vorticity Ω, shown in purple and or-

ange arrows, for a number of vortex (a,c) and antivortex (b,d) configurations with different polar-

isations (red, dark blue). The vorticity of a ring composed of a vortex-antivortex pair with parallel

polarisations is shown in (e). f) Schematic representation of the experimental setup: tomographic

projections with magnetic contrast are measured using dichroic ptychography for the sample at

many different azimuthal angles with respect to the X-ray beam (rotation indicated by green ar-

row). Measurements were performed with the sample at two different tilt angles: 30◦ (transparent

green cylinder) and 0◦ (blue cylinder). g) Plotting regions of significant magnetic vorticity, we

locate a variety of structures, and h) plotting regions of high divergence of the vorticity ∇ · Ω,

we locate Bloch points (red) and anti-Bloch points (blue), which respectively have positive and

negative ∇ ·Ω.
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∇·Ω, as plotted in Figure 1h. Within the pillar, we find an equal number of Bloch points and anti-101

Bloch points, indicating that the singularities most likely originated in the bulk of the structure,102

where they can only be created in pairs. As a result, it appears that sample boundaries, through103

which a single Bloch point could be injected, did not play an essential role in the formation of the104

observed structures.105

Within the reconstructed magnetisation, we observe a large number of three-dimensional106

loops (Figure 2c), that resemble the vortex ring schematically illustrated in Figure 1e. We con-107

sider the case of one such loop, identified by plotting an isosurface corresponding to m = ±x̂ in108

Figure 2a. This loop is located in the vicinity of a single vortex extending throughout the majority109

of the height of the pillar and whose polarisation equally points along the +x̂ direction in the shown110

slice. Considering the magnetisation in the y−z plane, represented by streamlines in Figure 2a, we111

identify a bound state consisting of two vortices separated by an antivortex, a structure analogous112

to that of a cross-tie wall. Note that the streamlines are used to indicate the direction of the mag-113

netization and are extrapolated beyond the spatial resolution of the measurements. Similarly, the114

isosurfaces highlight the position of the vortex core and do not represent the width of the core. The115

loop itself is embedded within a quasi-uniformly magnetised region (m = +x̂, red) and therefore116

the vortex and antivortex have parallel polarisations, as shown schematically in Figure 1e. Cal-117

culating the magnetic vorticity vector Ω, plotted in Figure 2b, reveals a unidirectional circulation118

around the loop, directly comparable to the schematic in Figure 1e. This structure is similar to a119

vortex ring in a fluid, which equally corresponds to a loop in the hydrodynamic vorticity. Such120

vorticity loops have been predicted to exist as propagating solitons in exchange ferromagnets5. In121
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Figure 2: Structure of a vortex ring with circulating magnetic vorticity. a) A loop is identified

next to a vortex by plotting an isosurface corresponding to mx = ±1. The in-plane magnetisation

within a two-dimensional slice through the loop is plotted using streamlines, revealing that the

cross-section of the loop consists of a vortex-antivortex pair. The colourmap indicates the value

of mx, reevaling that the vortex and the antivortex within the loop have the same polarisation.

b) On the same mx = ±1 isosurface, mapping the vorticity (represented both by the arrows and

the colourmap) reveals that the loop exhibits a circulating vorticity and is a vortex ring. The

vorticity map equally indicates that, in the nearby extended vortex, the vorticity abruptly reverses,

indicating the presence of a Bloch point. Note that the plotted structures have a relatively low

vorticity, with |Ω| ' 0.1 (with the exception of the Bloch point). c) Plotting preimages for different

directions, indicated on the schematic sphere, reveals a number of closed loops within the sample.

Calculating the vorticity reveals that these loops also correspond to vortex rings (insets). d) In the

vicinity of the vortex loop in a), preimages for neighbouring directions are not linked, indicating a

Hopf index of zero.
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contrast, the vortex loops observed here are static and stable at room temperature over the dura-122

tion of our measurements. We note that the diameter of the vortex ring, i.e. the average distance123

between the vortex and antivortex cores in the y − z plane, is approximately 370 nm, and is com-124

parable to the diameter of other vortex rings present inside the pillar (see Figure 2c) that exhibit an125

average diameter of 400 ± 90 nm. Interestingly, this loop (along with a number of similar vortex126

rings in the sample) occurs in the vicinity of a singularity: indeed, the neighbouring vortex in the127

cross-tie structure contains a Bloch point, which is located in Figure 2b where the vorticity, (and128

the magnetisation in the vortex core) abruptly reverses direction, as seen in Extended Data Figure129

5. There is a priori no topological requirement for the presence of a Bloch point in proximity of130

the vortex loop and despite the observed correlations, our static observations do not allow for the131

determination of a causal relationship between the presence of both structures.132

We gain further insight into the topology of these vortex loops by plotting preimages corre-133

sponding to a number of directions of the magnetisation in the vicinity of the vortex ring. The134

preimage corresponding to the +x̂ direction, i.e. mx = +1, is plotted in light green in Figure135

2d, along with additional preimages corresponding to directions indicated in the inset that form an136

ensemble of closed-loop preimages. The plotted loops do not link, indicating that the vortex ring137

has a Hopf number H = 0. Indeed, the vicinity of the H = 0 structure contains only preimages138

representing directions close to the +x̂ direction and, consequently, do not cover the S2 sphere139

(as illustrated on the schematic sphere in Figure 2d), meaning that the magnetisation can smoothly140

unwind into a single point on the sphere27. Hence, these vortex rings belong to a class of non-141

topological solitons 28. In the Methods (Extended Data Figure 3c), we have developed an analytic142
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model of such a soliton, qualitatively reproducing the observed features, vorticity and pre-images.143

In addition to vortex rings, we also identify loops containing sources and sinks of the mag-144

netisation, due to the presence of Bloch points. The magnetic structure of one such loop, high-145

lighted by the isosurfacemx = ±x̂, is shown in Figure 3a using streamlines, where the colourscale146

represents mx and the magnetisation in a plane of the loop is represented by streamlines, reveal-147

ing a vortex-antivortex pair. At two points within the loop, the polarisation along the vortex and148

antivortex cores reverses (colour changes from blue to red). Consequently, the vorticity does not149

circulate around the loop, but instead assumes an asymmetric onion-like structure, flowing out150

from a source (green box in Figure 3b) and into a sink (orange box in Figure 3b). The structure of151

the magnetisation in the vicinity of the singularities is plotted in Figures 3c,d. The vorticity sink152

(Figure 3e), whose surrounding magnetisation is plotted in Figure 3c, corresponds to a contra-153

circulating Bloch point29 (or anti-Bloch point) with Skyrmion number −1. The vorticity source154

(Figure 3f), has a magnetisation structure (Figure 3d) corresponding to that of a circulating Bloch155

point 29 with Skyrmion number +1. Two features of this loop are particularly noteworthy. First,156

the singularities are not linked to the generation and annihilation of a vortex and antivortex with157

opposite polarisations, as has been reported for dynamic processes15. Instead, the loop consists of158

two halves connected by the Bloch points, which locally leads to a reversal of the vorticity along159

the vortex and the antivortex cores, as seen in Extended Data Figure 4. Second, while singulari-160

ties often mediate dynamic magnetisation processes and have been predicted during magnetisation161

dynamics29, 30 as well as during magnetic field reconnection in plasma physics31, the observed162

structures are inherently static. In Ref. 6, Bloch points were observed at the locations where a163
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Figure 3: Structure of a vortex loop containing magnetization singularities. a) The loop is high-

lighted by the mx = ±x̂ isosurface, while the magnetic configuration in a two-dimensional slice

is plotted using streamlines, with the colour indicating the out-of-plane magnetisation component

±mx. The cross-section contains a vortex-antivortex pair. Within the loop, the polarisations of

the vortex and anti-vortex cores switch from +mx (red) to −mx (blue) at two points, indicated

by the orange and green boxes. b) The magnetic vorticity forms an “onion” state, with the vor-

ticity direction reversing at the same two points. These locations correspond to singularities of

the magnetisation, whose surrounding magnetic and vorticity structure is plotted in (c,d) and

(e,f), respectively. g) Preimages corresponding to the Cartesian axes ±x̂ (light/dark green), ±ŷ

(light/dark red), and ±ẑ (light/dark blue) (indicated on the schematic sphere), which reveal an

onion-like state, with all preimages meeting at the singularities. See also Extended Data Figure 7.
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vortex core intersected a domain wall. Similarly, we find that the Bloch point pair is located at the164

intersection of the vortex-antivortex loop with a domain wall separating regions of opposite mx165

(Extended Data Figure 5f).166

We gain further insight into the topology of the vortex-antivortex loop containing singulari-167

ties by plotting preimages corresponding to a defined set of spatial directions, (or points on the S2
168

sphere) in Figure 3g. In particular, we plot regions of the magnetisation aligned along ±x̂ (bright/169

dark green), ±ŷ (bright/ dark red), and ±ẑ (bright/ dark blue) , which form a three-dimensional170

onion state, with all directions of the magnetisation meeting at the singularities schematically in-171

dicated by green (Bloch point) and orange (anti-Bloch point) circles. The preimages resemble172

those found to correspond to ‘torons’, which have recently been observed in chiral liquid crystals 32
173

and anisotropic fluids 33. In the Methods, we present an analytical model describing different mi-174

cromagnetic configurations with similar pre-images, allowing us to reproduce and, consequently,175

understand the experimental observations.176

We explore the stability of the observed vorticity loops by applying two different field and177

thermal protocols on a similar GdCo2 micropillar, and performing magnetic X-ray nanotomog-178

raphy at remanence following each protocol. In the first protocol, we apply a 7 T magnetic field179

along the long axis of the pillar at room temperature, and image the resulting remanent config-180

uration. The applied field is above the measured sample saturation field of ∼ 2 T. A plot of181

the magnetic vorticity (Figure 4a) reveals a large number of vortices and antivortices, as well as182

magnetic singularities (shown in Methods and Extended Data Figure 6 at remanence). Plotting183
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Figure 4: Magnetic vorticity plots measured for for a similar micropillar at remanence showing

the effect of different field histories. a) Following the application of a 7 T saturating field , a small

number of vortex rings like the one plotted in Figure 2 are present at remanence, some of which

are shown in b). c) After annealing in a 7 T field, followed by field cooling, no rings are observed.

.
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preimages corresponding to different directions of the magnetisation, we observe a small number184

of vortex loops, two of which are shown in figure 4b. The presence of these vortex loops after the185

application of a saturating magnetic field indicates that the loops can nucleate spontaneously, and186

therefore do not require a specific field protocol to prepare them. Secondly, we heat the sample to187

400 K while applying a 7 T magnetic field. The sample is then field cooled and the field gradually188

removed after the sample reaches room temperature. This annealing procedure is reminiscent of189

those used to expel defects in single-crystals in order to increase their purity. A plot of the vor-190

ticity, shown in figure 4c, reveals a noticeably smaller number of structures with non-vanishing191

vorticity. Importantly, we do not find any vortex loops, indicating that these are metastable states192

that are more efficiently destroyed through thermal annealing in a field, which is likely to lead193

to the expulsion of magnetic as well as lattice defects that contribute to pinning of the magnetic194

structures (see Methods and Extended Data Figures 1 and 2 for more details). Quantitatively, the195

average vorticity value following field cooling is half the value following only the application of a196

7 T field, and the total number of Bloch points is roughly halved (52 vs. 110 Bloch points, as seen197

in Extended Data Figure 6).198

Although the vortex rings we observe are topologically trivial structures and have a Hopf199

index of zero, they are surprisingly stable. We attribute their stability to interactions with sur-200

rounding magnetization structures, which ensure that they are, for example, embedded in cross-tie201

structures. In the case of the loops containing Bloch points, the singularities occur at the intersec-202

tion with domain walls (as shown in Extended Data Figure 6), thus pinning the loops. Moreover,203

the magnetostatic interaction clearly plays an important role in the stabilisation of these structures,204
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ensuring that our observations of stable localised solitons do not contradict the Hobart-Derrick205

theorem for an exchange ferromagnet that requires non-linearities (such as intrinsic chirality in206

the presence of Dzyaloshinskii-Moriya interaction) to set a scale for localised magnetisation non-207

uniformities. Based on the balance of magnetostatic and exchange interactions, a distance of208

≈ 296 nm between the vortex and antivortex in such bound states can be estimated via the bulk209

limit of the cross-tie domain wall width as described in the Methods section. This value matches210

the average observed size of the rings of 400 ± 90 nm, indicating that the balance of the mag-211

netostatic and exchange interactions is sufficient to stabilise the structures. Details of the model212

are given in the Methods. We note that chirality has been demonstrated in a similar bulk amor-213

phous system through the inclusion of structural inhomogeneities34. We expect that such systems214

could host topologically non-trivial solitons, such as knots with a higher Hopf number, as well as215

torons, following predictions for chiral magnetic heterostructures33, 35, 36, analogous to the reported216

observations in chiral liquid crystals and ferrofluids27, 37.217

The calculation and visualization of the magnetic vorticity and of preimages have proven218

essential tools in the characterisation of the observed three-dimensional structures. In combina-219

tion with recent advances in time-resolved X-ray magnetic laminography38, these open the path to220

investigating the dynamics of three-dimensional magnetic solitons. As well as probing resonant221

dynamics, it is possible that investigations of the displacement of three-dimensional vortex rings222

could reveal behaviour analogous to the Kelvin motion of two-dimensional vortex-antivortex pairs223

39–41. Likewise, we expect that the magnetic vortex loops discovered here containing singularities224

will also display compelling dynamics, with implications for the fundamental understanding of the225

15



role of singularities in magnetisation processes. Finally, the study of the conditions for the for-226

mation of three-dimensional magnetic structures, and of their stability, is expected to lead to new227

possibilities for the controlled manipulation of the magnetisation that could be relevant for tech-228

nological applications requiring complexity, such as neuromorphic computing42 or new proposals229

for three-dimensional data storage43.230
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1 Methods333

Sample Fabrication GdCo2 micropillars of diameter 5µm were cut from a larger nugget of334

GdCo2 using a focused ion beam in combination with a micromanipulator, and mounted on top of335

OMNY tomography pins44.336

The crystal structure of the GdCo2 micro-pillars was determined using microcrystallography337

measurements, performed at the X06DA beamline at the Swiss Light Source, Paul Scherrer Insti-338

tute. An example diffraction pattern is given in Extended Data Figure 1, where one can observe339

that the Bragg peaks (right image) display a substructure, indicating the polycrystalline nature of340

the micropillar.341
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Extended Data Figure 1: A diffraction pattern from the GdCo2 pillar. The substructure of the Bragg

peaks, magnified in the inset to the right, indicates the polycrystalline nature of the material.

X-ray ptychographic tomography Hard X-ray magnetic tomography was performed at the cSAXS342

beamline at the Swiss Light Source, Paul Scherrer Institut, using the flexible tomographic nano343

imaging (flOMNI) instrument45. Part of the data presented in this manuscript (the central vortex344

containing the Bloch point in Figure 2a,b) formed part of the dataset presented in Ref. 6. All other345

measurements and analysis are shown here for the first time here.346

Two dimensional tomographic projections were measured with X-ray ptychography, a coher-347

ent diffractive imaging technique allowing access to the full complex transmission function of the348

sample46, 47. For X-ray ptychography, an X-ray illumination of approximately 4µm was defined349

on the sample, and ptychography scans were performed by measuring diffraction patterns on a350

concentric grid of circles with a radial separation of 0.4µm for a field of view of 8 × 7µm2 and351

13×9µm2 for the untilted and tilted sample orientations, respectively. The projections were recon-352
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structed using 500 iterations of the difference map and 200 iterations of the maximum likelihood353

refinement using the cSAXS PtychoShelves package 48.354

To probe the magnetisation of the sample, X-rays tuned to the Gd L3 edge with a photon en-355

ergy of 7.246 keV were chosen to maximise the absorption XMCD signal23. Circularly polarised356

X-rays were produced by including a 500µm-thick diamond phase plate upstream of the sam-357

ple position49. The degree of circular polarisation achieved was greater than 99%, and with an358

transmission of approximately 35%.359

The tomographic projections were aligned with high precision as described in Ref.6.360

Magnetic tomography When a single circular polarisation projection is measured, the compo-361

nent of the magnetisation parallel to the X-ray beam is probed due to the XMCD, along with the362

electronic structure of the sample. To probe all three components of the magnetisation, projections363

were measured around a rotation axis for two orientations of the sample6. Generally, the magnetic364

contrast of a projection is isolated from other contrast mechanisms by measuring the same projec-365

tion using circular left and right polarised light, where the sign of the magnetic contrast is reversed,366

and taking the difference between the two images. Here, a single X-ray polarisation is used for367

all measurements and, in order to isolate the magnetic structure, projections with circularly left368

polarisation are measured at θ and θ + 180◦. Between these two angles, the magnetic contrast369

is reversed, which can be used to differentiate the magnetic contrast from the electronic contrast.370

Therefore, for the magnetic tomography measurements, circular left polarisation projections were371

measured through 360◦ about the rotation axis, instead of through 180◦, as in standard tomography.372
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The magnetisation (which is a three-dimensional vector field) was reconstructed using a two-373

step gradient-based iterative reconstruction algorithm, described in Ref. 50. The spatial resolution374

for each component of the magnetisation was estimated using Fourier Shell Correlation51, and a375

three-dimensional Hanning low-pass filter was used to remove high-frequency noise. The spatial376

resolution of the reconstructed magnetisation was found to be 97 nm, 125 nm and 127 nm in the377

x− z, x− y and y − z planes, respectively6.378

The magnetic vorticity was calculated according to Equation 1. The magnetisation was nor-379

malised to obtain the unit vector, which was used to calculate the magnetic vorticity numerically380

in MATLAB. Specifically, the components of the vorticity vector were calculated numerically as381

follows:382

Ωx = 2mx(∂ymy∂zmz − ∂zmy∂ymz) + 2my(∂ymz∂zmx − ∂zmz∂ymx) + 2mz(∂ymx∂zmy − ∂zmx∂ymy)

Ωy = 2mx(∂zmy∂xmz − ∂xmy∂zmz) + 2my(∂zmz∂xmx − ∂xmz∂zmx) + 2mz(∂zmx∂xmy − ∂xmx∂zmy)

Ωz = 2mx(∂xmy∂ymz − ∂ymy∂xmz) + 2my(∂xmz∂ymx − ∂ymz∂xmx) + 2mz(∂xmx∂ymy − ∂ymx∂xmy)

(2)

wheremi is the ith component of the reduced magnetisation, and ∂i represents the partial derivative383

with respect to the ith direction that were calculated numerically using the gradient function in384

MATLAB 2018a.385

The three-dimensional visualisations of the magnetic vorticity and magnetisation were per-386

formed with Paraview 52.387

To consider the topology of the magnetisation in three dimensions, preimages corresponding388
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to different directions are plotted within the pillar. The difference between the magnetisation vector389

and the mx = 1 direction is calculated using:390

δpx =

(
mx

|m|
− 1

)2

+

(
my

|m|

)2

+

(
mz

|m|

)2

(3)

To plot the mx = 1 pre-image, for example, we plot an isosurface for δpx = 0.01. This results in391

a tube rather than a line, which is necessary due to the finite spatial resolution and signal-to-noise392

ratio of the measurement.393

Field and thermal protocols A separate GdCo2 micropillar was used to investigate the effect of394

two different protocols, and the magnetic state was determined using magnetic tomography. The395

first protocol involved the application of a 7 T saturating field at room temperature. The second396

involved thermal annealing, (heating the micropillar to a temperature of 400 K close to the Curie397

temperature of the material), applying a 7 T field, and then reducing the temperature to room398

temperature, followed by a slow reduction of the applied magnetic field.399

In the final states, a significant difference in both the presence of high vorticity structures,400

as well as the number of Bloch points present in the configuration, was observed . This can be401

seen in Figures 4 and Extended Data Figure 6, with the thermal annealing procedure resulting in a402

significant decrease in the average magnetic vorticity as well as in the number of Bloch points.403

We note that, although the general magnetic structure is significantly different following the404

different protocols, and a large reduction in the average magnetic vorticity is observed following405

the annealing process, the main vortex that spans most of the height of the pillar occupies a similar406
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Extended Data Figure 2: Location of the central vortex following the two different protocols.

The position of the central vortex core is plotted using red and blue isosurfaces for the remanent

magnetic structure after (red) the application of a 7 T magnetic field, and (blue) after the application

of the field cooling protocol. After both protocols, the vortex core returns to almost the same

position.

position, within approx. 300 nm of the previous vortex, as can be seen in Extended Data Figure 2.407

Given that the vortex state is in principle the ground state of a cylindrical sample, the formation of408

the vortex core at nearby locations in a structure of this size is indicative of the presence of pinning409

centres that may be attributed to the polycrystalline nature of the material. The suppression of high410

vorticity structures, as well as magnetic vortex rings, following the thermal annealing protocol411

(see Extended Data Figure 6) indicates, however, that the pinning centres do not solely determine412

the stability of the structures, but rather may indirectly influence them through the pinning of413

neighbouring magnetic features.414
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Analytical models To qualitatively interpret and understand the observed structures, we build a415

series of 2+1 dimensional models, which allow comparing the observed magnetization structures,416

preimages and the vorticity with the ones derived from modeled vortex loops with different mag-417

netization structures. These models are similar to those used for description of hopfions in Ref.53.418

They are based on the subdivision of the magnetic material volume into thin slices, lying in the419

x−y plane of a Cartesian coordinate system. The magnetisation in each slice can then be described420

by a complex function w of a complex variable u = x + ıy by means of stereographic projection421

{mx + ımy,mz} = {2w, 1−ww}/(1+ww), where the over-line denotes complex conjugation, so422

that u = x− ıy, ı =
√
−1. Without loss of generality, any three-dimensional magnetisation distri-423

bution m(x, y, z) can be described by a function w = w(u, u, z), which depends on the complex424

coordinate u within each slice and the extra-dimensional variable z, identifying the slice.425

For realistic models, including at least the exchange and the magnetostatic interactions, no426

exact solutions for non-uniform w(u, u, z) are known. However, if the magnetostatic interaction427

is neglected and w(u, u, z) is assumed to be weakly dependent on z, two large families of exact428

solutions exist for w(u, u, z) at a fixed z. These are solitons20, which are meromorphic func-429

tions w(u, u, z) = f(u, z), and singular merons54, which are functions with |w(u, u, z)| = 1 or430

w(u, u, z) = f(u, z)/|f(u, z)|. Zeros of f(u, z) correspond to the centers of magnetic vortices (or431

hedgehog-like structures, if the magnetisation vectors are rotated by π/2 in the x-y plane). The432

poles correspond to the centers of the magnetic antivortices (or saddles). From the stereographic433

projection it follows that for solitons mz = 1 in the centers of the vortices and mz = −1 in the434

centers of antivortices.435
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An example of meromorphic functions are the rational functions of a complex argument436

(quotient of two polynomials). They allow direct expression of the vortex/antivortex pair annihi-437

lation as a cancellation of two identical monomials, whereas creation is a time-reversed process.438

The topological charge (or Skyrmion number) in each slice is a conserved quantity 20 in the sense439

that it cannot be changed by a smooth singularity-free variation of the magnetisation distribution.440

For the slices in the x-y plane the topological charge density is the z-component of the vorticity Ωz441

and the total charge is the integral of this density over the whole slice. Creation and annihilation442

of the vortex-antivortex pairs within the soliton is always accompanied by a singularity.443

A vortex ring can be understood as a process of creation, separation, convergence and an-444

nihilation of a vortex-antivortex pair as the variable z advances through the successive slices5.445

Consider446

wBPr(u, u, z) = f(u, z) = ı
u− p(z)

u+ p(z)
= ı

u−
√

1− (z/2)2

u+
√

1− (z/2)2
(4)

for an (arbitrary) range −2 < z < 2, where the specific expression for p(z) was chosen to make447

the vortex and antivortex cores extend along arcs, as in the experimental data. It describes the448

creation of a vortex-antivortex pair at x = y = 0 and z = 2, the vortex and antivortex moving449

apart (with the maximum distance between their centres equal to 2 at z = 0), then approaching450

each other again, and annihilating at z = −2. We call this model the Belavin-Polyakov ring451

because each slice is a Belavin-Polyakov soliton, described by a meromorphic w(u, u, z). The452

corresponding schematic magnetisation, set of preimages and vorticity are shown in Extended453

Data Figure 3a. A similar preimage patterns connecting two Bloch points were indeed observed in454

our sample. However, the corresponding vorticity distributions are different. Indeed, instead of a455
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single centrally-symmetric vorticity bundle we reconstruct a pair of bundles, corresponding to the456

vortex and antivortex centers. Clearly, the pure Belavin-Polyakov ring model can not reproduce457

this feature.458

To ’unbundle’ the vortex and antivortex, we can use the instanton model54 by writing:459

wi(u, u, z) =



f(u, z)/c(z) |f(u, z)| ≤ c(z)

f(u, z)/|f(u, z)| d(z) > |f(u, z)| > c(z)

f(u, z)/d(z) |f(u, z)| > d(z)

, (5)

where d(z) = 1/c(z), assuming the same size for the vortex and antivortex cores. Choosing460

c(z) = 1 − q + q|z|/2 < 1 allows the control of the size of the vortex and antivortex cores461

(where mz 6= 0) at the central plane z = 0 via the parameter q. The magnetisation, preimages462

and vorticity for such an instanton ring with q = 3/4 are shown in Extended Data Figure 3b.463

While they reproduce qualitatively both the vorticity distribution and the preimages, shown in464

figures 3b and 3g, the structure of the Bloch points is different. Indeed, the instanton ring has465

two hedgehog-type Bloch points (in which the magnetisation directions are opposite), whereas the466

observed structure, shown in figure 3, contains two different types of Bloch points. Additionally,467

this model differs from the observation in figure 3 in that singularities are absent at the transition468

from the experimentally-observed vortex and antivortex pair to a uniformly-magnetized region.469

The Bloch points in figure 3 rather coincide with the polarisation reversal of vortex and antivortex470

cores as they propagate through the volume of the sample. In order to analytically describe this471

structure, we first need to build a model for a vortex ring.472
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Extended Data Figure 3: Analytical models of vortex loops with different magnetisation struc-

tures. Top, middle and bottom rows: Magnetisation, pre-images and vorticity distribution for the

different 2 + 1 dimensional analytical models. The magnetisation plots (top row) only include the

projection of the magnetisation onto the shown plane, while the rings correspond to the positions

of the vortex and antivortex centers. The colour indicates the mz component of the magnetisation.

The preimages are shown as volumes where the magnetisation vectors deviate only slightly from

certain directions di, indicated by the color-coded arrows on each corresponding sphere. The

opacity and color on the vorticity plots indicates the magnitude of local vorticity vectors. The

structure in c) is comparable to the vortex rings in figure 2, while the structure in d) is comparable

to that in figure 3.
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To describe a vortex-antivortex pair unbound by Bloch point singularities, the vortex and the473

antivortex must have identical polarisations (i.e. the same direction of mz within the core). In474

this case the topological charge in each slice is zero. Such a configuration can be obtained as a475

generalisation of (5)476

wr(u, u, z) = A(z)



f(u, z)/c(z) |f(u, z)| ≤ c(z)

f(u, z)/|f(u, z)| d(z) > |f(u, z)| > c(z)

d(z)/f(u, z) |f(u, z)| > d(z)

, (6)

where the modification to the last line reverses the polarisation of the antivortex. The factorA(z) =477

(1− z2/4)s ensures that, at z = ±2, the function wr = 0, which corresponds to the uniform state.478

The parameter s allows for the control of the degree of quasiuniformity: the smaller s is, the less479

mz deviates from 1. The magnetisation, preimages and vorticity for such a quasiuniform ring with480

q = 3/4 and s = 1/4 are shown in Extended Data Figure 3c. They are qualitatively analogous to481

the experimentally-observed vortex rings in figures 2b and 2d.482

Finally, we can extend the above model to a vortex ring in which the polarisation reverses483

along the vortex and the antivortex cores, in the presence of Bloch points. To describe this state,484

we note that with s = 1, c(z) = z2/4, the magnetisation of the quasiuniform ring (6) at z = 0485

lies completely in the x-y plane except for at the centres of the the vortex and antivortex, where its486

direction is undefined. Joining at the central plane two half-rings with opposite polarisations:487

wvls(u, u, z) = A(z)


wr(u, u, z) z ≤ 0

1/wr(u, u, z) z > 0

(7)
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yields the model for the vortex loop with Bloch point singularities, shown in Extended Data Fig-488

ure 3d. The structure corresponds well to the observations in figure 3, including the observed Bloch489

point types.490

Note that despite the piecewise nature of the above functions, the resulting magnetisation491

vector fields are continuous (apart from at the singularities). While neither ansatz in the presented492

series is an exact solution of the corresponding micromagnetic problem (not even of its restricted493

exchange-only version), they provide a simple and easily interpretable model to understand the494

observed magnetisation distributions.495

We now address the question of the size of the observed magnetisation structures. Accord-496

ing to the Hobart-Derrick theorem, the exchange interaction alone cannot stabilize the solitons as497

the exchange energy does not display a minimum as function of the soliton size. However, the498

magnetostatic interaction, (which is outside of the scope of the Hobart-Derrick theorem) can, in499

principle, set the length scale of solitons. A complete answer to this question requires a sophisti-500

cated theoretical model, which still remains an open problem. Yet, a simple argument for stability501

of the observed bound states can be given in terms of other well-known magnetic textures such as502

a cross-tie wall as described below.503

A single magnetic vortex, centered in a cylindrical nano-pillar, does not give rise to magnetic504

volume charges (which are proportional to the divergence of the magnetisation) and only generates505

surface charges (proportional to the magnetisation vector component, normal to the surface) in506

the region of the core at the surfaces of the pillar. The total energy (exchange plus surface mag-507
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netostatic) of the magnetic vortex has a minimum when varying the vortex core size55. However,508

as the length of the pillar is increased to infinity, the equilibrium vortex core size diverges due to509

the diminishing role of the surfaces. In finite pillars, the vortex core has a barrel-like shape that510

is narrow at the top/bottom surfaces and wide in the middle of the pillar. These surface charges,511

however, do not explain the stability of the structures in the bulk of our pillar, which do not extend512

to the surfaces of the sample.513

It is well known that, in thin films, vortices and antivortices can form bound states, such as514

in cross-tie walls56. A simple theoretical model for such a wall can be given directly in terms of515

the complex function w of a (complex) variable u57:516

wc−t(u, u, z) = ı tan(u/s), (8)

where s is the spatial scale (width) of the domain wall. The corresponding magnetisation structure517

has both volume and surface magnetic charges. The magnetostatic energy associated to these518

charges stabilizes the wall, yielding a certain equilibrium value of s as a function of the film519

thickness L and the exchange length LEX =
√

2A/(µ0M2
S) , where A is the exchange constant of520

the material. It should be noted, however, that, due to the presence of magnetic volume charges,521

the domain wall width for the model given by Equation (8) does not diverge as film thickness goes522

to infinity L→∞, but assumes a finite bulk limit523

s∞ = 8

√
3

12− π2
LEX, (9)

which can be directly computed using the magnetostatic function for the cross-tie wall57. For524

GdCo2 with an exchange length LEX ' 20 nm, the resulting value of s∞ ' 189 nm, correspond-525
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ing to the distances between vortex and antivortex centers of s∞π/2 ' 296 nm , can serve as a526

ball-park theoretical estimate for the size of vortex rings.527

Unlike a cross-tie domain wall, the magnetic vortex rings we observe are quasiuniform states528

and exist as a perturbation of a mostly uniform background. Because the magnetisation vector is529

included in both the exchange energy (squared gradients of components) and the magnetic volume530

charges density (product of divergences) via derivatives, a constant background is irrelevant and531

we can roughly assume that, in the quasiuniform state, only the spatial variation of the magneti-532

sation vector is reduced, compared to the case of fully developed vortices and antivortices. For the533

quasiuniform cross-tie domain wall, this can be modeled by representing its total energy as534

Ec−t ∝ c1
(LEX/L)2

s
+ c2F (s), (10)

where the case c1 = c2 = 1 corresponds to the energy of the fully developed cross-tie wall57 and535

F (s) is the magnetostatic function. The parameters c1 and c2 then account for the reduced variation536

of the magnetisation in the quasiuniform case, which has different effects on the exchange and537

magnetostatic energy terms. It is important to note that provided c1, c2 6= 0, this reduced variation538

does not destroy the energy minimum for s, but merely rescales the equilibrium wall width. This539

means that the quasiuniform bound state of vortices and antivortices can also be stable with respect540

to scaling, as for the cross-tie wall in a bulk magnet.541

542 44. Holler, M. et al. Omny pina versatile sample holder for tomographic measurements at room543

and cryogenic temperatures. Review of Scientific Instruments 88, 113701 (2017).544
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Extended Data Figure 4: Detailed overview of the vortex ring with circulating magnetic vorticity

(presented in Figure2 of the main text), shown in successive slices through the loop. The magneti-

sation within each slice is represented by the streamlines The colourscale in the top row indicates

the x̂ component of the magnetisation, while the colour scale in the bottom row indicates the x̂

component of the vorticity. The vorticity associated with the vortex structure extending throughout

the pillar changes sign in slice d due to the presence of a Bloch point, while the vortex-antivortex

pair conserves its vorticity throughout. In slices b and c, the magnetisation forms a structure sim-

ilar to that of cross-tie walls, which dissolves as the pair unwinds, at slices a and d, leaving the a

single vortex.
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Extended Data Figure 5: Detailed overview of the magnetic state of the vortex loop containing

Bloch points (presented in Figure3 of the main text), shown in successive slices through the loop.

The magnetisation within each slice is represented by the streamlines. The colourscale in the top

row indicates the x̂ component of the magnetisation, while the colourscale in the bottom row

indicates the x̂ component of the vorticity. The vorticity along the vortex core reverses between

slices b and c, while the vorticity along the antivortex core reverses between slices c and d. f) The

white isosurface, plotted along with the vortex loop, corresponds to mx = 0 and separates regions

of mx = +1 and mx = −1, thus highlighting the presence of a complicated domain wall structure.

The Bloch points are located at the intersection of the loop with this isosurface (locations indicated

by the dashed circles). 36



Extended Data Figure 6: Effect of different field and thermal protocols on the presence and

distribution of regions of high magnetic vorticity, and magnetisation singularities. a) Vorticity

distribution following the application of a 7 T saturating field and c) following saturation and field

cooling. b) Regions of high divergence of the magnetic vorticity indicate the presence of Bloch

points (red) and anti-Bloch points (blue)at remanence, following saturation. d) In the same way,

singularities are identified after heating at 400 K and field cooling in a 7 T field. Noticeably fewer

magnetic structures with high vorticity are present following the field cooling procedure.
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Extended Data Figure 7: The vortex loop containing magnetisation singularities (presented in

Figure 3 in the main text ) seen from multiple directions. The vortex loop containing Bloch points

is shown with the isosurface representing mx = ±1 (a,c) and pre-images (b,d). In a) and b), the

vortex loop and its preimages have the same spatial orientation as in Figure 3a of the main text. In

c) and d), the loop and preimages are presented with the same orientation as in Figure 3g.
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