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Abstract: The crystal structure of a chemical compound serves several purposes: its coordinates
represent three-dimensional information about the connectivity between the atoms; it is the only
technique that determines the absolute configuration of chiral molecules; it enables determining
structure–function relations; and crystallographic data at atomic resolution distinguish between
element types and serve as a confirmation of synthesis protocols. Here, we collected electron
diffraction data from albite and from a Linde Type A (LTA) type zeolite. Both compounds are
aluminosilicates with well-defined silicon and aluminum crystallographic sites. Data were recorded
with the “adJUstiNg Gain detector FoR the Aramis User station” (JUNGFRAU detector) and we made
use of its capability of energy discrimination to suppress noise. For both compounds, crystallographic
refinement distinguishes correctly between silicon and aluminum, even though these elements have
very similar electron scattering factors. These results highlight the quality of the electron diffraction
data and the reliability of the models for chemical interpretation. Further development in this direction
will provide enormous opportunities for structure–function studies by diffraction.

Keywords: charge-integrating detector; electron crystallography; aluminosilicates; discrimination of
element types

1. Introduction

Hybrid pixel detectors (HPD) are widely used for X-ray crystallography both at synchrotrons
and in-house set-ups. They are characterised by a high dynamic range, good linear response, and a
neglectable read-out dead time. HPDs enabled shutterless continuous data collection and fine slicing
of the rotation angle [1–3], and made it possible to adjust the data collection strategy to the scientific
question and sample properties. The same characteristics make HPDs promising detectors in electron
microscopes [4]. Previously, we demonstrated the qualities of the EIGER detector for electron
diffraction [5]. Its technology was used in several other recent publications [6–9] that triggered a
lot of attention [10–12].

In this work, we present how the “adJUstiNg Gain detector FoR the Aramis User station”
(JUNGFRAU detector) [13] performs for electron diffraction experiments. In contrast to EIGER, and
most other HPDs, JUNGFRAU is a charge-integrating detector instead of a single photon/electron
counter. This is because it was designed for experiments at X-ray free electron lasers where all photons
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arrive within femtoseconds, making it impossible to process pulses from individual particles. In-pixel
gain switching provides a dynamic range of 120 MeV per pixel and frame, while offering single particle
sensitivity down to energy depositions of 2 keV. Using a charge integrating detector has two distinct
advantages over photon counting detectors: at low rates, where the tracks from single electrons are
visible, the deposited energy per pixel can be used to estimate the entrance point [14] and at high rates
the detector is not sensitive to pulse pileup. Like other hybrid pixel detectors, and in contrast to most
monolithic active pixel sensors, the JUNGFRAU is radiation hard. Due to the sensor thickness, electrons
do not penetrate to the pixel side, and thus cannot cause charge build up in the oxide layer and for
bulk damage the electron would have to have at least 260 keV of energy [15]. Therefore, we expected,
and have observed, no radiation damage to the detector from the electron beam intensities typically
used for data collection.

We mounted a single JUNGFRAU module with a 320 µm thick silicon sensor onto a 200 keV
transmission electron microscope with an LaB6 electron source, and collected diffraction data from two
aluminosilicate, the sodium feldspar mineral albite (sum formula NaAlSi3O8) and zeolite A (sum formula
NaAlSiO4) of Linde Type A (LTA) framework [16]. The framework of LTA is typically described in the
space group of Fm3̄c (unit cell axis a ≈ 24.6 Å) with two T-positions respectively assigned to silicon
and aluminium (Si:Al = 1.0) without violation of Löwenstein’s rule [17,18]. The unit cell is composed of
eight large α-cavities adjacent to one sodalite β-cage and d4r building units that results in a 3D topology.
The electronegative framework of zeolite A is constructed by 8- 6- and 4-membered rings counterbalanced
by 12 extra-framework Na+ cations placed inside α-cage. Sodium sitting in a plane of 8-ring controls
the aperture size and determines the structure properties which have found broad application [19].
The framework of albite has four T-sites. All positions, including the Na+ ion, are crystallographically
ordered and fully occupied, and the sample is radiation hard. The spacegroup of albite is P1̄. Zeolites
are aluminosilicates and possess a crystalline, microporous structure. They are widely used as catalyst,
ion exchanger and adsorbent. The framework consists of tetrahedrally-coordinated silicon and aluminum
which occupy the so-called T-sites. These sites are connected by bridging oxygen atoms. The properties
of zeolites are affected by the aluminum occupancy of the T-sites. In many catalytically active zeolites,
the Si:Al ratio is high, and T-sites are only partially occupied with aluminum. One of the major remaining
questions in the field of zeolites is the aluminum T-site occupancy. Both in albite and in zeolite A
(NaAlSiO4), the T-sites are fully occupied with either aluminium or silicon without mixed occupancies
and with known ordering. Therefore, we chose these two compounds as control compounds for a
project investigating zeolites with electron diffraction. For albite and zeolite A, we originally expected to
differentiate between silicon and aluminum based on the differences in the T-O bond distance: they should
be 1.61 Å for tetrahedrally coordinated Si-O and 1.76 Å for tetrahedally coordinated Al-O [20]. This work
describes how we processed the diffraction data from the JUNGFRAU detector and presents the high
quality data. As expected, our data sets mark the expected Al-position with an elongated T-O bond length
compared with the T-O distances at the Si-sites. In addition, our diffraction data differentiate between
13Al and 14Si both during structure solution and after refinement of the structures, despite the small
difference of the scattering power of these two close-by elements.

2. Materials and Methods

2.1. Instrumentation

Electron diffraction data were collected at 200 keV on a CM200 transmission electron microscope
(TEM) (Philips, Amsterdam, Netherlands) with a LaB6 electron source. The detector used was a
512 × 1024 pixel JUNGFRAU detector with a 320 µm thick silicon sensor and a pixel size of (75 µm)2.
Due to an aperture underneath the fluorescence screen, the detector area was restricted to a circle with
about 320 pixels diameter. We therefore collected a low resolution data set at 780 mm effective detector
distance, and a high resolution data set at 280 mm effective detector distance in order to cover the full
resolution range of the samples. The CM200 has no C3 lens, which would enable Koehler illumination
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for a parallel beam at a small beam diameter [21]. We set the beam diameter to match the instrument
aperture at the chosen magnification. This may result in a non-parallel beam at the sample. However,
this is not expected to have a serious impact on the data quality: XDS (see Section 2.4) reports a beam
divergence of about 0.1◦. This value is of the same order of magnitude of what XDS reports when
synchrotron X-ray radiation is used, and about an order of magnitude better compared with inhouse
X-ray sources N.B.: The value reported as BEAM_DIVERGENCE by XDS is used to model the reflection
profile, and not an exact measure for the true beam divergence.) The backfocal plane was focussed
onto the detector plane by focussing the direct beam before every data collection. This procedure
takes only a few seconds and could easily be automated by a TEM manufacturer. This is important
for radiation sensitive samples. In order to facilitate this procedure even further, we implemented
a live profile of the direct beam into the detector control interface, shown in Figure 1. During post
processing, a threshold of 10 keV was applied to suppress electronic noise and low energy X-ray
background. This value was chosen taking into account the measured noise of the detector (0.63 keV)
in this configuration and allowing some margin for pedestal drift and low energy X-ray background.

Figure 1. Graphical control interface of the JUNGFRAU detector developed for our experiments.
(1) The main panel shows an enlarged image of the direct beam. The centre of the detector surface
is shown as a green circle. (2) The one-dimensional beam profile below enables fast focussing of the
diffraction pattern on the detector surface by minimising the standard deviation of the beam profile.
The panel on the right sets the dimensions of the profile and the contrast of the main panel. (3) The top
row has presets for the contrast. (4) The Accumulate button takes a screenshot.

2.2. Data Acquisition

Magnification in imaging mode was determined with a grating replica waffle, 2160 lines/mm
(Ted Pella Product Number 607). The detector distance in diffraction mode and the direction of the
rotation axis were estimated from the powder diffraction pattern of an evaporated aluminum standard
(Ted Pella Product Number 619). Albite crystals were small. In their case, the rotation axis was centred
with a beam diameter of 750 nm, at about 32,000 fold magnification. Zeolite A crystals were centred
with a beam diameter between 2.3 µm and 3 µm, at 10,500 fold and 8,000 fold magnification. The same
beam settings were used in diffraction mode. The first few data sets of zeolite A were collected with
a cryo holder at −189 ◦C. Our goniometer stage, however, is optimised for the room temperature
holder, and data collection was cumbersome because of drifts during rotation which could not be
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corrected for. We therefore continued data collection with the room temperature holder. Prior to
every data collection, the beam was manually focused on the JUNGFRAU detector by minimising
the diameter of the direct beam. This was also monitored by a narrow profile of the direct beam
(cf. Figure 1). The rotation rate at the CM200 is set manually with turn-button and varies with each data
set. The rotation angle of the sample was recorded with a Digital Micrograph (DM) script [6], and the
rotation rate was determined with a linear fit to the range of rotation [22]. The sample was always
rotated in the positive direction from about −40◦ to +40◦. Rotation range at the aged CM200 is limited
to this range, otherwise, one risks to break the vacuum. The order of steps during data collection are:

1. Start DM script to record rotation angle alpha
2. Start rotation
3. Start data capture from JUNGFRAU
4. Stop data capture from JUNGFRAU
5. Stop rotation

The duration of the DM script was set to 2–3 min, which was sufficient to cover the remaining
steps. The rotation speed was aimed to be about 1◦/s by setting it roughly to the same position for
each data set.

To optimise the thermal stability of the detector, the JUNGFRAU was operated continuously at
1 kHz throughout the experiments. The detector was cooled with a Microcool M250 with Kryo 30 cooling
liquid (Lauda-Brinkmann, LP, Delran, NJ, USA). The temperature was set to 14.5 ◦C. During searching
and focusing, 100 frames at a time were summed and displayed in an online viewer, while data taking
the stream was written to disk at 1 kHz. The exposure time was 980 µs to maximise the duty cycle.
This mode of operation highlights the difference between single photon/electron detectors, which,
due to their internal threshold, can be operated with long exposure times and charge integrating
detectors which have to be run with a high frame rate due to leakage current. Pedestal measurements
were taken directly after each measurement to reduce the impact of the middle and low gain pedestal
collection procedure on the detector temperature.

2.3. Data Conversion

To convert the output of the detector, which consists of a 14 bit ADC value and 2 bits of gain data
per pixels, we need three different calibration constants, one for each gain (G0, G1, G2), and three offsets
for pedestal correction. The detector was calibrated using the standard procedure before mounting it
on the microscope. The calibration consists of an absolute calibration of G0 with 8 keV photons from
Copper X-ray fluorescence and relative calibrations for G1 and G2 using backplane pulsing and the
internal current source [23].

Before processing with XDS, each frame was converted to deposited energy using the described
procedure, then we applied a 10 keV threshold to suppress background before summing 50 frames
together resulting in an effective frame rate of 20 Hz.

2.4. Data Processing

Data were processed with XDS. During indexing, rotation axis, unit cell constants, crystal
orientation, and beam direction were refined (keyword REFINE(IDXREF) = BEAM AXIS ORIENTATION
CELL), data were integrated with profile fitting, without parameter refinement (keyword
REFINE(INTEGRATE) = !). During the scaling step (CORRECT in XDS), the same parameters as during
indexing were refined for a first round (keyword REFINE(IDXREF) = BEAM AXIS ORIENTATION CELL).
In subsequent rounds, the detector distance was refined instead of the beam direction (keyword
REFINE(IDXREF) = POSITION AXIS ORIENTATION CELL). Simultaneous refinement of BEAM and
POSITION resulted in unrealistic parameter drifts, most likely due to the high correlation between the
beam direction, and the detector position [24]. Resolution cut-off was chosen approximately where
CC1/2 dropped below 70% [25] and 〈I/σI〉 dropped below 2.0. For albite, data from 9 crystals were
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merged to reach near complete data (Tables S3 and S4). Because of the low symmetry spacegroup of
albite, P1̄, scaling of individual datasets was suppressed, and all datasets together were scaled with
default options in XSCALE [26,27].

Both the detector distance and the rotation axis could be refined during data processing.
High resolution data of our samples most likely stabilised the refinement of the detector distance and
may not be possible for samples that diffract to less than 0.9’ish Å resolution.

2.5. Structure Solution and Refinement

Structures were solved with SHELXT [28]. SHELXT makes use of normalized structure factors.
These correct for the θ-dependent fall-off of the structure factor, making it independent from the
type of radiation [29]. The structure of albite was found from the default options. For the structure
of zeolite A, we enforced the known spacegroup Fm3̄c with the SHELXT command line switch
‘-s“Fm-3c”’, as otherwise the non-centrosymmetric spacegroup F4̄3c was chosen. This is most likely
due to the more stringent requirements for centrosymmetric spacegroups [30]. Structure was built with
SHELXLE [31] and refined with SHELXL [32]. Scattering factors tabulated in Table 4.3.1.1 of [33] were
fitted with the Cromer–Mann-parametrisation available in SHELXL. Starting values for the fitting were
taken from the parametrisation in [34]. The nine parameters of the Cromer–Mann-parametrisation
were fitted with GNUPLOT [22]. Only neutral scattering factors were used, no ionic scattering
factors. All atom coordinates were refined independently and without restraints. Atomic displacement
parameters (ADP) were refined isotropically. Anisotropic ADPs can act as fudge factors that would
wash out the small differences between the T1/T2 configurations. A few hundred cycles of least-squares
refinement were typically sufficient to reduce the parameter shifts to zero. This “zero-shifts” state was
reached for every configuration before reporting the R1 and Rcomplete values listed in Tables 1 and 2,
as well as Figures 2 and 3. In the structure of zeolite A, the strongest sodium atom, at the 6-ring,
was typically assigned as oxygen atom by SHELXT. The second sodium, at the 8-ring, visible as a peak
in the difference map and placed accordingly. We did not model the third sodium ion because of its
very low occupancy of about 4 %, cf. [17].

Table 1. R1 and Rcomplete [35] values of albite for all 16 combinations of silicon and aluminum across the
four T-sites of albite. The first column lists the number of T-sites modelled as aluminum, the following
four columns list which T-sites were modelled as aluminum and silicon respectively. Atom coordinates
and one isotropic ADP value were refined for each atom site without restraints, and until convergence
was reached (zero parameter drift reported by SHELXL). Values in parentheses for strong reflections
(I > 2σ(I)).

# Al T1 T2 T3 T4 R1 Rcomplete

0 × Al Si Si Si Si 22.80 (17.82) 23.11 (19.78)
1 × Al Si Si Si Al 22.73 (17.76) 23.05 (19.74)

Si Si Al Si 23.08 (18.11) 23.41 (20.07)
Si Al Si Si 23.06 (18.08) 23.37 (20.12)
Al Si Si Si 23.05 (18.10) 23.38 (20.06)

2 × Al Si Si Al Al 22.93 (17.98) 23.25 (19.95)
Si Al Si Al 22.96 (17.95) 23.25 (19.97)
Al Si Si Al 22.95 (17.98) 23.29 (19.98)
Si Al Al Si 23.26 (18.29) 23.60 (20.31)
Al Si Al Si 23.26 (18.31) 23.59 (20.26)
Al Al Si Si 23.24 (18.27) 23.56 (20.31)

3 × Al Si Al Al Al 23.08 (18.13) 23.41 (20.14)
Al Si Al Al 23.14 (18.20) 23.48 (20.16)
Al Al Si Al 23.10 (18.09) 23.43 (20.15)
Al Al Al Si 23.41 (18.42) 23.74 (20.45)

4 × Al Al Al Al Al 23.18 (18.22) 23.50 (20.22)
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Table 2. R1 and Rcomplete [35] values of zeolite A, measured at room temperature and −189 ◦C
(as indicated). The second T-site is the aluminum site, i.e., the first column contains the correct combination
Si/Al. All four possible combinations of modelling the two T sites as silicon and aluminum, respectively.
Atom coordinates and one isotropic ADP value were refined for each atom site without restraints, and until
convergence was reached (no parameter drift). Number in brackets calculated from strong reflections
(I/σI > 2).

Sample
T1 Modelled as/T2 Modelled as

Si/Al Si/Si Al/Al Al/Si

x1 (RT) R1 [%] 32.62 (31.42) 32.67 (31.32) 33.83 (32.51) 33.95 (32.50)
Rcomplete [%] 33.51 (32.31) 33.54 (32.19) 34.94 (33.62) 34.96 (33.50)

x2 (RT) R1 [%] 30.32 (29.75) 30.66 (30.11) 31.23 (30.69) 31.18 (30.55)
Rcomplete [%] 31.18 (30.61) 31.47 (30.92) 32.22 (31.68) 32.07 (31.45)

x3 (−189 ◦C) R1 [%] 27.47 (24.15) 27.67 (24.19) 28.01 (24.42) 28.10 (24.65)
Rcomplete [%] 29.12 (25.82) 29.30 (25.82) 29.70 (26.10) 29.87 (26.43)

x4 (−189 ◦C) R1 [%] 30.80 (28.39) 30.87 (28.36) 31.29 (28.61) 31.26 (28.80)
Rcomplete [%] 31.82 (29.37) 31.83 (29.31) 32.35 (29.65) 32.35 (29.88)

x5 (−189 ◦C) R1 [%] 27.42 (26.76) 27.57 (26.92) 27.99 (27.25) 28.28 (27.65)
Rcomplete [%] 28.30 (27.65) 28.44 (27.79) 28.93 (28.19) 29.25 (28.63)
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Figure 2. Left: Rcomplete for all 16 combinations for assigning aluminum (blue circle) and silicon
(grey circle) to the four T-sites in albite, sorted increasingly. The lowest Rcomplete corresponds to the
correct combination T1 = T2 = T3 = Si and T4 = Al. Rcomplete increases with the number of wrongly
assigned element types (grouped by vertical lines). Atom coordinates and one isotropic ADP value
were refined for each atom site without restraints, and until convergence was reached (no parameter
drift). Right: Asymmetric unit of albite with labelling of the four T-sites. T4 corresponds to aluminium.
Oxygen atoms red, the sodium ion in orange.
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Figure 3. Right: Rcomplete for all four possibilities to model T1 and T2 as aluminum (blue circle)
and silicon (grey circle), respectively, plotted for all five crystals. The lowest Rcomplete corresponds to
the correct combination T1 = Si and T2 = Al. Atom coordinates and one isotropic ADP value were
refined for each atom site without restraints, and until convergence was reached (no parameter drift).
Left: Asymmetric unit of zeolite A with its two T-sites and two sodium ions (orange). We did not model
the third, weakly occupied sodium ion [17].

2.6. Data Availability

The diffraction data in CBF format, together with the input files for XDS, are available from
zenodo.org, DOI 10.5281/zenodo.4249684. The metadata of the CBF files only contain the pixel size and
the wavelength. The full geometric description of the experiments can be found in the accompanying
XDS files. Structural data have been deposited at the ICSD with the codes

Albite CSD 2042879 LTA x1 CSD 2042880 LTA x2 CSD 2042881
LTA x3 CSD 2042882 LTA x4 CSD 2042883 LTA x5 CSD 2042884

3. Results

3.1. Operation of the JUNGFRAU Detector and Data Conversion

The JUNGFRAU detector was not integrated into the control electronics of the transmission
electron microscope (TEM), meaning that we had to resort to manual data collection. The graphical
user interface (GUI), shown in Figure 1, facilitates this process as much as possible: It provides a
live view suitable for sample search in imaging mode of the microscope, and during data collection
of the diffraction data. The one-dimensional profile at the bottom of the GUI helps focus the beam
and thus the diffraction pattern on the detector surface. This greatly relaxes the requirement of a
parallel beam that is often time-consuming to adjust, and enables the use of a beam diameter smaller
than what would be possible with a strictly parallel beam [21]. The standard deviation of the beam
profile is narrowest when the beam is focussed. Screenshots can be recorded directly from the GUI
both in imaging and diffraction modes of the TEM. The live-view during data collection provides the
trained crystallographer with a first impression of the data quality, and data collection can be stopped,
e.g., when the crystal moves out of the beam, or loses diffraction power due to radiation damage.

The JUNGFRAU detector has three different gains. Each pixel switches to the next gain
when the accumulated charge reaches a specific threshold. The pixel encodes its gain setting
(Figures 4b and 5b) together with analog data, which can then be converted to deposited energy
from a detector specific gain map. We recorded the pedestal in each of the three gains after every
data collection (Figures 4c and 5c). After conversion, the data per pixel corresponds to the energy
deposited during the 1 ms exposure time (Figures 4d and 5d). Due to the low intensity impinging
onto the detector, the diffraction pattern becomes visible to the bare eye only after summation of
50 frames, i.e., 50 ms of exposure per frame (Figures 4e and 5e). During data conversion, a threshold of

zenodo.org
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10 keV was applied for noise suppression. The effect is illustrated in Figure 6. It shows a data frame of
zeolite A with (left) and without (middle) application of the 10 keV threshold. The difference between
both frames is not obvious. However, substracting the non-thresholded frame from the thresholded
frame reveals additional reflections, which are invisible on the original frames (right).

Figure 4. Albite data conversion and energy correction with the JUNGFRAU detector. (a) Raw data
recorded in 1 ms, (b) gain levels per pixel, (c) pedestal map for gain level 0, (d) converted frame,
(e) sum of 50 converted frames makes the diffraction pattern visible.
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Figure 5. Similar to Figure 4, zeolite A data conversion and energy correction with the JUNGFRAU
detector. (a) Raw data recorded in 1 ms, (b) gain levels per pixel, (c) pedestal map for gain level 0,
(d) converted frame, (e) sum of 50 converted frames makes the diffraction pattern visible.
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Figure 6. Noise reduction by application of a 10 keV threshold. (a) Frame with 10 keV threshold
applied, (b) frame without threshold applied, (c) frame (a)–frame (b) reveal “hidden” reflections.
The insets show a magnified version of the region of interest. Images including background subtraction
with ADXV [36].

3.2. Benchmark Sample Albite

Albite has four T-sites. Therefore, there are 16 possible combinations to model each T-site as
either silicon or aluminum. The crystallographic residual values R1 (R1 = ∑hkl

||Fobs(hkl)|−|Fcalc(hkl)||
|Fobs(hkl) |

)

for each combination are listed in Table 1. The known correct combination, T1 = T2 = T3 = Si
and T4 = Al, results in the lowest R1 and Rcomplete (Rcomplete reduces the effect of overfitting and is
more sensitive to small differences in the structural model than R1 [35]). Figure 2 plots these values
sorted by Rcomplete. The vertical bars group combinations by the number of wrong element types,
e.g., the correct model has zero wrongly modelled T-sites, while the second model, with all T-sites
modelled as silicon, has one T-site modelled wrongly, namely T4. This graph supports our claim that
the lowest Rcomplete for the correct model is due to data quality rather than pure coincidence, as the
Rcomplete rises with an increasing number of wrongly modelled T-sites (up to T1 = T2 = T3 = Al and
T4 = Si, where each T-site is modelled with the wrong element). Observed data, calculated data, and
their difference are plotted for each of the 16 possible combinations in Supplemental Figures S1–S3.
The differences between each combination is hardly visible by the bare eye, which reflects the small
differences in the residual values.

Originally, the high quality of our data became apparent from the structure solution even before
refinement. The asymmetric unit of albite has the sum formula Si3 AlO8Na. The structure solution with
SHELXT correctly assigned all atoms, except for the Na+ ion, which was assigned as an additional
oxygen atom. Three T-sites were assigned as silicon, one element was assigned as aluminum, all at
their expected positions. SHELXT decides about the element type from the summed density values
within a 1.4 Å sphere around map peaks and assigns the strongest peak(s) to the heaviest atom from the
list of elements provided by the user (O, Na, Si, Al in this case of albite). The remaining element types
are assigned based on the relative peak strengths according to the list of elements [28]. This means that
the map value at the aluminum T-site differs sufficiently from the three silicon T-sites already before
model refinement, despite seemingly poor data statistics (cf. Table S3). Note that the sodium atom is
not bonded and has higher ADP values than the framework atoms. Consequently, the local map value
is decreased, which is most likely the reason why it was incorrectly assigned as oxygen. We could
confirm the correctness of the assignment from the T-O bonds. The expected Al-O bond is about 1.76 Å
and the Si-O bond is about 1.61 Å [20]. The Al-O and Si-O bond lengths for our model are 1.71–1.75 Å
and 1.58–1.64 Å, respectively (Table S1).

3.3. Benchmark Sample Zeolite A

Zeolite A has only two T-sites and four possible combinations to model each T-site as either silicon
or aluminum. Zeolite A has spacegroup Fm3̄c. This high symmetry space group results in complete data
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from individual crystals, and we could confirm our findings by comparing results from several crystals.
The crystallographic residual values for five different crystals are tabulated in Table 2 and plotted in
Figure 3. Observed data for zeolite A are compared with the calculated data in Supplemental Figure S5.
As with albite, SHELXT assigned all element types correctly, except for sodium, i.e., it identified the
correct T-site for aluminum and the remaining three for silicon. The average T-O bond lengths confirmed
the correct assignment (see exemplary Table S2). In every case, the model with the correct assignment
results in the lowest R1/Rcomplete-values, listed in Table 2 and illustrated in Figure 3.

4. Discussion

We collected electron diffraction data at 200 keV with a JUNGFRAU detector and suppressed noise
below 10 keV using its capability for energy discrimination in the keV range, intrinsic of the detector
itself. We merged low and high resolution data to ensure complete data across the full resolution range,
including low resolution data. The detector does not require a beam-stop, and we focussed the beam in
the detector plane in diffraction mode. This relaxes the requirements for a parallel beam and facilitates
data collection. We demonstrate the high quality of our data with several data sets from albite and
zeolite A, an LTA type framework. Our data reliably distinguishes aluminum from silicon based on
their scattering factors both during structure solution, and for the refined model. While a 200 keV
TEM with a LaB6 electron source is very well suited for electron diffraction studies [37], many TEMs
are equipped with a field emission gun and are usually operated at 300 keV. For operation at 300 keV,
one would choose a thicker silicon layer, e.g., 450 µm, to shield the ASIC. Depending on the dose
requirements, one would look into specialized sensor designs [38]. Several experiments have been
performed successfully at 300 keV, showing that the current generation of detectors is useful at this
energy, but, to the knowledge of the authors, no systematic measurements of radiation hardness has
been carried out. Hybrid Pixel Detectors for Electron Microscopy should also benefit from the vast
amount of research going into radiation hard sensors and ASICs for the High Luminosity LHC.

The silicon and aluminum positions of our benchmark samples, albite and zeolite A are well
known, and they have full occupancy, i.e., there is no disorder between silicon and aluminum.
Our findings raise the question as to what extent electron diffraction could differentiate disordered
structures, where one T-site is occupied both by aluminum and silicon. This question is important
for understanding the chemical properties of zeolites and to tune their catalytic properties. We are
convinced that further method development for electron diffraction will shed light on this question.
Here, we refrain to provide a quantitative estimate of the occupancy level that electron diffraction
will eventually differentiate. There are too many factors that currently affect the data quality and
in particular the noise level, which shadows the signal difference between aluminum and silicon.
These factors are of both and an instrumental and methodical nature: Electron diffraction is almost
always affected by dynamic scattering, while both scaling and refinement assumes kinetic scattering.
Furthermore, scaling does improve data quality, and the solvability for structures with ab initio methods.
However, the crystallographic scaling methods of programs like XDS, AIMLESS, or SADABS are
tuned for X-ray diffraction [39–42]. A scaling algorithm tuned for electron diffraction still needs
to be developed. Data collected with the rotation method assume a constant oscillation width,
i.e., a reliable goniometer. This may not be guaranteed, in particular with old instruments like we
have access to. Finally, scattering factors can most likely be improved, and we made no attempt to
use ionic scattering factors [43]. More sophisticated electron scattering factors than those from [33]
are available [43,44]. Furthermore, we processed our data with XDS. Other data reduction programs,
like PETS, can be more easily combined with dynamical refinement, e.g., with JANA2006, which can
reveal finer structural details than a pure kinematic approach [45–48].

5. Conclusions

The JUNGFRAU detector is a charge-integrating hybrid pixel detector. Due to its in-pixel gain
switching, it has a dynamic range of 120 MeV, and it can discriminate particle energies in the keV range.



Crystals 2020, 10, 1148 12 of 14

We demonstrate here that the JUNGFRAU detector is suitable for recording electron diffraction data.
We developed a graphical user interface for convenient data collection. We collected crystallographic
diffraction data of excellent quality: the data are good enough to reveal the subtle difference between
aluminum and silicon in two different types of aluminosilicates. We are confident that we can further
improve the data quality. In the context of zeolite research, we aim at the determination of the
occupancy level of T-sites with mixed aluminum and silicon occupancies. One of the possible
improvements exploits the fast read-out rate of the JUNGFRAU detector of up to 2 kHz. Combined with
low dose exposure, this enables particle tracking of the impacting electrons. This will improve data in
two ways: knowing the point of impact will improve the intensity and the background estimates for
every reflection, and the multiple counting of single electrons [5] will be avoided.
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T1–T4 compositions, Figure S5: Data for Zeolite A structure depending on the T1/T2 composition, Table S1: T-O
bond lengths for the refined structure of albite, Table S2: T-O bond lengths for the refined structure of zeolite A,
crystal 3, Table S3: Information for data sets from 9 crystals merged for albite, Table S4: Data statistics for albite
after merging of data sets from 9 crystals.
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