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A B S T R A C T   

The models adopted in Human Reliability Analysis (HRA) characterize personnel tasks and performance con-
ditions via categories of task and influencing factors (e.g. task types and Performance Shaping Factors, PSF). 
These categories cover the variability of the operational tasks and conditions affecting performance, and of the 
associated Human Error Probability (HEP). However, variability exists as well within such categories, for 
example because of the different scenarios and plants in which data is collected, as well as of the operating crew 
differences (within-category and crew-to-crew variability). This paper presents a Bayesian model to mathe-
matically aggregate simulator data to estimate failure probabilities, explicitly accounting for the specific tasks, 
scenarios, plants and crew behavior variability, within a given “constellation” (i.e. combination) of task and 
factor categories. The general aim of the proposed work is to provide future HRA with reference data with 
stronger empirical basis for failure probability values, both for their nominal values as well as for their variability 
and uncertainty. Numerical applications with both artificially-generated data and real simulator data are pro-
vided to demonstrate the effects of modelling variability in HEP estimates, to avoid potential overconfidence and 
biases. The applicability of the proposed model to ongoing simulator data collection programs is also 
investigated.   

1. Introduction 

Human Reliability Analysis (HRA) is the part of Probabilistic Safety 
Assessment (PSA) addressing the human contribution to the quantifi-
cation of risk of complex technical systems, typically nuclear power 
plants, chemical and aerospace systems [1,2]. HRA aims to identify the 
safety-critical tasks performed by the personnel, to characterize the 
contextual factors influencing human performance, and to quantify the 
probability of failures. 

To derive the human failure probability values (also referred to as 
Human Error Probabilities, HEPs), HRA methods characterize the 
personnel tasks and the factors deemed to influence task performance, 
the so-called Performance Shaping Factors (PSFs), e.g. adequacy of 
procedural guidance, of the human-machine interface, time available to 
accomplish the task, etc. HRA models characterize tasks and factors as 
categorical elements, with taxonomies and metrics dependent on the 
method. For instance, the Human Error Assessment and Reduction 
Technique (HEART, [3,4], newly issued in [5]) identifies nine generic 
task types (e.g. “complex task requiring high level of comprehension and 
skill”) together with thirty-eight error producing conditions (e.g. “a low 

signal-noise ratio”). The Technique for Human Error Rate Prediction 
(THERP, [6]) characterizes tasks at a lower level of decomposition (e.g. 
“set a rotary control to an incorrect setting”, “check/reading digital in-
dicators”) and PSFs such as training and stress (e.g. “Very low”, “Opti-
mum” stress). A similar use of categorical elements appears in all HRA 
methods, e.g. [7,8], and [9]. Recently, advanced models such as 
Bayesian Belief Networks (BBN) have been developed for HRA appli-
cations to capture the complex task, PSF, and HEP relationships and to 
enhance traceability in use of diverse data and judgment [10,11]. 

Reference data for the task categories and the PSF effects is needed to 
parametrize a method’s quantification model, both for traditional as 
well as for advanced models. The data is generally obtained by 
combining empirical data and expert judgment [12]. Since the early 
developments of HRA, empirical data has been mainly gathered from 
human factor studies, data collection campaigns in main control room 
simulators, retrospective analyses of accidents, near misses and opera-
tional events [1,13]. An important turning point for HRA came from the 
International [14] and US HRA [15] Empirical Studies, aimed at 
assessing the validity of HRA method predictions against data from 
nuclear power plant main control room simulators. Besides improving 
HRA practice and methods, these studies resulted in methodological 
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advances in the collection of simulator data for HRA purposes, with 
important implications on several recent activities [16–18]. Two 
notable, ongoing, data collection programs are the HUman REliability 
data Extraction framework, HuREX [16], and the Scenario Authoring, 
Characterization, And Debriefing Application, SACADA [17]: with their 
long-term data collection perspective, these are expected to produce a 
large amount of empirical evidence for new HRA reference data, more 
representative of recent operational conditions, e.g. reflecting modern 
interfaces and procedural guidance. 

The majority of recent research activities dealing with the use of 
simulator data for HRA has addressed the development of protocols to 
collect data: notably, the interpretation of performance outcomes in 
terms of failure or success and the definition of the types of information 
on crew performance to collect (Hallbert et al., 2013; [17,19]. Open 
issues remain for how to use this information to quantify HEP values and 
how to eventually incorporate them into HRA methods, with various 
approaches being investigated [20–26]. 

Similarly to HRA methods, the data collection protocols characterize 
simulator observations through categories related to taxonomies of tasks 
(e.g. “entering step in procedure” in [16]), failure mechanisms (e.g. 
“failure to prioritize” in [17]), contextual factors (e.g. “overloaded sta-
tus of alarm board” in [17]), and the like. The data associated to these 
categories is collected from different simulator scenarios, different 
plants, from crews with different behavioral styles, and different re-
alizations of the contextual factors. Research on quantification of HEP 
values from the emerging data is ongoing internationally. A number of 
pioneering works [20,24,26] have shown the advantages of Bayesian 
inference models in using the collected simulator data to quantify the 
HEP (and the associated uncertainty) for multiple “constellations” (i.e. 
combinations) of taxonomy categories, e.g. from the SACADA taxonomy 
[17]: macrocognitive function “understanding the situation/problem”, 
given the situational factor “information quality” with level “conflict-
ing”. These works focused on the relationship between the given task, 
the set of PSFs and the error probability, and investigated performance 
variability in simulator tasks under different PSF effects, i.e. “across 
constellations”: with respect to the previous example, e.g. when the 

“information quality” is “misleading” instead of “conflicting”. However, 
variability in simulator data exists as well within task and PSF cate-
gories, i.e. “within the constellation”, for instance, due to the different 
scenarios and plants in which data is collected as well as to operating 
crew differences (we refer to it as “within-category” and “crew-to-crew” 
variability, respectively). Such variability requires explicit consider-
ation: the simple approach of lumping all data relevant to a given 
constellation of categories would focus on the “population aver-
age”-HEP of the constellation. However, it may not adequately represent 
the existing sources of variability, and may possibly lead to over-
confident results [13,27,28]. 

The present paper proposes an inference model to derive HEP esti-
mates from simulator data that explicitly addresses within-category and 
crew-to-crew variability aspects within a given constellation of task type 
and PSF categories. The first aspect stems from differences across 
simulator scenarios and plant-specific realizations of the contextual 
factors associated to the same categories; the latter from differences 
across the operating crews, e.g. different problem-solving styles, 
communication strategies, modality of information sharing, team coor-
dination (e.g. tendency to prioritize tasks). The emerging simulator data 
is used to inform both the average HEP value as well as the associated 
variability bounds (hence, the focus on within-category and crew-to- 
crew variability). The main idea is to produce reference HEP values 
that can be used to inform HRA methods task type and PSF categories (or 
PSF multiplier values, depending on the method) as well as anchoring 
values for parametrizing advanced HRA models, such as BBNs. The 
parameters of the model are inferred via a Bayesian hierarchical 
framework, generally applicable to diverse taxonomies of task and PSF 
categories familiar to the HRA community. Because of the limited data 
available, most of the established HRA models (e.g. THERP, [6]; the 
Standardized Plant Analysis Risk–Human reliability, SPAR-H, [7,8]; the 
Cognitive Reliability and Error Analysis Method, CREAM, [9]) assess 
data variability by expert judgment: as the running simulator campaigns 
will produce new data, it becomes important that data variability be 
formally incorporated in the HEP estimates, decreasing (and eventually 
replacing) the judgment. 

Nomenclature 

E: evidence of the Bayesian model, expressed as set of pairs 
{(kij, Nij). 

F: set of taxonomy categories (e.g. task type and PSF levels/ 
ratings), referred as “constellation”. 

fF(HEP): parametric variability distribution, representing the 
overall spectrum of variability within a given constellation 
F. 

fc|t(pc|t

⃒
⃒
⃒p∗t ,θc|t): “crew-to-crew” variability term of fF(HEP), 

modelling the variability across the crews performing the 
specific task/context realization (characterized by the 
crew-generic error probability value p∗t ) within the 
constellation F. 

ft(pt |θt): “within-category” variability term offF(HEP), modelling 
the variability across the task/context realizations within 
the constellation F. 

kF, NF: total number of failures and observations for the 
constellation F (“lumped data”). 

(kij, Nij): number of failures observed on Nij repetitions of the i-th 
task performed by the j-th crew.i = 1, 2 …, m, j = 1, 2 …, 
n)}, where m: total number of tasks in the dataset; n: total 
number of crews performing the i-th task. 

L(E|θ): likelihood function of the Bayesian model, i.e. the 
probability density that evidence E is observed. 

N(...): normal distribution 
pc|t: crew-specific HEP variable. 
PF(pc|t): estimated HEP variability distribution for the constellation 

F. 
pt: task-, context-specific HEP variable (crew-generic). 
p∗t : specific numerical value (i.e. a realization) of pt. 
t: index for the task/context realization within the 

constellation F. 
(zt,zc|t): normally-distributed auxiliary variables associated to pt 

and pc|t. 
(α, β): shape parameters of the beta prior distributions. 
(μt , σF): parameters of the lognormal variability distribution (mean 

and standard deviation) used in the numerical application. 
θF: set of (unknown) parameters of the variability distribution 

fF(HEP). 
θt: set of (unknown) parameters of the within-category 

variability term (subset of θF). 
θc|t: set of (unknown) parameters of the crew-to-crew 

variability term (subset of θF). 
π0(θ): prior distribution of the Bayesian model, representing the 

knowledge on the set of parameters, (e.g. θt , θc|t), before 
collecting the evidence E. 

π(θ|E): posterior distribution of the Bayesian model, representing 
the knowledge on the set of parameters, i.e. θtor θc|t , after 
collecting the evidence E.  
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The adoption of variability models is well established in PSA to 
consider source-to-source variability in parameter estimation problems: 
plant-to-plant variability in the estimation of component failure rates 
[29,30] and other reliability measures [31,32]; expert-to-expert vari-
ability in the estimation of rare event frequencies [33] and in HRA 
model construction [34]; combination of statistical data with expert 
estimates [35] and reliability data [36]. 

The paper is structured as follows. Section 2 discusses uncertainty 
and variability aspects in HRA and in simulator data collection. Section 
3 presents the developed Bayesian variability model and the underlying 
modelling assumptions. In Section 4, numerical applications with arti-
ficially generated data show the effects of modelling variability in HEP 
estimates and investigate the data requirements of the proposed model. 
In addition, an application to real simulator data from two different data 
sources (Halden project data from [20] and HuREX data from [26]) is 
presented. The results are further discussed in Section 5, along with 
insights and recommendations on the applicability of the model. 

Conclusions are given at closure. 

2. Uncertainty and variability aspects in HRA and simulator 
data for HRA 

The results of HRA methods support risk-relevant decisions; an 
important requirement is to ensure that the uncertainties of HEP esti-
mates are appropriately quantified [37]. The next sections discuss how 
uncertainty and variability have been treated in existing HRA methods 
(Section 2.1) and in the analysis of simulator data (Section 2.2). 

2.1. Treatment of uncertainty and variability in existing HRA methods 

HRA quantification methods aim at representing the relationships 
between HEPs and PSFs, taking into account as well the interactions 
among PSFs. Tasks and contexts are typically characterized via con-
stellations of categories (e.g. of task types and PSFs). As the constellation 
of these category changes, HRA models provide different Human Error 
Probability (HEP) estimates, representing the spectrum of performance 
conditions variability. The models produce estimated HEPs and char-
acterize the uncertainty associated with these estimates, in the form of 
uncertainty distributions or bounds. For a given task type, a set of PSFs 
ratings yields a specific HEP distribution. Our work deals with the 
assessment of these distributions, which represent different aspects of 
uncertainty and variability [6,38], as summarized in Table 1. 

Depending on the methods, bounds and distributions are derived in 
different ways. As discussed in Chapter 7 of the Handbook [6], THERP 
assumes a lognormal distribution of the HEPs to account for the various 
sources of uncertainty and variability associated to HEP values (such as 
those listed in Table 1). For each failure included in its database, THERP 
provides a nominal HEP (the median of the uncertainty distribution) as 
well as an Error Factor (EF)1. These uncertainty bounds, exclusively 
derived by expert judgment, are meant to reflect the THERP’s analysts 
“judgment regarding the likelihood of various values of HEPs” (from 
[6]) associated to a task. Different from THERP, HEART’s HEP values 
and bounds are obtained by aggregating empirical evidence on human 
performances from diverse information sources in the human factor 
literature [3,4], and the recently consolidated HEART version from [5]. 
In particular, for each generic task type, the author used the 
log-geometric mean of the set of data to derive the HEP central value and 
the log-standard deviation from the central value to calculate the HEP 
bounding values (in the form of 5th/95th percentiles). As a further 
example, the SPAR-H method adopts beta distributions (CNI, Con-
strained Non-Informative priors, by [39]) to determine uncertainty on 
HEP because the beta distribution can mimic both normal and 
lognormal distributions, with the advantage that it is defined from 0 to 1 
[7]. As a general conclusion, except for HEART for which uncertainty is 
derived empirically, expert judgment is the dominant source for all other 
HRA methods. 

2.2. Characterization of uncertainty and variability aspects in simulator 
data for HRA 

The usefulness of simulator studies to inform human reliability 
models is recognized widely [12,40–43], along with the need for the 
models to represent the variability of human performance in response to 
emergency conditions. For example, the Human Cognitive Reliability 
(HCR) model [44,45] and the Operator Reliability Experiment (ORE) 
[46] from the early 1980s were aimed at generating time reliability 
curves based on the variability of operating crew response time to 
emergency conditions, observed in simulator studies. 

More recently, the International [14] and US [15] Empirical Studies 

Table 1 
Sources of uncertainty and variability in HEP estimates by HRA methods (given 
a constellation of task type and PSF categories). Note our work addresses the first 
two items of this table.  

Source of 
uncertainty and 
variability 

Description Example 

Crew 
characteristics 

Inherent performance 
variability across people and 
crews, due to different 
behavioural characteristics, 
abilities, attitudes, etc. 

Both crews A and B perform 
exactly the same task in the 
exact same context. Crew A 
fails, crew B succeeds. Also 
inherent randomness of 
certain human behaviour: 
same person/crew performs 
the same task under the same 
performance conditions: 
sometimes fails, sometimes 
succeeds. 

Contextual factors Variability (aleatory) across 
the different realizations of 
the contextual factors 
described by the same 
category of factor taxonomy 

Variability within PSF “time 
pressure” due to variability 
in time and sequence of 
events within the same 
scenario (dynamic change). 
Variability within 
“indications of conditions” 
PSF due to different 
indications and/or designs, 
all can be characterized as 
“misleading” 

Assessment of PSF 
ratings 

Uncertainty on the assessed 
PSF states for the 
investigated context. Can 
also manifest as inter-analyst 
/ rater variability. 

It is not possible to state with 
certainty whether “time 
pressure” during 
performance should be 
considered “moderate” or 
“high”, due to inherent 
imprecision of contextual 
factor descriptions and 
different subjective 
interpretation of the PSF 
category 

Model limitations Uncertainty (epistemic) due 
to inherent, fundamental 
limitations of HRA models 

Incompleteness of PSFs to 
represent a specific context of 
operations, limitation of 
underlying cognitive models 
to fully represent cognitive 
processes, lack of 
representation of safety 
culture, organizational and 
cross-organizational 
influences. 

Scarcity of data Uncertainty (epistemic) due 
to the limited knowledge of 
human performance in 
specific combinations of 
scenario/context of 
operation 

Low-probability events 
(medium Loss Of Coolant 
Accident, with High Pressure 
Injection system failing to 
operate)  

1 The Error Factor is defined as the square root of the ratio of the upper to 
lower bound of the uncertainty distribution. 
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were carried out to assess strengths and weaknesses of HRA methods, by 
comparing HRA predictions to observations of real operational crew 
responding to simulated accidents. Among various lessons learned, 
significant performance variability was observed. As a result of team 
dynamics, work processes, communication strategies, sense of urgency, 
and willingness to take knowledge-based actions, the observed perfor-
mances differed not only in terms of the rate of progress through the 
procedures but also in terms of paths through the procedure or even the 
applied procedures. Subsequent studies on simulator data further 
analyzed the variability of crew strategies to make decisions and solve 
conflicts, especially in cases of complex simulated emergencies that 
involve non-typical conditions with multiple malfunctions [47,48]. 
These studies provided important insights on the characterization of 
crew performance, error identification and analysis, and characteriza-
tions of procedures and interfaces; capturing this variability is necessary 
for the design of HRA databases, as well as when analysing specific 
failure events [47,48]. 

Recently, two important simulator data collection initiatives have 
been initiated: SACADA [17] and HuREX [16]. In a similar way as HRA 
methods, these data collection protocols operate over taxonomies of 
categorical factors. SACADA characterizes the context via the “situa-
tional factors” (e.g. “information quality”, with the levels: “missing”, 
“misleading”, and “conflicting”), associated to high-level categories of 
individual and team cognitive functions (namely, “macrocognitive 
functions”, e.g. “monitoring/detecting”, “deciding/response planning”). 
Crew performance in a simulated scenario is evaluated according to a 
discrete rating classification (e.g. “satisfactory”, “unsatisfactory”, etc.) 
and the issues that negatively influenced the performance are classified 
in terms of both failure modes (e.g. “key alarms not detected or not 
responded to”) and error causes (e.g. “multiple simultaneous alarms”). 
Similarly to SACADA, the HuREX protocol classifies performance fail-
ures in simulator data collection (namely, “unsafe acts”) according to a 
categorical taxonomy based on cognitive activities (e.g. “situation 
interpreting”), generic task types (e.g. “measuring parameter - reading 
simple value”, “transferring step in procedure”), error modes (e.g. “error 
of commission”), and contextual information relevant to the simulated 
scenario (e.g. “procedure conformity”, “task familiarity”). 

An example of collected data tailored to the SACADA taxonomy is 
given in Table 2 (note that the table reports only few elements of the rich 
SACADA context characterization). It considers hypothetical data 
collected on the task type “understanding the situation/problem”, where 
the alarm board of the Human Machine Interface (HMI) shows one status 
indication conflicting with critical alarms (“information quality: con-
flicting” in Table 2), the diagnosis of the latter being procedure-driven 
(“diagnosis basis: procedure” in Table 2). Table 2 includes failure/suc-
cess data gathered in different plants (therefore with different HMIs, 
procedures, training programs) from different operating crews per-
forming in two different simulated scenarios: for instance, 50 observa-
tions for Small Loss of Coolant Accident (SLOCA) scenario where the 
operators have to diagnose the SLOCA following a drop in pressurizer 
pressure, and 50 observations for Steam Generator Tube Rupture (SGTR) 
scenario where the operators have to diagnose the SGTR based on an 
anomalous variation of steam generator water level, given that in both 
situations a conflicting status indication is displayed (e.g. in SGTR sce-
nario, “one level indication in steam generator stuck low” as in Table 2). 

As the SACADA and HuREX databases are being populated, on-going 
research addresses the use of the collected data to inform HRA models. 
For example, Jung et al. (2020) [26] derive HEP values for the task 
categories addressed by the HuREX taxonomy [16], e.g. “directing 
manipulation”, “entering step in procedure”. Kim et al. (2018) [21] uses 
logistic regression analysis to estimate the quantitative relationships 
between PSFs and HEP values from a set of 10000 HuREX observations. 
In all these works, the relevant HEP values are estimated via a Bayesian 
update (e.g. the conjugated beta-binomial model): the HEP value asso-
ciated to each taxonomy category is modeled as a unique value (i.e. the 
HEP population average), to be estimated based on the simulator data 
evidence. Returning to the example data in Table 2, when using this data 
to inform a quantitative HRA model on the considered “constellation” (i. 
e. combination) of task type and PSF ratings, the lumped-data approach 
would aggregate all observations as a single piece of evidence of 10 
failures over 100 trials. This approach lumps together a number of 
variability aspects. Indeed, the dataset contains observations of tasks 
performed in different scenarios and different plants (e.g. “monitoring 
trend of steam generator level” in SGTR scenario, third column in 
Table 2), corresponding to different realizations of the associated task 
type (e.g. “understanding the situation/problem” in Table 2). The 
context of operation presents specificities that vary from plant to plant: 
in the example provided in Table 2, the HMI design of the alarm board in 
plant A is different from the one installed in plant B (e.g. different design 
and position of the alarms on screen; different number of simultaneous 
alarms); also, the specific procedural guidance and training program can 
vary between plant A and B. These plant-specific differences correspond 
to different realizations (second column in Table 2) of the associated 
contextual factors (e.g. “information quality: conflicting” and “diagnosis 
basis: procedure” in Table 2). Then, different crews are involved with 
crew-specific behavioral styles (e.g. different team dynamics, commu-
nication strategies, etc.). 

A similar modelling approach with lumped data was adopted in a 
previous work by Groth et al. (2014) [20], where simulator observations 
from the US Empirical Study [15] were used in a Bayesian conjugate 
beta-binomial model with the goal to improve the reference HEP values 
of the SPAR-H method [7,8]. 

Concerning SACADA data, a number of feasibility studies have 
addressed the use of the collected data to inform HRA models [22–25], 
all based on variants of Bayesian approaches. Azarm et al. (2018) [24] 
proposes a multi-step methodology to identify critical situational factors 
for each macrocognitive function addressed by SACADA taxonomy [17] 
and uses a conjugate beta-binomial model to estimate HEP distributions 
for different combinations of these factors. Similarly to [20] and [26], 
the Bayesian estimates in [24] lump the data available for the relevant 
factor combination. Azarm et al. (2018) [24] acknowledge the presence 
of residual variability (e.g. plant-to-plant, crew-to-crew), but the authors 
average it out since the current amount of SACADA data does not allow a 

Table 2 
Hypothetical simulator data used to inform the categorical elements of a generic 
HRA model for HEP estimation. Categorical elements taken from the SACADA 
taxonomy [17]. Note that the table reports only few elements of the rich 
SACADA context characterization.  

Categorical elements of HRA models (“constellation F”):  
Task type: understanding the situation/problem 

Information quality: conflicting 
Diagnosis basis: procedure 

Data from specific simulator contexts 
Scenario Realization of 

contextual factors 
Task 
realization 

Plant Crews Failures 

SGTR One level indication 
in steam generator 
stuck low 

Transfer to 
SGTR 
procedure 

A 5 0 

SGTR One level indication 
in steam generator 
offset 

Transfer to 
SGTR 
procedure 

B 6 1 

SGTR One level indication 
in steam generator 
indicates zero 

(…) (…) (…) (…)    

Total 50 3 
SLOCA One indication on 

pressurizer pressure 
stuck high 

Transfer to 
SLOCA 
procedure 

A 5 1 

SLOCA One indication on 
pressurizer pressure 
indicates zero 

Transfer to 
SLOCA 
procedure 

B 6 2 

SLOCA Offset indication on 
pressurizer pressure 

(…) (…) (…) (…)    

Total 50 7  
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complete treatment of all sources of uncertainty. Other works adopt 
more advanced modelling techniques, specifically Bayesian Belief Net-
works (BBNs), to provide a richer characterization of the task, scenario, 
and context factors and of their relationships. Nelson & Grantom (2018) 
[25] use BBNs to model the relationships between situational factors and 
error modes per each macrocognitive function of SACADA data collec-
tion taxonomy, and produce HEP estimates conditional on the set of 
situational factors. Groth (2018) [23] propose a comprehensive frame-
work combining SACADA data, taxonomies of performance influencing 
factors, causal BBNs, and Bayesian parameter updating to improve both 
the qualitative and quantitative basis of HRA models. 

The BBN-based approaches [13,49,25] resort to a flexible framework 
to represent different variability aspects into the conditional probability 
distributions of the node categories and propagate this information 
through the BBN model. For instance, crew-to-crew variability nodes 
could be devised to explicitly represent the influence of different crew 
behavioral styles on the HEP. This calls for approaches to formally 
incorporate data variability (crew-to-crew, within-category) into the 
BBN conditional probability distributions. In this direction, the present 
work could support the development of empirically-based anchor in-
formation (i.e. reference HEP values and associated variability bounds) 
for multiple constellations of node categories of emerging BBN-based 
HRA models. 

To summarize the above discussion, observations in simulator data 
collection (for a given constellation of task type and PSF categories) 
bring two aspects of variability into the HEP estimates: on one hand, the 
variability stemming from the different realizations of the associated 
constellation of factors of the HRA model (namely, “within-category” 
variability); on the other hand, the variability due to the different crew- 
specific features (namely, “crew-to-crew” variability). As formally pre-
sented in the next section, modeling variability entails considering the 
evidence from different realizations and different crews as multiple 
pieces of evidence, pertaining to a population of failure probability 
values. Fig. 1 illustrates the difference between the lumped (left) and the 
population variability (right) models with reference to the simplified 
data collection example of Table 2. It is important to note that in the 
lumped approach, the probability density function associated to the HEP 
value represents the uncertainty about the assumed unique value of the 
HEP itself (i.e. the population average). In the population variability 
approach, the function represents both the variability of the HEP value 
within the population and the uncertainty about the population pa-
rameters. For use in PSA, HEP values need to be plant- and scenario- 
specific; therefore, from Fig. 1, focusing on the population average, 
the lumped approach may not represent the intrinsic variability of the 
sources. 

3. A Bayesian variability model for simulator data 

This section presents the mathematical model to account for the two 

variability aspects relevant for HRA data collection from simulators: 
within the categories of the data collection taxonomy and crew-to-crew. 
After discussing the underlying modelling assumptions (Section 3.1), the 
variability model (Section 3.2) is then coupled to a hierarchical Bayesian 
model (Section 3.3) to infer from data on the parameter of the HEP 
variability distribution. 

3.1. Modelling assumptions 

The idea is to build a general quantitative tool, able to mathemati-
cally aggregate simulator data from nuclear power plants to estimate 
failure probabilities (with their variability and uncertainty distribu-
tions), for constellations of categorical elements (e.g. task type, set of 
PSF ratings) of a data collection taxonomy (e.g. SACADA, HuREX). The 
quantity of interest for the developed model is the HEP value associated 
to the given constellation, F = {F1, F2 …, Fδ}: 

HEP = f (F1,F2…,Fδ) (1)  

where F is the set of δ categorical elements used by the taxonomy to 
represent the simulator data record (e.g. in Table 2, F1 represents the 
task type “understanding the situation/problem”, F2 the PSF “informa-
tion quality: conflicting”, and F3 the PSF “diagnosis basis: procedure”). 
Each Fi can be expressed as a binary (e.g. present / not present; adequate 
/ not adequate) or a multi-valued (e.g. rating) variable, depending on 
the particular taxonomy. 

Evidence on human performance from simulator data may come in 
different forms, depending on the aims of the simulator program, its 
scope, and the intended use of the data. In this study, we focus on data 
from large-scale simulator programs, in the form of records of failure/ 
successes, while operators perform tasks under a specific combination of 
PSF states. 

The proposed inference model is intended for general application to 
any HRA model for HEP quantification (the applicability is further dis-
cussed in Section 5). The following list briefly restates the key termi-
nology used in Sections 1-2, in order to support the understanding of 
model development in the remainder of this section:  

• “categories”: refers to the taxonomy of task types and PSF levels 
adopted by the given data collection protocol (e.g. SACADA, HuREX) 
or HRA method. For instance, task type “diagnosis”, or PSF “time 
available” with level “barely adequate”;  

• “constellation” (set F in this paper): refers to a combination of the 
aforementioned categories, e.g. F: {task type = diagnosis, with PSFs: 
“time available” = “barely adequate”, “diagnosis basis” = “proced-
ure-directed check”, etc.}. Generally, HRA models provide HEP es-
timates as function of these constellations: accordingly, the goal of 
the proposed model is to infer the HEP uncertainty distribution for a 
given constellation, from simulator data; 

Fig. 1. Simplified comparison between lumped-data and variability models (generic distributions shown). Left: probability density as uncertainty on the HEP 
population average (lumped-data model). Right: probability density as variability and uncertainty on HEP values variable by source (variability model) (given a 
constellation of task type and PSF categories). 
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• “within-category” variability: refers to variability aspects stemming 
from the different scenario-specific tasks associated to the same task 
type (e.g. different realizations of the category “diagnosis”), as well 
as from the different plant-specific operational contexts associated to 
the same set of PSF levels (e.g. different realizations of “barely 
adequate time” for PSF “time available”). Hence the term “within- 
category”, since the same category (i.e. a task type or a PSF level) 
envelopes different realizations, according to the data collection 
protocol;  

• “crew-to-crew” variability: refers to variability aspects stemming 
from the different behavioral characteristics (e.g. different problem- 
solving styles, communication strategies etc.) of the operating crews. 

3.2. Variability model for HEP 

The core of the variability model is the formulation of the HEP as an 
inherently variable quantity, represented by a probabilistic variability 
distribution (the population variability), HEP ~ fF(HEP). The distribu-
tion function, fF(HEP), is assumed known (e.g. lognormal) and reflects 
both variability aspects in HEP estimates discussed earlier: within- 
category as well as crew-to-crew variability. The quantity to infer 
from evidence is the set of (unknown) parameters of the variability 
distribution, as opposed to the ‘lumped-data’ approach, where the un-
known quantity is the unique HEP value (the population average). 

The variability model, shown in Fig. 2, is based on the following 
concepts:  

• each realization of a constellation of categorical elements of the 
taxonomy is characterized by a unique HEP, pt. With reference to 
Table 2, one such realization is the task of transferring to the SGTR 
procedure, in case one level indication in the steam generator is stuck 
low, following the procedures of plant A, for instance with associated 
HEP p∗t . Basically, a realization defines the simulator scenario and the 
specific task to be performed by the crew. In this interpretation, 
Table 2 includes six realizations of the same constellation “under-
standing the situation/problem” in case of “conflicting information 
quality”, associated to six different values of p∗t . Different plants 
determine different realizations, because, although enveloped by the 
same constellation, the PSF manifestations may be different 
(different procedures, different HMI interfaces, and so forth). Vari-
able pt is continuous, distributed according to a known distribution ft 
with vector of unknown parameters θt: pt ∼ ft(pt |θt). pt is intended as 
the failure probability to perform the specific task manifestation in 
the specific context manifestation, defined by the simulator run 
design (hence, the pedix t, for “task”).  

• crew variability manifests as a crew-specific HEP variable pc|t, that 
models the failure probability of a specific crew given the task 

performed in the specific simulator scenario, i.e. in a realization of 
the constellation F (e.g. from Table 2, the failure probability of one of 
the five crews from plant A performing the task “monitoring trend of 
steam generator level” in the corresponding SGTR scenario). It is 
assumed that the pc|t is a continuous variable distributed around each 
p∗t according to a known distribution fc|t, with unknown parameters 

θc|t: pc|t ∼ fc|t(pc|t

⃒
⃒
⃒p∗t ,θc|t). Crew variability is modeled as variability of 

HEP values across different crews for the same task. 

According to this formulation, the “HEP” variable in eq. (1) is rep-
resented by pc|t, the probability of failure of a specific crew, given a 
specific task/context constellation. 

Combining within-category and crew variability effects, the vari-
ability function fF(HEP= pc|t) can be expressed as: 

fF

(
pc|tθF

)
= fF

(
pc|tθt, θc|t

)
=

∫

ft
(
p∗

t θt
)
⋅fc|t

(
pc|tp∗

t , θc|t

)
dp∗

t (2)  

where θF = (θt, θc|t) is the vector of the unknown parameters of the 
overall HEP variability distribution. 

It is important to stress that the model considers pc|t as a crew-specific 
HEP value (given the specific task and context realization corresponding 
to the simulator run). This means that the model foresees that the crew 
performance of a task in response to a specific simulator run (e.g. one of 
the scenarios in Table 2) is not deterministic. The probability value pc|t 
associated to a specific crew represents two aspects. On the one hand, it 
represents the fact that it is not possible to exactly foresee the crew 
behavior because of the complexity of the factors involved and of 
intrinsic limitations of human performance models (i.e. “model limita-
tions” in Table 1). On the other hand, it represents the intrinsic vari-
ability of human performance, even in presence of the same crew in 
response to the same simulator run (e.g. response times, level of atten-
tion, alertness of the same person/crew vary over time, “crew charac-
teristic” in Table 1). These two aspects are presented separately to ease 
the discussion, but of course are closely linked: some crew characteris-
tics are considered as aleatory because of model limitations to foresee 
them. 

Both pc|t and the variability function in eq. 2 reflect the aleatory 
uncertainty elements from Table 1. Epistemic (state-of-knowledge) un-
certainty comes in the uncertainty associated to the parameters of the 
variability distribution (θF). Ideally, as more data is collected, θF would 
be progressively better estimated, with the epistemic component pro-
gressively decreasing, and consequently the expected pc|t distribution 
would get closer to the true (unique) HEP variability distribution for the 
constellation F; the limiting case, with infinite data available, would be 
that the expected distribution only represents the inherent variability of 
the HEP. This aspect highlights a significant difference with the lumped 

Fig. 2. Sketch of the variability model (generic distributions shown). HEP represented by a population variability distribution, fF(HEP|θF), combining variability 
within-category - ft(pt |θt), on the left - and crew-to-crew - fc|t(pc|t |p∗t , θc|t), on the right (see eq. 2). The crew-specific HEP variable, pc|t, is distributed around the HEP 
value of a specific realization of the task and PSF constellation (pt* in right plot). 
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approach, where a unique HEP (i.e. the population average) is the un-
known parameter. In the lumped configuration, with increasing evi-
dence, the uncertainty distribution will narrow to the unique estimate. 

The hierarchical Bayesian model is implemented to update the an-
alyst’s degree of belief on the set θF and finally derive the estimated 

uncertainty distribution of pc|t. 

3.3. Development of the Bayesian inference model 

Fig. 3 gives an overview of the hierarchical Bayesian model. The 

Fig. 3. The Bayesian hierarchical variability model, from top to bottom: π0(θF), prior distributions for model parameters (θF); fF(pc|t |θt , θc|t), the HEP variability 
distribution, where ft(pt |θt) models within-category variability and fc|t(pc|t |p∗t , θc|t) models crew-to-crew variability; Bin(k = kij|pc|t ,Nij), the binomial distribution of 
evidence of kij failures on Nij repetitions of the i-th task by the j-th crew. Generic distributions shown. 

Fig. 4. Overall aggregation framework to compare the variability and the lumped data models. Left: artificial data for the constellation F based on the example in 
Table 2.Top right: lognormal variability model, informed by the crew-specific data points (kij, Nij) and returning as output the posteriors for the HEP variability 
distribution parameters, i.e. μt and σF. Bottom right: conjugated beta-binomial model with lumped data (kF, NF), giving as output the posterior distribution for the 
single-value HEP (population average). 
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general structure of the model is based on the formulation of the Bayes 
theorem as follows [38,50]: 

π(θ|E) = A− 1L(E|θ)π0(θ) (3)  

where:  

• θ is the set of unknown parameters of the inference problem;  
• π0 and π are the prior and posterior probability functions for θ, 

modelling the state of knowledge of the analyst on the set of inves-
tigated parameters respectively before and after the evidenceE is 
collected (top level in Fig. 3);  

• L(E|θ) is the likelihood term, interpreted as the probability density 
that the evidence is observed (second and third levels in Fig. 3);  

• E is the set of evidence from the available information sources 
(bottom level in Fig. 3); 

• A− 1 =
∫

L(E|θ)π0(θ)dθ, the denominator of eq. 3, normalizes func-
tion π to a probability density function. 

For the variability model in Section 3.1, θF = {θt, θc} is the set of 
unknown parameters of the parametric variability function fF(pc|t |θt ,

θc|t). 
Empirical evidence comes in the form of failure data (i.e. number of 

failures on number of task repetitions) collected on crew performance on 
simulator scenarios characterized by the same constellation F. It is 
assumed that data was collected concerning m different task/context 
realizations within constellation F, and ni crews that performed the i-th 
task. Evidence E is represented as the set of pairs {(kij, Nij), i = 1, 2 …, m, 
j = 1, 2 …, n)}, where kij is the number of failures observed on Nij rep-
etitions of the i-th task performed by the j-th crew (Fig. 4, left, columns 
“Repetitions” and “Failures”). This type of datasets enters the likelihood 
term of the Bayesian model as evidence to update the prior degree of 
belief of the analyst on the parameters of the HEP variability model for 
the constellation F (Fig. 4, right). Note that in the numerical examples, 
Nij is set equal to 1 (see Fig. 4, column “Repetitions”), recognizing that it 
would be very difficult to aggregate performances on the exact same task 
by the exact same crew (this aspect will be further discussed in Section 4 
and in Section 5). 

The construction of the likelihood term L(E|ϑt , ϑc|t) requires to ex-
press the probability of observing kij failures on Nij repetitions of the 
specific i-th task. For the generic piece of simulator evidence, (kij, Nij), 
the likelihood term can be written as: 

Lij
(
kij|θt, θc|t,Nij

)
=

∫

pc|t

fF

(
pc|tθt, θc|t

)
Bin

(
k= kij|pc|t,Nij

)
dpc|t (4) 

By substituting eq. 2 into eq. 4, the likelihood term becomes: 

Lij
(
kij|θt, θc|t,Nij

)

=

∫

pt

∫

pc|t

ft(pt|θt)fc|t

(
pc|t|pt, θc|t

)
Bin

(
k = kij|pc|t,Nij

)
dpc|tdpt

(5)  

where:  

• the probability density that the failure probability of the i-th specific 
task is pt, i.e. pt is one realization of the possible within-category 
variability, modeled by ft(pt |θt);  

• the probability density that the crew-specific HEP value would 
manifest as pc|t (i.e. one realization of the possible crew-to-crew 
variability) is modeled by fc|t(pc|t|pt , θc|t). The task-specific HEP, pt, 
constitutes the reference probability value around which pc|t is 
distributed;  

• the probability of observing kij failures in Nij repetitions of the i-th 
task if the failure probability for the single repetition pc|t is described 
by the binomial distribution Bin(k = kij|pc|t , Nij). 

Each probability value pt and pc|t is one possible value within their 

variability; therefore, the expression 
ft(pt |θt)fc|t(pc|t |pt , θc|t)Bin(k= kij|pc|t, Nij) is averaged (integrated) on the 
variability distributions for pt and pc|t. 

When the i-th task is performed by ni crews, the evidence takes the 
form of the number of failures observed for each crew: (ki1, Ni1), (ki2,

Ni2), … (kini , Nini ). The likelihood term Li relevant to the i-th task 
becomes: 

Li
(
ki1, ki2,…, kini |θt, θc|t,Ni1,Ni2,…,Nini

)

=

∫

pt

ft(pt|θt)
∏ni

j=1

∫

pc|t

fc|t

(
pc|t|p∗

t , θc|t

)
Bin

(
k = kij|pc|t,Nij

)
dpc|tdpt

(6) 

Note that in the expression above the probability density of 
observing the evidence (ki1, Ni1), (ki2, Ni2), … (kini , Nini ) given the 
within-category reference probability pt is written as: 

∏ni

j=1

∫

pc|t

fc|t

(
pc|t|pt, θc|t

)
Bin

(
k= kij|pc|t,Nij

)
dpc|t 

Since all crews are carrying out the same specific task, the crew-to- 
crew variability effect is expressed for all crews conditional on the 
same reference HEP value, pt. Then, the probability density of observing 
each (kij, Nij) is multiplied because, given pt, each crew’s behavior is 
independent (the effect of the PSFs common for all crews is represented 
in the variable pt). 

Extending eq. 6 to the entire set of m task realizations in the 
constellation F, the likelihood term is then: 

L
(
E
⃒
⃒θt, θc|t

)
= L

(
kij, i= 1,…,m; j= 1,…, nj

⃒
⃒θt, θc|t,Nij

)

=
∏m

i=1
Li
(
kij, j= 1,…, nj

⃒
⃒θt, θc|t,Nij

)

=
∏m

i=1

∫

pt

ft(pt|θt)
∏n

j=1

∫

pc|t

fc|t

(
pc|t

⃒
⃒pt, θc|t

)
Bin

(
k= kij

⃒
⃒
⃒pc|t,Nij

)
dpc|tdpt

(7) 

Eq. 7 assumes that the failure observations across the different tasks 
are independent. This implies that crew variability effects on the crew- 
specific HEP variable, pc|t, do not replicate across different tasks: in other 
words, no systematic effects of crew under-performance (i.e. crew- 
specific HEP value consistently above average) or over-performance (i. 
e. crew-specific HEP value consistently below average) are modeled. 

The posterior degree of belief on the unknown parameters of the HEP 
variability distribution for a generic constellation F of task and PSF 
categories is then expressed as follows: 

π
(
θt, θc|t|E

)
=

L
(
E|θt, θc|t

)
π0
(
θt, θc|t

)

∫∫
L
(
E|θt, θc|t

)
π0
(
θt, θc|t

)
dθtdθc|t

(8)  

where the final formulation can be derived by substituting the likelihood 
term of eq. 7 in eq. 8. 

The posterior probability distribution of eq. 8 can be subsequently 
used to compute the estimated HEP variability distribution for the 
constellation F, PF(pc|t): 

PF

(
pc|t

)
=

∫

θF
fF

(
pc|tθF

)
π(θF|E)dθF

=

∫

θt

∫

θc|t

∫

pt

ft(pt|θt)fc|t

(
pc|t|pt, θc|t

)
π
(
θt, θc|t|E

)
dptdθc|tdθt

(9) 

Formally, PF(pc|t) is derived by weighting the parametric distribu-
tion, adopted as variability model for HEP, by the posterior distribution 
of the unknown HEP distribution parameters computed by the Bayesian 
model. 

Within this mathematical framework, the incorporation of further 
empirical evidence can be accomplished in subsequent steps in a 
traceable and reproducible way. This feature is of key importance, 
considering that data collection process from simulators is a long-term 
program. Indeed, the posterior distributions of HEP computed by the 
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model can be used as prior state of knowledge in future analyses and 
then updated as new observations become available. 

Finally note that the “lumped-data” approaches, e.g. of [20] and 
[26], entail aggregating the evidence to inform a unique HEP value for 
the constellation F (i.e. the population average), i.e.: 

kF =
∑m

i=1

∑n

j=1
kij,NF =

∑m

i=1

∑n

j=1
Nij (10)  

where kF and NF are respectively the total number of failures and ob-
servations aggregated for the constellation F (Fig. 4, bottom right). In 
[20] and [26], the pair (kF; NF) enters a conjugate beta-binomial model 
to update the prior state of knowledge on the population-average HEP, 
represented by a beta distribution with shape parameters α0 and β0. The 
update with lumped-data, 

α = α0 + kF, β = β0 + NF − kF (11)  

yields the posterior distribution of the beta-binomial model (again a beta 
distribution, with parameters α and β), representing the final uncer-
tainty on the population-average HEP. 

3.4. Use of lognormal probability density functions to represent variability 

This section presents the model in case lognormal distributions are 
used to represent both variability terms in eq. 2, within-category and 
crew variability, ft and fc|t, respectively (Fig. 4, top right) – this config-
uration will be used in the applications in Section 4. The adoption of 
lognormal functions as population variability curves has been a common 
practice when developing hierarchical Bayesian models for PSA appli-
cations [27,29,51]. 

Considering a generic constellation of categorical elements F, in this 
configuration both variability terms embodied in fF(pc|t |ϑF) as in eq. 2 
(within-category and crew-to-crew variability) are distributed accord-
ingly to lognormal probability density functions, therefore: 

ln(pt) = zt ∼ N(zt|μt, σt); ln
(

pc|t

)

= zc|t ∼ N
(
zc|t|zt, σc|t

) (12)  

where zt and zc|t are the normally-distributed auxiliary variables asso-
ciated to pt and pc|t, respectively (the letter N is used in eqs. 12-14 and 
Fig. 4 to denote normal distributions). In this case, the set of unknown 
parameters to be determined by the Bayesian inference model is then θF 
= (θt , θc|t)= (μt , σt , σc|t). Subsequently, the likelihood term for the 
generic piece of simulator evidence (eq. 5) can be expressed as follows: 

Lij
(
kij|μt, σt, σc|t,Nij

)

=

∫

zt

∫

zc|t

N(zt|μt, σt)N
(
zc|t|zt, σc|t

)
Bin

(
k = kij|ezc|t ,Nij

)
dzc|tdzt

(13) 

Rearranging the right-side member of the equation: 

Lij
(
kij
⃒
⃒μt, σt, σc|t,Nij

)

=

∫

zc|t

Bin
(
k = kij|ezc|t ,Nij

)
(∫

zt

N(zt|μt, σt)N
(
zc|t

⃒
⃒zt, σc|t

)
dzt

)

dzc|t

=

∫

zc|t

Bin
(
k = kij|ezc|t ,Nij

)
N
(

zc|t

⃒
⃒
⃒μt,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
t + σ2

c|t

√ )
dzc|t

=

∫

zc|t

Bin
(
k = kij|ezc|t ,Nij

)
N
(
zc|t|μt, σF

)
dzc|t

(14) 

The last relationship exploits the fact that the convolution of the two 
normal distributions of zt and zc|t is again a normal distribution, with 
mean μt and standard deviation σF = sqrt(σ2

t + σ2
c|t). According to eq. 14, 

the final set of unknown parameters for the inference problem becomes 
θF = (μt , σF), which respectively represent the mean and the standard 
deviation of the HEP variability distribution in the logarithmic space. 

The extension of eq. 14 to the entire set of simulated observations 
relevant to F (see eq. 6-7), as well as the specialization of the posterior 
formula to the new set of unknown parameters (see eq. 8), are done as in 
Section 3.2. 

The last step of the Bayesian model development entails the defini-
tion of appropriate prior distributions for the parameters of the 
lognormal variability model, namely π0(μt) and π0(σF) (usually referred 
to in Bayesian literature as the “hyper-priors” of a hierarchical model, 
see [50]). In the model application presented in Section 4, both diffuse 
and informative priors are used for the hyper-parameters of the Bayesian 
model, μt and σF. For the case of diffuse priors, as suggested in [51] for 
lognormal variability distributions in lack of information, uniform dis-
tributions are adopted for both the natural logarithm of the mean, 
π0(log(μt)), defined between natural log(1E-5) and 0 (corresponding to 
the upper limit HEP= 1), and the standard deviation, π0(σF), defined 
between 0.1 and 4 (corresponding to error factors of 1.18 and 720.54, 
respectively). These ranges have been defined to cover values of interest 
for HRA applications. More information on the development of proper 
prior distributions can be found in literature [27,50]. 

For all applications, an algorithm has been developed for the R 
programming environment [52] for the numerical solution of the 
various equations. The developed R code is available on request to the 
authors. 

4. Numerical application 

After a first comparison of the proposed variability model with a 
lumped data model (Section 4.1), the present section addresses the 
model sensitivity to data availability, both in presence of diffuse (Sec-
tion 4.2.1), as well as of informed priors (Section 4.2.2). Artificial data is 
used, i.e. data generated with known characteristics (e.g. median, mean, 
percentiles of the underlying data distributions): this allows investi-
gating the Bayesian update process, for which the known values become 
target values. An application to simulator data from literature [20,26] is 
presented later (Section 4.3). 

Concerning the generated data, two cases of target HEP variability 
distribution are considered, both lognormal:  

• Case 1: median = 5e-2, mean = 5.46e-2, and error factor = 2  
• Case 2: median = 5e-3, mean = 6.25e-3, and error factor = 3 

The two cases represent HEP ranges of practical interest for HRA, 
with relatively high (Case 1) and moderate (Case 2) HEP values. The 
case of lower HEP values (e.g. median 5e-4 or lower) is not considered in 
this paper because, as it will become clear later in the result presenta-
tion, the use of the proposed model would require a very large amount of 
simulator data, of questionable practicality. 

Each data element is generated by first sampling a possible HEP 
value from the variability distribution for Case 1 or 2. Recalling from 
Section 3.2, this HEP value is crew-specific. Then, the realization of the 
number of observed failures, kij, on Nij repetitions (by the same crew) is 
sampled from a Binomial distribution, obtaining the data element (kij, 
Nij). Different couples (kij, Nij) are generated from different HEP values, 
based on the total number of task realizations relevant to the constel-
lation F assumed to be available from the simulator data collection 
(referred as NF in Section 3), and constitute the evidence against which 
the variability model has been tested. For the applications in this paper, 
Nij is set to 1: each crew performs the same task only once in the dataset. 
This corresponds to the lowest possible amount of information on the 
variability in HEP. Ideally, as simulator data is accumulated over the 
years, evidence on multiple repetitions may be available (for example 
some simulator scenarios are trained recurrently by the same crew). This 
aspect will be returned to in the discussion. To investigate the data re-
quirements, different sample sizes are considered, from relatively small 
sets (e.g. NF = 10÷50) to larger sets (e.g. NF = 200÷1000), to reflect 
possibly different data availability in the long-term. Note that while Nij 
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refers to crew-specific evidence, NF refers to the whole data accumulated 
for the constellation F from different plants, crews, as well as re-
alizations of the task types and PSFs defined by F: this justifies the 
possibility to accumulate evidence on the order of 1000 data points for 
the estimation of the parameters θF of the variability function. 

4.1. Variability model vs lumped-data approach 

With reference to the two Cases 1 and 2, this section presents the 
numerical differences between the proposed variability model and a 
beta-binomial model representative of the lumped-data approach. Fig. 5 
and Table 3 show the results. In both Cases 1 and 2, the expected mean, 
median, 5th and 95th percentiles of the PF(pc|t) estimated by the 
lognormal variability model are compared with the respective statistics 
provided by a beta-binomial model, with increasing sample sizes (200, 
500, and 1000 observations, in x-axis). Consistently with the variability 
model, the beta-binomial model (eq. 11) uses a diffuse prior, in partic-
ular the CNI prior, as in [20] (with parameters: α0 = 0.5, β0 = 8.66 for 
Case 1; α0 = 0.5, β0 = 79.5 for Case 2). Comparing the expected error 
factors, the beta-binomial model provides a PF(pc|t) that is 
overly-narrow with respect to the target HEP variability distribution, 
with values of error factor significantly smaller than the target one 
(Table 3, with target values of 2 and 3 for Case 1 and Case 2, respec-
tively). On the other hand, the lognormal variability model provides 
broader PF(pc|t)’s, with error factors larger than the target values and 
tending to decrease to the target error factor with increasing sample 
sizes. While still larger that the target values, at 1000 observations the 
error factors reach the values of about 5 (Table 3), which starts to be of 
practical use for PSA applications (see analysis in the next Section 4.2). 
Indeed, the larger error factors from the variability model compared to 
the beta-binomial as well as the decreasing tendency are not surprising: 
the important point for the practical application of the proposed model 
is to investigate the model data requirements for practical applications. 
This will be the goal of the next Section 4.2. Concerning the estimated 
mean and median, both models tend to converge to the target values, as 

expected with slower convergence for Case 2. 
To show the practical implications if variability is not modelled, 

assume plant-specific data is collected to infer the plant-specific HEP of a 
PSA operator action, with plant data from ten operating crews (Table 4). 
Assume also that data is available from simulator databases on the 
corresponding constellation (e.g. the case NF = 200, Table 3). The data 
can be used as prior, then updated by the plant-specific data. Table 4 
shows the difference in the posterior estimates depending on whether 
the prior distribution for the HEP is constructed with the lumped data 
model (Table 3, “lumped posterior”, NF = 200) or the variability model 
(Table 3, “Var. model posterior”, NF = 200). Three hypothetical data 
outcomes are considered, with increasing number of observed failures 
across the ten crews (Table 4, first column: 0, 1, and 2 failures). Given 
the plant-specific nature of the task (i.e. same scenario, same context of 
operation: no within-category variability in data), the observations from 
the ten different crews are all treated as “lumped”, neglecting the un-
derlying crew-to-crew variability aspects in performance, and entered as 
unique data point in a simple beta-binomial model. Depending on the 
data outcome, the posterior distribution may become very different. In 
general, the variability model is more sensitive to the new data as 
compared to the lumped one. For the considered example, as the number 
of observed failures increases, the posterior mean for the variability 
model moves closer to the frequentist estimate (0.1, 0.2 for the 1 and 2 
failure cases, respectively). Intuitively, this is due to the fact that the 
prior for the variability model represents larger variability of perfor-
mance conditions and crew behaviours, which may also include those 
characteristic of the plant under consideration. On the other hand, the 
lumped data prior is narrowed to the population average, which may 
represent a biased initial value for the specific plant. Mathematically, as 
the evidence deviates from the population average, the likelihood of the 
evidence is multiplied by a smaller likelihood value for the lumped data 
prior (more peaked) compared to the variability model prior (more 
diffuse). 

Fig. 5. Expected mean (filled symbols), median (blank symbols), and 5th – 95th percentiles (whiskers) of PF(HEP) by the lognormal variability model and the 
lumped-data beta-binomial model, tested against the same simulator datasets (number of simulated tasks: 200, 500, 1000). Datasets are artificially generated from 
lognormal HEP variability distribution with: median 5e-2 (dotted line), mean 5.46e-2 (dashed line) and error factor 2 (dot-dashed lines at 5th percentile 2.5e-2 and 
95th percentile 1.0e-1) for Case 1 (left); median 5e-3 (dotted line), mean 6.25e-3 (dashed line) and error factor 3 (dot-dashed lines at 5th percentile 1.7e-3 and 95th 
percentile 1.5e-2) for Case 2 (right). 
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4.2. Sensitivity to available data 

The collection of simulator data is resource-intensive and requires 
important time and money investments [22]: it becomes important to 
investigate the amount of data required such that the estimates pro-
duced by the model are of practical use (i.e. the associated uncertainties 
are not too large). In this section, for Case 1 and Case 2, convergence of 
the posterior statistics is followed as the available sample size increases. 
The error factor is particularly important for practical applications: too 
large error factors (e.g. 10, meaning a factor of 100 between the 95th and 
the 5th percentiles) entail diffuse posterior estimates of limited practical 
use. The aim of this section is to investigate the sample size required to 
obtain error factors comparable to those typical for HRA, e.g. around 5. 
Indeed, this sample size depends on the variability distribution of the 
HEP to be estimated. As already mentioned, the two cases 1 and 2 are 
deemed as representative of the range of interest for practical applica-
tions: larger HEP values (e.g. ⁓ 0.1) can be expected to be less prob-
lematic to estimate, while smaller values (e.g. below 0.001) may require 
too large data sizes for being of practical interest (at least with the model 
presented in this paper). 

4.2.1. Diffuse priors 
Fig. 6 shows the posterior estimates by the variability model, set up 

with flat hyper-priors π0(μt) and π0(σF) as a function of the sample size 
NF (from NF = 50 to 1000) for Cases 1 (Fig. 6, top) and 2 (Fig. 6, bottom). 
From left to right, the figures report the estimated posterior error factor, 
mean, and median. For each sample size, 100 datasets are sampled to 

represent the spread of the posterior estimates (each estimate repre-
sented by a dot in the figures). 

From Fig. 6, the expected statistics of PF(pc|t) across the different 
datasets tend to converge to the target statistics as the sample size in-
creases. The expected mean and median, averaged over the Monte Carlo 
samples, get close to their target values, at NF ≈ 200 for Case 1 and at NF 
≈ 250 Case 2. Indeed, for Case 1 at NF ≈ 200, the average expected mean 
is 5.3e-2, with 50% confidence interval (25th - 75th percentiles) of (4.2e- 
2, 6.2e-2), and the average expected median is 3.9e-2, with 50% con-
fidence interval of (2.9e-2, 4.9e-2); for Case 2 at NF ≈ 250, the average 
expected mean is 7.3e-3, with 50% confidence interval (25th - 75th 

percentiles) of (4.6e-3, 8.4e-3), and the average expected median is 
3.7e-3, with 50% confidence interval of (2.1e-3, 4.2e-3). 

The speed of convergence of the expected error factors is lower 
compared to the mean and median. For instance, for Case 1, 300 ob-
servations are approximately needed to observe an average expected 
error factor close to 5, i.e. 5.5 at NF ≈ 300, with 50% confidence interval 
(4.8, 6.1). For Case 2, with NF ≈ 1000, the average expected error factor 
is 6.1, with 50% confidence interval (6.1, 6.1, note the 25th and 75th 

percentiles match because of numerical discretization). Indeed, the 
speed of convergence to the target values depends on the amount of 
evidence at disposal. As the HEP values progressively decrease, fewer 
failure are observed (i.e. Monte Carlo sampled): as anticipated, for cases 
with lower HEP values (e.g. below 0.001), the model would require an 
impracticably large data size (e.g. above 104 data points). 

In conclusion, this sensitivity analysis shows that for constellations F 
characterized by HEP values in the range ⁓ 0.1 ÷ 0.001, the variability 
model with diffuse hyper-priors can provide results of practical value for 
HRA applications with few hundred data points. The latter data 
requirement are met by the current availability of data points for many 
constellations F in SACADA [22] and HuREX [26]. When lower HEP 
values are involved (e.g. HEP ⁓ 0.001 and below), the adoption of 
informative prior distributions may be a viable option to decrease the 
data requirements, as presented in the next Section 4.2.2. 

4.2.2. Informative priors 
This section investigates how much data requirements can be 

reduced with informative hyper-priors for both parameters μt and σF. 
Case 1 and Case 2 are addressed in Figs. 7, 8 and Figs. 9, 10, respectively. 
Values are reported in Tables A.1-A.2 in Appendix A. 

In Fig. 7, two configurations can be distinguished: only the mean 
HEP is informed (left plot), both mean and standard deviation are 
informed (right plot). Both plots show the effect of different 

Table 3 
Comparison between the lognormal variability model and the beta-binomial: numerical results for Cases 1 and 2 (from Fig. 5). Number of simulated tasks: 200, 500, 
1000.  

Case 1 - target statistics: median ¼ 5e-2, mean ¼ 5.46e-2, and EF ¼ 2  

Model (pdf) Mean Median 5th perc 95th perc EF 
Lumped (CNI prior) 
Variability model (prior) 

5.50e-2 
7.44e-2 

2.69e-2 
3.35e-3 

2.36e-4 
2.01e-5 

2.06e-1 
4.98e-1 

29.54 
157.39 

NF=200, 11 failures Lumped (posterior) 
Var. model (posterior) 

5.50e-2 
5.24e-2 

5.36e-2 
3.85e-2 

3.18e-2 
3.35e-3 

8.31e-2 
1.38e-1 

1.62 
6.43 

NF=500, 27 failures Lumped (posterior) 
Var. model (posterior) 

5.40e-2 
5.29e-2 

5.34e-2 
4.33e-2 

3.86e-2 
6.73e-3 

7.14e-2 
1.38e-1 

1.36 
4.53 

NF=1000, 58 failures Lumped (posterior) 
Var. model (posterior) 

5.80e-2 
5.75e-2 

5.77e-2 
4.86e-2 

4.64e-2 
1.07e-2 

7.05e-2 
1.38e-1 

1.23 
3.59 

Case 2 – target statistics: median ¼ 5e-3, mean ¼ 6.25e-3, and EF ¼ 3  

Model (pdf) Mean Median 5th perc 95th perc EF 
Lumped (CNI prior) 
Variability model (prior) 

6.25e-3 
7.44e-2 

2.87e-3 
3.35e-3 

2.48e-5 
2.01e-5 

2.39e-2 
4.98e-1 

31.07 
157.39 

NF=200, 2 failures Lumped (posterior) 
Var. model (posterior) 

8.93e-3 
1.05e-2 

7.79e-3 
5.34e-3 

2.06e-3 
3.27e-4 

1.97e-2 
3.43e-2 

3.09 
10.24 

NF=500, 3 failures Lumped (posterior) 
Var. model (posterior) 

6.03e-3 
6.25e-3 

5.48e-3 
3.76e-3 

1.87e-3 
3.68e-4 

1.21e-2 
1.92e-2 

2.54 
7.22 

NF=1000, 8 failures Lumped (posterior) 
Var. model (posterior) 

7.87e-3 
8.09e-3 

7.57e-3 
5.34e-3 

4.02e-3 
5.86e-4 

1.27e-2 
2.15e-2 

1.78 
6.06  

Table 4 
Example of HEP estimation for a plant-specific task: prior distribution from 
lumped-data model (Table 3, “lumped posterior”, NF = 200) and from the 
variability model (Table 3, “Var. model posterior”, NF = 200).   

Prior from lumped-data 
model 

Prior from variability 
model  

Evidence Mean Median EF Mean Median EF Δ% 
mean 

Priors 5.50e- 
2 

5.36e-2 1.62 5.24e- 
2 

3.85e-2 6.43 + 5% 

0 failures, 
10 trials 

5.25e- 
2 

5.11e-2 1.62 3.81e- 
2 

3.00e-2 4.94 +

38% 
1 failures, 

10 trials 
5.71e- 
2 

5.57e-2 1.58 6.54e- 
2 

5.76e-2 3.09 - 13% 

2 failures, 
10 trials 

5.81e- 
2 

6.03e-2 1.55 9.26e- 
2 

8.53e-2 2.48 - 37%  
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combinations for π0(μt) and π0(σF) on the posterior HEP estimates as the 
number of simulator runs increases (in x-axis). The prior information 
may be available from HRA methods or generic failure databases. The 
considered prior distributions for the mean, π0(μt), are (left plot):  

• “Diffuse”: flat distributions for the parameters of the lognormal, 
mean and standard deviation, same as for Section 4.2.1;  

• “Good mean”: prior distribution informed around the correct median 
HEP value for Case 1 (lognormal, with median = 5e-2, 5th percentile 
= 5e-3, 95th percentile = 5e-1); 

Fig. 6. Data requirements of the lognormal variability model with flat hyper-priors π0(μt) and π0(σF). Top: Case 1 (median = 5e-2, mean = 5.46e-2 and error factor 
= 2. Bottom: Case 2 (median = 5e-3, mean = 6.24e-3, and error factor = 3. For each sample size (x-axis), 100 datasets (dots) are Monte Carlo-sampled from the target 
distribution. From left to right: expected error factor, mean (log-scale), and median (log-scale) of the PF(HEP)’s returned by the model. 

Fig. 7. Sensitivity of the lognormal variability model to the choice of prior distributions for the hyper-parameters, i.e. π0(μt) and π0(σF), and to the sample size, Case 
1. Left: only π0(μt) is informative. Upper/lower bounds of the lognormal distributions: “Good mean”, 5e-3/5e-1; “High mean”, 5e-2/1; “Low mean”, 5e-4/5e-2. Right: 
both π0(μt) and π0(σF) are informative. “With sigma” corresponds to a normal distribution with bounds 1.5/5 (expressed in terms of error factor). 
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Fig. 9. Sensitivity of the lognormal variability model to the choice of prior distributions for the hyper-parameters, i.e. π0(μt) and π0(σF), and to the sample size, Case 
2. Left: only π0(μt) is informative. Upper/lower bounds of the lognormal distributions: “Good mean”, 5e-4/5e-2; “High mean”, 5e-3/5e-2; “Low mean”, 5e-5/5e-3. 
Right: both π0(μt) and π0(σF) are informative. “With sigma” corresponds to a normal distribution with bounds 1.5/5 (expressed in terms of error factor). 

Fig. 8. Behavior of the lognormal variability model with informative priors on both π0(μt) and π0(σF) at NF = 50 (target HEP variability distribution as in Case 1: 
median = 5e-2, mean = 5.46e-2, and error factor = 2). For each option of informative priors in x-axis (Fig. 7, right plot), 100 datasets (dots) are Monte Carlo-sampled 
from the target distribution. From left to right, in y-axis: expected error factor, mean (log-scale), and median (log-scale) of the PF(HEP)’s provided by the model for 
each choice of prior (dotted lines: statistics of the target distribution). 

Fig. 10. Behavior of the lognormal variability model with informative priors on both π0(μt) and π0(σF) at NF = 200 (target HEP variability distribution as in Case 2: 
median = 5e-3, mean = 6.25e-3, and error factor = 3). Same considerations as in Fig. 8. Dotted lines: statistics of the target distribution. 
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• “Low mean” and “High mean”: prior distributions with median 
shifted by one order of magnitude below and above the correct 
median HEP value for Case 1, respectively (for “Low mean”: 
lognormal, with median = 5e-3, 5th percentile = 5e-4, 95th percen-
tile = 5e-2; for “High mean”: lognormal, with median = 5e-1, 5th 

percentile = 5e-2, 95th percentile = 1). 

The “Good mean” prior assumes that the information at disposal is 
correct in the order of magnitude of the HEP range, with two orders of 
magnitude between the 5th and the 95th percentiles. The “Low mean” 
and “High mean” priors assume the presence of biases of one order of 
magnitude. 

Additional information on the standard deviation, π0(σF), is 
modelled by a normal distribution (“with sigma”) with 5th and 95th 

percentiles corresponding to error factors of 1.5 and 5, respectively 
(right plot). Limiting values for error factor close to 5 are commonly 
accepted in establishing confidence intervals for HRA applications [6]. 

With informative π0(μt) (Fig. 7, left plot), when the information on 
μt is not biased (“Good mean”), it is possible to achieve reasonable ap-
proximations of the target mean (5.5e-2) and median (5e-2) already at 
NF = 200. Indeed, at NF = 200 the “Good mean” error factor is 16% 
lower than the one obtained with “Diffuse” prior (see Table A.1). In case 
of biased information on μt, sensible overestimation (“High mean”) or 
underestimation (“Low mean”) of the expected mean and median can be 
observed for all datasets, of course tending to decrease with the amount 
of data available. 

Data requirements can be significantly reduced if both π0(μt) and 
π0(σF) are informative (Fig. 7, right). If the information on μt is not 
biased (“Good mean, with sigma”), it is possible to obtain good ap-
proximations of the expected mean and median, as well as acceptable 
error factors, already in the range NF = 10÷50. For instance, at NF = 50, 
the model with “Good mean, with sigma” prior returns an expected error 
factor approximately 4 times lower than the value provided with the 
“Diffuse” prior, and significantly closer to the target value for Case 1 
(error factor = 2). Still at NF = 50, the biased hyper-priors reflect in 
biased HEP estimates (Table A.1 and Fig. 7, right), however the correct 
values lie within the 90% confidence bounds (5th and 95th percentiles). 
As the data set increases, the effect of the prior information is progres-
sively reduced, as shown by the statistics for NF = 200 and 1000, very 
close to the target values. 

To further investigate the possible reduction in data requirements, 
Fig. 8 further examines the sample size of NF = 50, a size reasonably 
achievable by current simulator data collection programs aggregating 
multiple plants. Fig. 8 shows the results for 100 Monte Carlo-sampled 
datasets relevant to Case 1 at NF = 50. The results confirm that such 
size is well enough for “Good mean, with sigma”: average expected 
mean of 5.8e-2 (50% confidence: 4.4e-2, 7.7e-2), average expected 
median of 4.3e-2 (50% confidence: 3.1e-2, 6.1e-2), average expected 
error factor = 4.4 (50% confidence: 3.8, 4.5). The Monte Carlo samples 
show that the biased estimates are not usable, because the correct values 
lie outside the 50% confidence interval: for “High mean, with sigma”, 
average expected mean 8.3e-2 (50% confidence: 7.1e-2, 1.0e-1), 
average expected median 6.6e-2 (50% confidence: 5.5e-2, 7.7e-1); for 
“Low mean, with sigma”, average expected mean 4.2e-2 (50% confi-
dence: 2.7e-2, 5.8e-2), average median = 2.9e-2 (50% confidence: 1.7e- 
2, 4.3e-2). It is however important to mention that the potential bias 
may be relatively easy to identify a posteriori. For example, from the 
Monte Carlo samples at NF = 50, the expected change in marginal prior 
medians (see Table A.1) after the evidence is:  

• for “Good mean, with sigma” between 24% and 36% of the marginal 
prior median (= 4.9e-2);  

• for “High mean, with sigma” between 72% and 285% of the marginal 
prior median (= 2e-1); 

• for “Low mean, with sigma” between 254% and 796% of the mar-
ginal prior median (= 4.8e-3). 

Indeed, large deviations of the posterior median from the marginal 
prior median could be used as indicators of an initial bias. 

Fig. 9 and Table A.2 present the results relevant to Case 2 and Fig. 10 
further explores the influence of informative priors at NF = 200:  

• “Good mean”: lognormal, with median = 5e-3, 5th percentile = 5e-4, 
95th percentile = 5e-2;  

• “Low mean”: lognormal, with median = 5e-4, 5th percentile = 5e-5, 
95th percentile = 5e-3;  

• “High mean”: lognormal, with median = 5e-2, 5th percentile = 5e-3, 
95th percentile = 5e-1. 

Compared to Case 1, Case 2 is characterized by a “weaker” evidence 
of failure (note that HEP ⁓ 0.001 in Case 2): this aspect influences the 
efficiency of informative priors in reducing the data requirements of the 
model. With informative π0(μt), from the cross-comparison with Case 1 
results (left plots in Figs. 7 and 9; Tables A.1 and A.2), the model tends to 
return significantly higher values of the expected error factor in Case 2: 
this suggests that informing only μt is not sufficient to achieve good 
approximation of the target mean (6.3e-3) and median (5e-3) with 
acceptably low NF (e.g. already at NF = 200 as for Case 1). 

When informing both π0(μt) and π0(σF) without bias (“Good mean, 
with sigma” in Fig. 9, right), good approximations of the expected mean 
and median, as well as acceptable error factors, can be achieved in the 
range NF = 50÷200 (note the increased data requirements compared to 
range NF = 10÷50 for Case 1). For instance, at NF = 200, the model with 
“Good mean, with sigma” prior returns an expected error factor 
approximately two times lower than the value provided with the 
“Diffuse” prior and closer to the target value for Case 2 (error factor = 3). 
Still at NF = 200, however, the biased hyper-priors (“Low mean, with 
sigma” and “High mean, with sigma”) reflect in biased HEP estimates 
(Table A.2 and Fig. 9, right), however the correct values lie within the 
90% confidence bounds. Fig. 10 shows the results for 100 Monte Carlo- 
sampled datasets relevant to Case 2 at NF = 200. The analysis confirms 
that “Good mean, with sigma” performs efficiently at this sample size: 
average expected mean = 7.0e-3 (50% confidence: 5.8e-3, 9.4e-3), 
average expected median = 4.8e-3 (50% confidence: 3.8e-3, 6.7e-3), 
and average expected error factor = 5.4 (50% confidence: 4.8, 5.4). On 
the other hand, for the configurations with biased priors, the correct 
values of the statistics (target mean = 6.3e-3 and target median = 5e-3) 
lie outside the 50% confidence interval: for “High mean, with sigma”, 
average expected mean = 1.1e-2 (50% confidence: 1.0e-2, 1.4e-2), 
average expected median = 8.0e-3 (50% confidence: 6.7e-3, 1.1e-2); for 
“Low mean, with sigma”, average expected mean 3.7e-3 (50% confi-
dence: 2.6e-3, 5.3e-3), average median = 2.2e-3 (50% confidence: 1.3e- 
3, 3.4e-3). As for Case 1, the potential bias in Case 2 can be easily 
identified by the observed large deviations of the posterior median from 
the marginal prior median (see Table A.2) across the different configu-
rations, e.g. at NF = 200:  

• for “Good mean, with sigma” between 20% and 39% of the marginal 
prior median (= 4.8e-3);  

• for “High mean, with sigma” between 78% and 86% of the marginal 
prior median (= 4.9e-2); 

• for “Low mean, with sigma” between 150% and 554% of the mar-
ginal prior median (=5.2e-4). 

In conclusion, the analysis highlighted the following two aspects. 
First, for a given acceptable level of approximation of the target error 
factor, unbiased informative priors on both the mean and the standard 
deviation of HEP distribution are effective in reducing the overall data 
requirements of the lognormal variability model. Secondly, especially 
for constellations F characterized by lower orders of magnitude of HEP 
or limited performance data NF (or both), biased informative priors have 
a strong influence on the HEP uncertainty distribution estimated by the 
model. Following on this, reducing as much as possible the bias in 
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informative priors becomes of key importance. Besides the approach 
adopted for the purposes of this numerical application, different tech-
niques (e.g. posterior predictive checks) are available in Bayesian 
literature to assist the analyst in selecting adequate prior distributions 
and reduce the initial bias [50]. 

4.3. Application to real simulator data from literature 

The proposed variability model is applied to failure data of operating 
crews in nuclear power plants available in the literature (Halden project 
data from [20] and HuREX data from [26]). Both [20] and [26] use the 
simulator data to inform HEPs of constellations of task type and PSF 
levels. [20] address constellations of SPAR-H PSFs (e.g. “complexity”, 
“stressors”), while [26] addresses the HuREX framework for different 
combinations of cognitive activities (e.g. “situation interpreting”, 
“execution”) and generic task types (e.g. “verifying state of indicator”; 
“directing manipulation”). In particular, [20] addresses five contexts 
(for the sake of brevity, only SPAR-H’s PSFs with ratings different than 
“nominal” are reported; see [8] for further information on PSF 
definitions):  

• Context A: Time = extra; Complexity = moderate; Procedures =
available but poor.  

• Contexts Ba, Bb: Time = barely adequate; Stressors = high; 
Complexity = moderate; Procedures = available but poor.  

• Context C: Time = inadequate; Stressors = high; Complexity = high; 
Procedures = available but poor; Work processes = poor.  

• Context D: Time = extra. 

For [26] the following operator activities are considered:  

• RP-manipulation: cognitive activity = response planning; task type 
= directing manipulation.  

• RP-procedure: cognitive activity = response planning; task type =
transferring procedure. 

• RP-step: cognitive activity = response planning; task type = trans-
ferring step procedure.  

• SI-diagnosis: cognitive activity = situation interpreting; task type =
diagnosing. 

In [26], the authors adopted a conservative assumption consisting of 
adding a fictitious recorded failure for all those constellations F where 
actually no failures have been observed. For instance, this was the case 
of RP-step dataset. In this application, the latter has been treated in two 
different configurations: the conservative dataset as used by the authors 
(with one postulated failure: kF = 1, NF = 30), and the real dataset (with 
zero failures observed: kF = 0, NF = 30). 

Both Groth et al. (2014) [20] and Jung et al. (2020) [26] adopt the 
lumped approach, with the conjugated beta-binomial model. Concern-
ing the prior, Groth et al. (2014) [20] uses the CNI prior (from [39]), 
built on the basic HEP provided by SPAR H in correspondence of the 
context. Jung et al. (2020) [26] adopts the Jeffreys non-informative 
distribution, a beta distribution with both shape parameters (i.e. 
α0 and β0 in eq. 11) equal to 0.5. 

An important difference between the data sets of Groth et al. (2014) 
[20] and Jung et al. (2020) [26] concerns their size. Groth et al. (2014) 
[20] addresses rather small data sets, four data points on average, 
including very challenging tasks. Jung et al. (2020) [26] addresses 
significantly larger datasets, because of the different granularity of the 
data collection taxonomy and because of the larger number of crews 
from which data is collected. This difference allows comparing the 
performance of the variability and the beta-binomial models (with 
lumped data) under very different data availability conditions. 

The expected statistics (mean, median, and 5th /95th percentiles) of 
the HEP posterior distributions estimated by both variability and 
lumped-data models are shown in Fig. 11 (y-axis, in log-scale), for each 
of the datasets used in the application (x-axis, left: [20]; right: [26]). A 
summary of the numerical results is given in Table A.3 in Appendix A. 
Note that the results for lumped-data models in Table A.3 and Fig. 11 are 
slightly different from the numerical values in [20] and [26], since the 
prior distributions adopted by these works (the CNI for [20]; the Jeffreys 
for [26]) were adapted in this application to ensure a fair comparison 
with the variability model. In particular, for the results to be compara-
ble, the literature models and the variability model should start from the 

Fig. 11. Results from the application of the lognormal variability model to real simulator data available in literature (datasets in x-axis: left, [20]; right, [26]). On 
y-axis (in log-scale): expected mean (filled symbols), median (blank symbols), and 5th – 95th percentiles (whiskers) of the PF(HEP)’s estimated by both the lognormal 
variability model (circles) and the lumped-data beta-binomial model (circles) given the same marginal prior distribution on HEP. 
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same expected HEP distribution (PF(pc|t) from eq. 9 for the variability 
model). To do this, the mean of the lognormal variability model (i.e. μt) 
were assigned the literature priors, i.e. CNI prior for π0(μt) for the 
comparison with [20]; Jeffreys prior for π0(μt) for the comparison with 
[26]. Then, the expected HEP distribution from the variability model, i. 
e. the lognormal parametric distribution weighted by the joint hyperp-
rior π0(μt , σF), was derived (for π0(σF), the diffuse prior mentioned in 
Section 3.4 was used). Finally, the lumped-data priors were 
re-calculated such that the corresponding expected HEP distribution 
would fit the one from the variability model. 

From the comparison of result, a general tendency can be observed: 
overall, the lumped-data beta-binomial models tend to return narrower 
posterior distributions if compared to the variability model. This ten-
dency replicates across all the tested datasets, with a magnitude that 
depends on the amount of evidence available (i.e. the sample size and 
the observed failures). In particular, for [20] (Fig. 11, left), the differ-
ences in the two models are small for “Contexts A” and “Context D”: the 
corresponding datasets are characterized by few observations and zero 
failures. As the number of observed failures increases (e.g. “Contexts Ba” 
and “Context Bb”), the differences between the posteriors become larger, 
see the expected error factor in “Contexts A/D, Ba and Bb“ in Table A.3 
(e.g. for “Context Bb”, the variability model returns an expected error 
factor 3.7 times higher than the lumped-data model). 

A similar trend can be observed for the data-rich application [26]. 
The differences in the expected error factors become more evident with 
progressively increasing the number of observed failures in the dataset 
(e.g. see the different spreads in the HEP uncertainty distributions from 
“SI-diagnosis, k=0” to “SI-diagnosis, k=1”, in Fig. 11, right); the dif-
ferences persist at very high numbers of observed failures (e.g. for 
“RP-manipulation” dataset, the error factor estimated by the 
lumped-data model is approximately 2.8 times lower than the variability 
model). 

5. Discussion 

The application to simulator data in Section 4 has demonstrated the 
large impact on the estimated HEP distribution of considering the un-
derlying variability in the HRA data. As presented in Section 3, the two 
models reflect two different interpretations of the target HEP. The 
variability model considers the HEP as a quantity that is specific for a 
crew and for a realization of the constellation; correspondingly, the HEP 
variability reflects the variability of the crews and of the realizations. 
The beta-binomial model considers the HEP as a unique quantity for a 
given constellation, aggregating all variability aspects in its value. 

It is important to note that there is no right or wrong interpretation of 
the HEP quantity: it depends on the application at hand. For example, an 
important HRA issue is to investigate PSF effects across different con-
stellations. The effect on the HEP of changes in one or more elements of 
the vector F in eq. 1 may be investigated by focusing on the aggregated 
effect, i.e. on the population average across crews and within- 
constellation, therefore adopting the typical beta-binomial model. On 
the other hand, as presented in Section 2, when the estimated HEP is 
used to inform a given constellation of an HRA model, adopting a 
variability model becomes important to capture the variability elements 
discussed in Section 2 and ideally allow for plant-specific HEP values (as 
demonstrated in Section 4). 

The model presented here supports a first investigation of the need 
for modelling variability. The interpretation of the HEP as a crew- 
specific quantity strongly limits the possibility to aggregate the data to 
inform HEP values. As shown by Fig. 4, the data informing the HEP 
variability distribution are only 0’s and 1’s because of the constraint that 
one crew only performs the exact same task only once. An alternative 

would be to consider the HEP values as dependent on particular crew 
features or styles (e.g. of communication or decision-making), as 
opposed to being just crew-specific. This approach would not consider 
each crew being characterized by a different HEP value: each crew 
feature or style would be connected with an HEP value. Numerically, 
this would allow aggregating more evidence on the single HEP realiza-
tion (the number of task repetitions in Fig. 4 would be per crew feature 
or style, and not per single crew). On the other hand, this may allow 
analysis of crew features and styles on the HEP, opening to additional 
applications to inform crew training. Current work by the authors is 
addressing definitions of appropriate features and styles as well as the 
associated adaptations to the model. 

As presented in Section 3, the inference model is intended for general 
application to any HRA model for HEP quantification. The currently 
available HRA models strongly differ in the task and factors considered 
and in the granularity of their definition. It can be expected that these 
aspects are strongly connected with the variability that the model shall 
be able to represent. For instance, the simulator data used in Section 4.3 
(Halden in [20]; HuREX in [26]) correspond to constellations at very 
different granularity. [20] uses the SPAR-H factor taxonomy on an 
operator task definition close to what would be used for PSA applica-
tions (e.g. “isolate the ruptured steam generator and control pressure”). 
On the other hand, HuREX in [26] operates at a more microscopic 
granularity level (e.g. “determine the condition of Adverse Contain-
ment”, “check if the three Reactor Coolant Pumps should be stopped”). 
As a working hypothesis, it may be reasonable to assume that the coarser 
the granularity of the model (more macroscopic tasks), the larger the 
variability corresponding to the within-category variability. Also, the 
more the task involves decision-making and communication at the crew 
level, the more crew variability will be relevant, compared for example 
to execution-related tasks performed by single persons. Finally, it can be 
expected that variability would also be larger for HRA models with 
coarser PSF categories, e.g. binary as opposed to multivalued. With the 
current interest by the community on empirically estimated HEPs, it 
may be well important that future studies will address the extent to 
which variability shall be addressed as well as with the goal of develop 
guidelines to do it. 

HRA research is addressing advanced modelling techniques, in 
particular Bayesian Belief Networks, to represent the complex re-
lationships among influencing factors as well as to formally incorporate 
a diversity of data sources. Indeed, within-category variability can be 
incorporated in these models via appropriate conditional probability 
distributions. BBNs can incorporate crew-to-crew variability as well, 
either implicitly, into the BBN internal distributions, as well as explic-
itly, as dedicated nodes [10,23]. The work presented in this paper can be 
used to enhance the empirical basis of the BBN distributions, e.g. as 
anchoring distributions to populate the model relationships via filling 
algorithms such as those in [49]. 

6. Conclusions 

Due to lack of data, judgments are currently the main source of in-
formation to assess the uncertainty and variability in the error proba-
bility estimates produced by HRA models. With the on-going large data 
collection activities, it becomes important that uncertainty and vari-
ability be empirically based, along with the associated point estimates. 

This paper presents a Bayesian hierarchical model that addresses the 
HEP variability due to operating crew differences as well as variability 
within the categories of task type and performance factors. Such models 
are typically used to consider source-to-source variability of failure 
probability estimates for hardware components: this paper presents 
their formulation and use for human failure data from simulators. 
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The presented case studies demonstrate the significant over-
confidence in the HEP estimates if variability is not considered, e.g. if all 
data is lumped to feed a beta-binomial Bayesian model (as typically done 
in most HRA applications). Also, this may results in significant biases for 
plant-specific human error probabilities. 

Empirically informing variability requires a large amount of data: 
therefore, numerical applications have investigated the practical appli-
cability of the proposed model. For moderately high HEP values (in the 
range of 1e-2), estimates of practical use can be obtained with few 
hundred, say below 500, data points (i.e. simulator runs). This is already 
achievable by current simulator programs depending on the constella-
tion of tasks and performance factors. Prior information on the model 
parameters, e.g. from available HRA methods, can reduce the data re-
quirements. For HEP values in the range of 1e-2, about 50 data points 
are demonstrated to become enough. For lower HEP values, in the range 
of 1e-3, estimates of practical use become achievable with few hundred 
data points. Of course, biases in the prior distributions may result in 
biases in the posterior estimates. However, this paper has shown that a 
simple check of the change between the prior and posterior estimates 
may reveal the presence of the initial bias. Data requirements for further 
low HEP ranges, i.e. below 1e-3, may be impractical for many operator 
tasks with the proposed model. 

The proposed model treats variability as a continuum. Especially 
when considering crew-to-crew variability, it may be important to 
identify relevant crew features that play a role in determining the failure 
probability. Besides allowing aggregating data from different crews on 
the basis of their common traits, this may support training of operators 
on the crew skills that allow lower failure probability values. Work by 

the authors is ongoing along this direction. 
This work is part of a larger effort to derive empirically-based 

reference HEP values to strengthen the technical basis of HRA 
methods. The long-term aim is to develop a framework to process 
diverse data sources, e.g. simulator data, data from existing HRA 
methods, operational experience data, and evidence from human factor 
studies. The main thrust is that a mathematical, traceable aggregation of 
these sources will allow to feed with new data as it becomes available, 
progressively replacing older evidence that may become outdated 
because of new advances in plant operation and design. 
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Appendix A   

Table A.1 
Numeric results from sensitivity analysis on choice of priors for the lognormal 
variability model as shown in Fig. 7 (Case 1, target HEP variability distribution with 
median = 5e-2, mean = 5.46e-2, and error factor = 2).   

Prior distribution Mean Median 5th perc 95th perc EF 

No evidence (marginal priors) Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

7.44e-02 
4.06e-02 
2.23e-01 
1.20e-01 
1.61e-02 
2.71e-01 
1.11e-01 

3.35e-03 
4.75e-03 
1.23e-01 
3.43e-02 
4.75e-03 
1.96e-01 
4.86e-02 

2.01e-05 
8.11e-05 
2.10e-03 
5.21e-04 
4.13e-04 
3.43e-02 
3.76e-03 

4.98e-01 
2.21e-01 
7.92e-01 
5.59e-01 
6.14e-02 
7.92e-01 
4.43e-01 

157.39 
52.14 
19.40 
32.75 
12.19 
4.81 
10.85 

NF=10, 1 failure Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

7.47e-02 
4.97e-02 
1.55e-01 
9.06e-02 
3.67e-02 
1.56e-01 
8.91e-02 

2.15e-02 
9.55e-03 
9.77e-02 
3.85e-02 
1.92e-02 
1.23e-01 
5.46e-02 

1.63e-04 
1.29e-04 
7.56e-03 
8.30e-04 
1.87e-03 
2.72e-02 
8.50e-03 

3.51e-01 
2.48e-01 
4.98e-01 
3.94e-01 
1.23e-01 
4.43e-01 
2.78e-01 

46.42 
43.79 
8.11 
21.80 
8.11 
4.04 
5.72 

NF =50, 2 failures Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

3.73e-02 
3.12e-02 
7.15e-02 
4.53e-02 
2.75e-02 
7.08e-02 
4.42e-02 

1.52e-02 
1.07e-02 
5.46e-02 
2.42e-02 
1.71e-02 
5.46e-02 
3.05e-02 

4.13e-04 
3.27e-04 
9.55e-03 
1.48e-03 
2.98e-03 
1.52e-02 
5.99e-03 

1.38e-01 
1.23e-01 
1.96e-01 
1.38e-01 
8.70e-02 
1.75e-01 
1.23e-01 

18.31 
19.40 
4.53 
9.66 
5.40 
3.39 
4.53 

NF =200, 11 failures Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

5.24e-02 
4.74e-02 
6.27e-02 
5.38e-02 
4.97e-02 
6.30e-02 
5.50e-02 

3.85e-02 
3.05e-02 
5.46e-02 
3.85e-02 
3.85e-02 
5.46e-02 
4.33e-02 

3.35e-03 
1.67e-03 
1.20e-02 
4.75e-03 
1.07e-02 
1.71e-02 
1.20e-02 

1.38e-01 
1.56e-01 
1.38e-01 
1.38e-01 
1.23e-01 
1.38e-01 
1.38e-01 

6.43 
9.66 
3.39 
5.40 
3.39 
2.85 
3.39 

NF =1000, 58 failures Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

5.75e-02 
5.62e-02 
5.95e-02 
5.76e-02 
5.67e-02 
5.96e-02 
5.79e-02 

4.86e-02 
4.33e-02 
5.46e-02 
4.86e-02 
4.86e-02 
4.86e-02 
4.86e-02 

1.07e-02 
8.50e-03 
1.52e-02 
1.20e-02 
1.35e-02 
1.71e-02 
1.52e-02 

1.38e-01 
1.38e-01 
1.23e-01 
1.38e-01 
1.38e-01 
1.23e-01 
1.23e-01 

3.59 
4.04 
2.85 
3.39 
3.20 
2.69 
2.85 

Numeric results from sensitivity analysis on choice of priors for the lognormal variability model as shown in Fig. 7 (Case 1, target HEP variability distribution with 
median = 5e-2, mean = 5.46e-2, and error factor = 2). 
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Table A.2 
Numeric results from sensitivity analysis on choice of priors for the lognormal variability model as shown in Fig. 9 (Case 2, target HEP variability distribution with 
median = 5e-3, mean = 6.25e-3, and error factor = 3).   

Prior distribution Mean Median 5th perc 95th perc EF 

No evidence 
(marginal priors) 

Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

7.44e-02 
1.25e-02 
1.20e-01 
4.06e-02 
1.68e-03 
1.11e-01 
1.61e-02 

3.35e-03 
5.86e-04 
3.43e-02 
4.75e-03 
5.21e-04 
4.86e-02 
4.75e-03 

2.01e-05 
2.26e-05 
5.21e-04 
8.11e-05 
4.04e-05 
3.76e-03 
4.13e-04 

4.98e-01 
4.33e-02 
5.59e-01 
2.21e-01 
6.73e-03 
4.43e-01 
6.14e-02 

157.39 
43.79 
32.75 
52.14 
12.92 
10.85 
12.19 

NF =10, 0 failures Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

1.91e-02 
7.11e-03 
5.23e-02 
2.18e-02 
1.57e-03 
4.11e-02 
1.06e-02 

1.32e-03 
6.58e-04 
1.92e-02 
3.76e-03 
5.21e-04 
2.15e-02 
4.23e-03 

2.85e-05 
3.59e-05 
6.58e-04 
1.29e-04 
5.09e-05 
2.36e-03 
3.68e-04 

8.70e-02 
1.92e-02 
2.21e-01 
8.70e-02 
5.99e-03 
1.38e-01 
3.85e-02 

55.26 
23.10 
18.31 
25.95 
10.85 
7.65 
10.24 

NF =50, 0 failures Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

5.22e-03 
2.75e-03 
1.85e-02 
8.46e-03 
1.32e-03 
1.65e-02 
6.05e-03 

7.39e-04 
5.86e-04 
8.50e-03 
2.66e-03 
5.21e-04 
9.54e-03 
2.98e-03 

3.59e-05 
5.09e-05 
7.39e-04 
1.83e-04 
5.72e-05 
1.32e-03 
2.92e-04 

2.15e-02 
8.50e-03 
6.14e-02 
3.05e-02 
4.75e-03 
5.46e-02 
2.15e-02 

24.48 
12.92 
9.11 
12.92 
9.11 
6.43 
8.60 

NF =200, 2 failures Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

1.05e-02 
7.17e-03 
1.45e-02 
1.05e-02 
5.36e-03 
1.40e-02 
9.44e-03 

5.34e-03 
2.66e-03 
9.55e-03 
5.34e-03 
3.35e-03 
1.07e-02 
6.73e-03 

3.27e-04 
1.83e-04 
1.05e-03 
4.13e-04 
4.64e-04 
2.36e-03 
1.18e-03 

3.43e-02 
2.42e-02 
4.33e-02 
3.43e-02 
1.71e-02 
3.85e-02 
2.72e-02 

10.24 
11.50 
6.43 
9.11 
6.06 
4.04 
4.81 

NF =1000, 8 failures Diffuse 
Low mean 
High mean 
Good mean 
Low mean, with sigma 
High mean, with sigma 
Good mean, with sigma 

8.10e-03 
7.23e-03 
9.07e-03 
8.10e-03 
6.83e-03 
8.99e-03 
7.90e-03 

5.34e-03 
4.23e-03 
6.73e-03 
5.34e-03 
5.34e-03 
7.56e-03 
5.99e-03 

5.86e-04 
3.68e-04 
1.05e-03 
5.86e-04 
1.32e-03 
2.10e-03 
1.67e-03 

2.15e-02 
2.15e-02 
2.15e-02 
2.15e-02 
1.71e-02 
2.15e-02 
1.92e-02 

6.06 
7.65 
4.53 
6.06 
3.59 
3.20 
3.39  

Table A.3 
Numeric results from the application of the lognormal variability model on real simulator data taken from [20] (upper table) and [26] (lower table) shown in Fig. 11.   

Model Mean Median 5th perc. 95th perc. EF 

Context A 
NF =4, 0 failures 

Beta-binomial 
Variability model 

4.46e-03 
9.13e-03 

3.57e-04 
3.87e-04 

1.70e-06 
2.35e-06 

1.74e-02 
2.61e-02 

101.16 
105.34 

Context B 
NF =4, 1 failure 

Beta-binomial 
Variability model 

2.00e-01 
1.67e-01 

1.68e-01 
8.80e-02 

2.05e-02 
8.03e-04 

5.23e-01 
6.15e-01 

5.05 
7.68 

Context B bis 
NF =4, 3 failures 

Beta-binomial 
Variability model 

5.64e-01 
3.54e-01 

5.67e-01 
3.22e-01 

2.33e-01 
1.74e-02 

8.50e-01 
8.50e-01 

1.91 
6.99 

Context C 
NF =4, 4 failures 

Beta-binomial 
Variability model 

8.60e-01 
7.36e-01 

9.22e-01 
7.84e-01 

5.67e-01 
2.33e-01 

1.00e-00 
1.00e-00 

1.33 
2.07 

Context D 
NF =3, 0 failure 

Beta-binomial 
Variability model 

1.41e-03 
2.62e-03 

4.35e-05 
5.11e-05 

4.66e-07 
5.94e-07 

3.18e-03 
3.74e-03 

82.62 
79.34 

RP-manipulation 
NF =830, 40 failures 

Beta-binomial 
Variability model 

4.87e-02 
4.83e-02 

4.99e-02 
3.92e-02 

3.61e-02 
8.41e-03 

6.37e-02 
1.12e-01 

1.33 
3.65 

RP-procedure 
NF =253, 1 failure 

Beta-binomial 
Variability model 

6.09e-03 
5.94e-03 

4.77e-03 
2.49e-03 

8.03e-04 
7.07e-05 

1.61e-02 
1.89e-02 

4.47 
16.35 

RP-step 
NF =71, 4 failures 

Beta-binomial 
Variability model 

6.21e-02 
5.80e-02 

5.87e-02 
3.61e-02 

2.41e-02 
1.41e-03 

1.12e-01 
1.68e-01 

2.16 
10.91 

SI-diagnosis 
NF =30, 0 failures 

Beta-binomial 
Variability model 

1.73e-02 
1.68e-02 

9.12e-03 
3.18e-03 

1.87e-04 
1.78e-05 

6.37e-02 
6.91e-02 

18.46 
62.23 

SI-diagnosis  
NF =30, 1 failures 

Beta-binomial 
Variability model 

4.80e-02 
4.46e-02 

3.92e-02 
1.89e-02 

6.08e-03 
2.03e-04 

1.22e-01 
1.68e-01 

4.47 
28.83  
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