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Centrioles are microtubule-based structures involved in cell

division and ciliogenesis. Centriole formation is a highly

regulated cellular process and aberrations in centriole

structure, size or numbers have implications in multiple human

pathologies. In this review, we propose that the proteins that

control centriole length can be subdivided into two classes

based on their antagonistic activities on centriolar

microtubules, which we refer to as ‘centriole elongation

activators’ (CEAs) and ‘centriole elongation inhibitors’ (CEIs).

We discuss and illustrate the structure-function relationship of

CEAs and CEIs as well as their interaction networks. Based on

our current knowledge, we formulate some outstanding open

questions in the field and present possible routes for future

studies.
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Introduction
Centrosomes are organelles that act as major microtubule-

organising centres in all animal cells. An archetypal ver-

tebrate centrosome is composed of a pair of orthogonally

arranged centrioles that are surrounded by proteinous

pericentriolar material. Furthermore, most of these cen-

trioles display a characteristic ninefold symmetrical

‘cartwheel’ structure at their base, which is connected

to nine peripheral microtubule-triplet blades (reviewed in

Ref. [1]). Centrioles can be interconverted to basal bod-

ies, which are required for the formation of cilia and

flagella.

The overall structure and size of centrioles are quite

variable between different species as well as between
www.sciencedirect.com 
different cell types within a species [2]. Despite this

variability, the length of a centriole is tightly controlled

within a given cell type [3]. Since microtubules lie at the

core of the centriole architecture, the regulation of the

centriole length is tightly coupled to the regulation of the

length of their constituent centriolar microtubules. In

support of this conclusion, overexpression of proteins

that either stabilize or destabilize centriolar microtubules

directly impact centriole length [4]. Remarkably, centrio-

lar microtubules display distinct properties compared to

the highly dynamic cytoplasmic microtubules: they

exhibit exceptionally slow growth rates (approximately

four orders of magnitude slower) and retain remarkable

stability after their formation [5]. These peculiar bio-

chemical and biophysical properties of centriolar micro-

tubules are in part due to their specific posttranslation

modifications (reviewed in Ref. [6]) and to the activity of

centriolar microtubule-associated proteins.

Recent work on a number of centriolar microtubule-

associated proteins has highlighted their importance in

controlling centriole length. However, our understanding

of the molecular machinery that regulates this complex

process is still fragmented. In this review, we present an

overview of the proteins and their interaction networks

that are involved in controlling the length of centrioles

and briefly discuss their structure-function relationships.

Finally, we formulate some outstanding open questions

and present possible routes for future studies aimed at

understanding the enigmatic molecular mechanisms

underlying centriole length control.

Proteins involved in centriole length control
The initiation of a new daughter centriole at the proximal

end of a mother centriole critically depends on the

activities of the Polo-like kinase Plk4, the cartwheel

proteins SAS-6 and STIL, the microtubule minus-end

binding protein g-tubulin, and the protein Cep135 that

links the cartwheel to the microtubule triplet blades

(reviewed in Ref. [7]). However, the actual formation

of the centriolar microtubule wall that founds the core of a

centriole is orchestrated by a set of centriolar proteins that

we here propose to subdivide into two classes based on

their antagonistic activities on centriolar microtubules,

which we refer to as ‘centriole elongation activators’

(CEAs) and ‘centriole elongation inhibitors’ (CEIs).

CEAs are proteins that bind microtubules or their

ab-tubulin heterodimer building blocks and which upon

overexpression lead to overly elongated centrioles. Acces-

sory CEAs (aCEAs) do not directly bind tubulin or

microtubules but promote centriole microtubule growth

by regulating the activity of CEAs. CEIs, on the other
Current Opinion in Structural Biology 2021, 66:89–95
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hand, are proteins that upon overexpression lead to

shorter centrioles by counteracting the activity of CEAs.

Similar to aCEAs, accessory CEIs (aCEIs) regulate the

activity of CEIs. The precise balance between the activi-

ties of CEAs and CEIs ultimately defines the proper

length of a centriole [4].

In the following and in Table 1, we briefly describe and

summarize, respectively, our current knowledge on the

functions and mechanisms of the various CEAs and CEIs

as well as on their accessory proteins. The domain orga-

nization, available structural information and known pro-

tein interaction sites of CEAs and CEIs are illustrated in

Figure 1.

CEAs and their accessory proteins

CPAP (centrosomal P4.1 associated protein; SAS-4 in

Caenorhabditis elegans). CPAP/SAS-4 is perhaps the

best-characterized protein involved in centriole length

control to date. It contains an N-terminal ab-tubulin-
binding domain, denoted PN2-3 [8], a positively charged

unstructured microtubule-binding domain [9], a coiled-

coil dimerization domain [10], and a C-terminal G-box

domain [10]. In addition to being important for centriole

elongation [4,11,12], CPAP plays a role in pericentriolar

material recruitment [13,14] and might be involved in

connecting the cartwheel to the microtubule-triplet

blades [10]. The G-box domain of CPAP has the capacity

to self-assemble into a fibrillar structure in vitro, which

displays a �8 nm axial periodicity; it has been speculated

that such fibrils may act as ‘molecular rulers’ for centriole

formation [10]. However, the C-terminus of CPAP
Table 1

CEAs and CEIs and their associated proteins

CEA Effects on MTs Fu

CPAP MT plus-end tracking [18��], promotion of slow and

processive MT growth [18��]
Re

sc
Cep120

Enhancement of MT formation and stability [27�] Ce

Centrobin Unknown C-

Cep295 Unknown Re

ce

an

CEI Effects on MTs Functionsa

CP110 Unknown Ciliogenesis inhibition [3

Kif24 MT depolymerization [41] Ciliogenesis regulation [

Ofd1 Unknown Recruitment of distal ap

[50], intraflagellar transpo

[50]

The most commonly used names for the human proteins are given. CEA

elongation inhibitor; aCEI, accessory CEI; MT, microtubule.
a Additional functions besides regulation of centriole length.
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encompassing the coiled coil and G-box domains can also

form dynamic oligomers [15].

CPAP, whose function is regulated by phosphorylation

[16], localizes and tracks growing microtubule plus ends

by recognizing their exposed b-tubulin subunits through

its PN2-3 domain [17��,18��]. Binding of CPAP to grow-

ing plus ends causes a peculiar slow and processive growth

of microtubules in vitro reminiscent of centriolar-micro-

tubule growth rates in cells [18��]. In this context, the

PN2-3 domain of CPAP presumably dampens microtu-

bule dynamics by acting as a ‘leaky lid’ that stabilizes

microtubule protofilaments and controls the addition of

tubulin dimers at microtubule plus ends [18��]. The

centriolar localization of CPAP depends on its binding

to Cep152 [19], PPP1R35 [20] and Centrobin [21]; the

latter protein also prevents the proteasome-mediated

degradation of CPAP [22]. Furthermore, SPICE1 is

required for the centriole elongation activity of CPAP

[23]. Two CPAP disease-related mutations have been

reported so far: the Seckel syndrome 4 [24] and the

autosomal recessive primary microcephaly disorder

[25]. Interestingly, a conditional CPAP knockout mouse

shows developmental defects in the brain mimicking

human microcephaly, which could provide new insights

into the role of CPAP in brain development [26].

Cep120 (centrosomal protein of 120 kDa). Cep120 con-

tains three consecutive N-terminal C2 domains (C2A,

C2B and C2C) followed by a coiled-coil dimerization

domain [27�,28�]. The C2A domain of Cep120 binds

tubulin and microtubules and enhances microtubule for-

mation and stability in vitro [27�]. Two ciliopathy-
nctionsa aCEA

cruitment of pericentriolar material [13,14], centriole

affold-MT connection [10], brain development [26]

Cep152 [19]

SPICE1 [23]

ntriole appendage assembly [30��]
SPICE1 [23]

Talpid3 [29]

C2CD3 [30��]
tubule assembly in primary spermatocytes [34] Cep152 [19]

quired for CPAP-induced and Cep120-induced

ntriole elongation [35�], posttranslational acetylation

d glutamylation of centriolar MTs [35�]

Rotatin [36�]

aCEI

8,41,48�] Cep290 [39], Calmodulin [45], Cep97 [38],

Cep104 [46], Centrin2 [44]

41] Cep97 [38,48�]
pendage proteins

rt and ciliogenesis

, centriole elongation activator; aCEA, accessory CEA; CEI, centriole
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Figure 1
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Relative sizes, domain organization, structural information and known protein interaction sites of CEAs and CEIs.

Predicted secondary structural elements are depicted as follows: pink, folded region; blue, disordered region; green, coiled-coil region. The ruler

on top indicates amino acid positions (except for Cep295 that is much longer than the other CEAs and for which amino acid boundaries are given

directly in the schematic representation). Tubulin-binding, microtubule-binding, aCEA-binding and aCEI-binding regions are highlighted with black
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associated point mutations in C2B destabilize this

domain, reduce cellular and centrosomal Cep120 levels,

and impede centriole function and cilia formation (Short-

rib thoracic dysplasia 13 and the Joubert syndrome 31;

[28�]). Cep120 is asymmetrically localized to daughter

centrioles through its interaction with Talpid3 [29].

Cep120 binding to C2CD3 and Talpid3 is required for

the assembly of centriolar appendages [30��]. Further-

more, loss of Cep120 produces short centrioles with no

apparent distal and subdistal appendages essential for

proper cilia assembly [30��]. Cep120 interacts with

SPICE1 and CPAP, which is crucial for the protein’s

centriole elongation activity [23,31]. In addition,

Cep120 helps to maintain centrosome homeostasis by

inhibiting the maturation of daughter centrioles [32].

Centrobin. Centrobin is a coiled-coil protein harboring a

tubulin-binding domain at its C-terminus [21]. Overex-

pression of this domain leads to centriole destabilization

in normal and CPAP overexpressing cells and disrupts

centriole localization of the endogenous protein [33].

Centrobin is required in primary spermatocytes for their

basal bodies to achieve normal length and for the assem-

bly of the C-tubule of centriolar microtubule triplets [34].

Centrobin overexpression is linked to an increased cellu-

lar level of CPAP, which could be partly responsible for its

centriole elongation activity [22]. The centrosomal local-

ization of Centrobin is dependent on the cartwheel pro-

teins SAS-6 [33] and Cep152 [21].

Cep295 (centrosomal protein of 295 kDa, Ana1 in D.
melanogaster). Cep295 contains mainly predicted coiled

coils at its N-terminus followed by an unfolded stretch

and a C-terminal, microtubule-binding coiled-coil

domain. It localizes at the proximal end of the centriole

wall and is required for CPAP-induced and Cep120-

induced centriole elongation, as well as for the posttrans-

lational acetylation and glutamylation of centriolar micro-

tubules [35�]. The centriolar localization of Cep295 is

dependent on the accessory protein Rotatin [36�].

CEIs and their accessory proteins

CP110 (centrosomal protein of 110 kDa). CP110 localizes

to the distal plus ends of both the static mother and

growing daughter centrioles where it seems to act as a

‘plug’ [37]. Overexpression of CP110 supresses the cen-

triole elongation activity of CPAP [4]. Its depletion in

mammalian cells, on the other hand, causes the extension

of centriolar microtubules from the distal ends of cen-

trioles [4] and leads to the formation of primary cilia [38].

CP110 controls primary cilia formation through its
(Figure 1 Legend Continued) bars; other centriolar binding partners are hig

in cartoon representation. They were prepared using PyMol (Schrodinger LL

4BXP; CPAP PN2-3, 5ITZ; Cep120 C2A, 6FLJ; Cep120 C2B, 6EWG; Cep12
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interaction with Cep290 in dividing cells until they are

ready to undergo ciliogenesis [39]. In Drosophila, how-

ever, depletion of CP110 leads to centriole shortening

apparently via the microtubule-depolymerizing activity

of the CP110-associated kinesin-13 family member

Klp10A [40]. The recruitment of CP110 to centrioles

depends on Cep97, Kif24 and Centrobin [33,38,41].

CP110 protein levels are controlled in cells by the antag-

onistic activity of the ubiquitin ligase SCFcyclin-F [42] and

by USP33-mediated deubiquitination [43]. The centri-

ole-localized CP110 pool exists as part of a multiprotein

complex involving Cep97 [38], Kif24 [41], Centrin2 [44],

Calmodulin [45], Cep290 [39], and Cep104 [46]. Kif24

recruits M-phase phosphoprotein 9 (MPP9) to centrioles,

which in turn recruits the CP110-Cep97 complex via

direct binding to Cep97 [47�]. In addition, Cep97 is

involved in the stabilization of centriolar microtubules

by regulating their posttranslational modifications [48�].

Kinesin-13 family members. Mammalian Kif24 and dro-

sophila Klp10A are two kinesin-13 family proteins whose

members act as microtubule depolymerases by inducing

and/or stabilizing a curved conformation of tubulin at

microtubule ends [49]. Kif24 specifically depolymerizes

centriolar microtubules with little effects on cytoplasmic

microtubule dynamics [41]; in contrast, Klp10A destabi-

lizes both cytoplasmic and centriolar microtubules [40].

Kif24 associates with the CP110-Cep97 complex and pref-

erentially localizes to the mother centriole; however, the

centriole localization of Kif24 is independent of its CP110-

Cep97 binding activity [41]. Ablation of Kif24 promotes

ciliogenesis whereas its overexpression supresses centriole

elongation upon Cep97 depletion [41].

Ofd1 (orofaciodigital syndrome 1 protein). Ofd1 localizes

to the distal ends of centrioles, in close proximity to the

centriolar microtubule wall. Loss of Ofd1 leads to over-

elongated centrioles containing destabilized microtu-

bules [50]. Ofd1 is involved in the recruitment of distal

appendage proteins as well as in intraflagellar transport

and ciliogenesis [50]. Unlike CPAP overexpression or

CP110 depletion leading to procentriole elongation, the

depletetion of Ofd1 leads to elongation of the distal

region of centrioles [50]. Ofd1 and the CPAP-CP110

module might thus be involved in the regulation of

distinct centriole regions. Since the distal regions of

centrioles contain microtubule doublets, it remains to

be investigated whether Ofd1 could specifically act on

microtubule doublets. Mutations in Ofd1 leads to multi-

ple human pathologies like, for example, the orofaciodi-

gital syndrome [51].
hlighted with grey bars. Available structures of domains are depicted

C) using the following Protein Data Bank (PDB) entries: CPAP G-box,

0 C2C, 6FLK; Klp10A motor domain, 6B0C.
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Figure 2
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CEA and CEI interaction networks.

CEA and CEI network components are highlighted in green and red, respectively. ‘�End’ and ‘+End’ indicate the polarity of the microtubules in

the centriole (�End, microtubule minus-ends; +End, microtubule plus-ends). The double arrows highlight the potential crosstalk between the CEA

and CEI networks.
CEA and CEI networks and their possible
crosstalk
As described above, CEAs and CEIs do not act in isolation

but collaborate together with their accessory proteins to

execute their functions (Figure 2). This interdependence

is required for proper protein localization (Cep120-CPAP

[31]; CP110-Kif24 [41]), stability (Centrobin-CPAP [22]),

or activity (Cep120-CPAP-SPICE1 [23]). Thus, both

CEAs and CEIs seem to act as protein network machin-

eries that either activate or inhibit centriolar microtubule

growth to control precisely the length of centrioles.

Whether there is a functionally relevant crosstalk

between the CEA and CEI networks remains to be

investigated — the observation that the CEI CP110

localizes to the growing procentriole adjacent to the

CEA CPAP/SAS-4 [37] and that it interacts with the

CEA Centrobin [52�] indicates that this may indeed be

the case.

Concluding remarks and future perspectives
Why is it important to understand the molecular mecha-

nisms underlying centriole length control? Mutations in

proteins controlling centriole length often lead to cilio-

pathies and developmental disorders [24]. Furthermore,
www.sciencedirect.com 
elongated centrioles can lead to centrosome amplifica-

tion, enhanced centrosome activity and chromosome

segregation defects, all factors that contribute to tumori-

genesis [53]. Thus, besides representing a fundamental

open basic research question in biology, understanding

the formation and architecture of centrioles may hold the

key for developing strategies against multiple severe

human pathologies.

Microtubules are the major structural components of

centrioles and hence play a key role in defining centriole

length. In this review, we categorized the proteins that

control centriole length into two classes, CEAs and CEIs,

based on their antagonistic activities on the growth of

centriolar microtubules. We recently started to get first

glimpses on how these proteins and their networks affect

the formation of centriolar microtubules and how their

activities are regulated by accessory proteins, by post-

translational modifications or by controlling their intra-

cellular levels. Immediate open questions emerging from

recent studies are: What are the modes of action of the

CEAs and CEIs networks on microtubule dynamics,

stability and length? Can CEA and CEI networks specifi-

cally recognize centriolar microtubules and if so how? Is
Current Opinion in Structural Biology 2021, 66:89–95
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there a functional crosstalk between the CEA and CEI

networks and if so what is its underlying mechanism(s)

and how is it regulated?

One possible route to start answering these questions is to

understand how CEA and CEI network components

specifically localise to, recognize and affect centriolar

microtubules. Detailed structural and biochemical inves-

tigations on CEAs and CEIs may reveal novel tubulin-

binding and microtubule-binding domains as well as their

specificity determinants towards centriolar microtubules.

In this context and based on previous observations [41], it

is expected that centriole-specific tubulin isotypes or

tubulin posttranslational modifications of the C-terminal

tubulin tails [6] will play a major role in imparting binding

specificity. Another possible route would be to systemati-

cally test whether CEA and CEI network components

interact with each other and how interfering with such

interactions affects centriole length. On a more long-term

perspective, reconstituting and imaging of the CEA and

CEI networks together with microtubules will reveal a

comprehensive picture of the processes governing the

length of the fascinating centriole organelle.
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