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1 Talbot effect with convergent Gaussian beams

Here, we briefly review how to evaluate the Talbot effect for a general 1D transmission grating.
More details on the effect can be found in the literature [1]. The calculation is conducted within
Fresnel theory of diffraction. First, the grating is described in its Fourier representation:

T(x) = ∑
n

cn e−inkG x (1)

where x is the transverse spatial coordinate of the grating and kG is defined as 2π
d , with d being the

gratings’ pitch. The coefficients cn are defined as

cn =
1
d

∫ d
2

− d
2

T(x) einkG xdx (2)

with T(x) = A1eiφ1 for 0 < |x| < ad
2 and T(x) = A2eiφ2 for ad

2 < |x| < d
2 . Here a is the groove

ratio, A1, A2 and φ1, φ2 are the amplitudes and phases of the grating. The general solution for the
coefficients is:

cn =
i

nkG
(A2eiφ2 − A1eiφ1) + i

e−in2πa

nkG
(A1eiφ1 − A2eiφ2) (3)
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For a perfect π
2 grating, we have A1 = A2 = 1, φ1 = 0 and φ2 = π

2 and we get

cn =
1 + i
nkG

(e−in2πa − 1) (4)

Assuming the coordinate z at the grating location is zG, the electric field at the phase grating
is given by E0(x, zG)T(x), with E0(x, zG) being the incident electric field. The electric field at any
position after the grating can be calculated by performing a Fresnel propagation defined as:

E(x, y, z) =
ik

2πz
e−ikz

∫∫ +∞

−∞
E0(x′, y′, zG)T(x′)e−

ik(x′−x)2
2z e−

ik(y′−y)2
2z dx′dy′ (5)

with k the radiation wavevector equal to 2π/λ. Solving the integral for an incident plane wave
E0(x′, y′, zG) = E0e−ikz and setting the origin at the grating location (zG = 0), we get:

E(x, y, z) = E0e−ikz ∑
n

cne−inkG xe
in2k2

G
2k z (6)

By defining the Talbot distance zT = 2πk
k2

G
= 2d2

λ , it can be seen that at z = nzT , with n ∈ N, the

electric field displays an interference pattern with the same periodicity as the transmission grating.
For a Gaussian beam the same procedure applies. In this case the Fresnel calculation is more

challenging and the Talbot effect leads to interference gratings with smaller/larger pitches with
respect to the initial diffraction gratings ones due to the convergence/divergence of the photon
beam. By defining the incoming Gaussian beam as

G(x, y, z) = A0
ω0

ω(z)
e
− x2+y2

ω(z)2 e−
ik

2R(z) (x2+y2)e−ikze−iΦ(z) (7)

with ω0 the beam waist and

ω(z) = ω0

√√√√1 +

(
2z

kω2
0

)2

, R(z) = z

1 +

(
kω2

0
2z

)2
 , tan(Φ(z)) =

2z
kω2

0
(8)

and by performing the Fresnel propagation [2], the final result is

E(x, y, z) = A0
ω0

ω(z)
e−ik(z+zG)e

− x2+y2

ω(z)2 e−
ik

2R(z) (x2+y2)e−i(Φ(zG)+Φ(z)))∑
n

cne−
in2k2

Gz
4α(z) e

inkkG x
2zα(z) (9)

where α(z) =
1

ω(zG)2 + i
k
2

( 1
R(zG)

+
1
z

)
.

A schematic of Talbot geometry is displayed in Fig. 1a.
The solution presents two new terms if compared to the plane wave case: the localization and

magnification terms. The former accounts for the displacement of the Talbot planes which is not
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Figure 1: Top, Fresnel simulation of a converging Gaussian beam, coming from the left, diffracted
by a transmission grating. Diffraction orders emerge from the grating and interfere generating a
Talbot carpet. Bottom, detail of the Talbot carpet for a convergent Gaussian beam generated by a
π phase grating. The red arrows indicate the original diffraction grating pitch (left) and the XTG
pitch after several Talbot planes. (right).

constant while the second accounts for the pitch of the interference pattern. The latter has the
following form:
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M =
R(zSam)

R(zSam)− z∗
(10)

where R(zSam) is the radius of curvature at the sample position and z∗ is the distance between
sample and diffraction grating. It can be seen that, for convergent Gaussian beams, the magnifica-
tion factor is less than unity. As a consequence, the Talbot interference pattern has a smaller pitch
compared to the diffraction grating. A Fresnel simulation displaying this behaviour is shown Fig.
1b.

Another important quantity to be considered is the separation distance, which is the distance
from the grating for which the first orders of diffraction stop overlapping. For a Gaussian beam it
is:

zsep =
w(zG)

2 tan β
(11)

with β the angle of diffraction of the first orders give by arcsin ( λ
d ) where λ is the wavelength

of the radiation.
The calculation starting from Eq. 5 assumed that the beam contains a single wavelength. When

considering a pulse having a bandwidth, the Talbot effect occurs for each wavelength and the
Talbot planes have a spread along the z-axis. When the bandwidth becomes large enough, the
Talbot planes of different orders start to merge; and a continuum is reached. This regime is called
the achromatic Talbot effect[3]. In the achromatic Talbot regime, one can position the sample more
freely since there is a continuum of interference pattern on the sample, but the fringe visibility (i.e.
the XTG efficiency) drops considerably.

In the experimental conditions of the present experiment, the achromatic Talbot effect occurs
for the fractional bandwidth of ∆ω/ω > 15% at the sample position. The FEL SASE beam used
in the experiment had a relative bandwidth ∆ω/ω = 0.3% and thus the achromatic Talbot regime
was not reached.

2 Experimental Setup

The XTG experiment presented in the main text relies on the use of diffraction phase gratings to
generate the X-ray transient excitation gratings (XTG) on the sample position.

Fig. 2 represents the experimental geometry. The incident FEL beam (in yellow) is diffracted
by the phase grating and then impinges on the sample. The Talbot effect generates a transient
excitation grating on the sample. A delayed probe laser (in blue) is incident on the sample at
the phase matching angle and is diffracted by the excitation grating on the sample. Finally, the
diffracted probe is homodyne-detected by a CCD camera.

In the following section, we present the experimental geometry, details on the X-ray pump and
optical probe, information on the diffraction gratings and on the detectors.

2.1 Experimental geometry

The incident X-ray beam is focused with bendable KB mirrors (details in section 2.3) and impinges
on a phase grating. The Talbot effect creates a periodic pattern (Talbot carpet) at periodic distances
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Figure 2: a) Experimental geometry used at Bernina, SwissFEL, to implement the transient grating.
b) Annotated picture of the experiment.

(Talbot distances) by the interference of the diffracted orders. Such interferences last only has long
as orders of diffraction overlap and set a maximal possible distance between the phase grating
and the sample position, usually referred as separation distance (zsep). Moreover, the convergence
of the X-ray beam ensures that the excitation grating has a smaller pitch than the phase grating
(de-magnification factor) and this pitch is controlled by the X-ray focusing, the distance between
the focus and the phase grating and relative distance between grating and sample. For π

2 phase
grating, the transmitted 0th order is present; it also induces some interaction in the sample but it
does not contribute to the diffracted XTG signal due to the phase-matching condition. This effect
is not present in a perfect π phase grating.

In our experiment the gratings and the sample were mounted on the General Purpose Station
(GPS) at Bernina with a separation of 150 mm.

For a π phase grating of 1650 nm pitch, this configuration led to an excitation grating of about
660 nm pitch at the sample position. In this case zsep was about 335 mm while the relative sepa-
ration of the Talbot planes in the sample area was about 5 mm. For a π

2 phase grating of 960 nm
pitch, the induced excitation grating had a periodicity of 770 nm while zsep and zt were 240 mm
and 1.7 mm respectively.

Formulas giving these parameters for arbitrary diffraction gratings and geometry are given in
section 2.2.

2.2 Diffraction gratings

Phase gratings were made of polycrystalline CVD diamond supplied by Diamond Materials GmbH
and used to excite transient gratings in the samples. The gratings were fabricated using a simi-
lar approach as reported by Makita et al [4]. 10 µm-thick diamond membranes supported by a
silicon frame were first cleaned in an H2SO4:H2O2 2:1 solution at 120 ◦C to remove any organic
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contamination. Then, the membranes were sputter-coated with a 10 nm thick Cr layer and subse-
quently spin-coated with ∼ 1 µm thick negative tone resist FOX16 followed by baking at 100 ◦C
for 3 min on a hotplate. The resist was patterned in an electron beam lithography system (Raith
EBPG 5000PlusES) using 100 kV accelerating voltage.

After the exposure, the samples were developed for 8 min in Microposit 351:H20 1:3 solution
at room temperature, then rinsed in DI water and isopropanol. The patterned resist gratings were
hard baked at 300 ◦C for 1 hour on a hotplate to increase etch selectivity between the resist and
diamond. The unmasked Cr layer was removed in Cl2/O2 plasma revealing the underlying dia-
mond for subsequent etching. Finally, the HSQ grating pattern was transferred into diamond by
oxygen plasma etching in an Oxford PlasmaLab 100 machine with the following etching parame-
ters: chamber pressure of 10 mTorr, 30 sccm O2 flow rate, powers of ICP and RF were 750W and
100W, respectively. After the etching, the remaining mask was stripped in 10% HF solution and
the samples cleaned in Cr etchant and an H2SO4:H2O2 2:1 solution, followed by rinsing in Di wa-
ter and isopropanol. A few different pitch gratings were made on one diamond membrane to ease
the switching between different gratings during the experiment. Figure 3 shows SEM images of
the fabricated gratings. The etch depth for different pitch gratings and samples varied from ∼3.5
to ∼6.5 micrometers.

2.3 X-ray pump details

High intensity horizontally polarized X-ray pulses were delivered by SwissFEL with time duration
of about 40 fs (rms) and a repetition rate of 50 Hz. The FEL was tuned to 7.1 keV, the emitted
radiation had a bandwidth of about 0.3% and was used without a monochromator (pink beam
condition) for all the BGO measurements. The FEL beam was focused on a scintillator coupled
with a CCD camera through a microscope (X-ray eye) 750 mm downstream the grating by tuning
the curvature of the focusing Kirkpatrick-Baez (KB) mirrors. Then, the vertical focus was adjusted
to finally obtain an horizontal strip of excitation (250 µm × 150 µm) on the sample matching
approximately the size of the non-collinear projection of the optical probe on the sample surface
at all phase matching angles. The beam intensity provided by the SwissFEL was ranging from 300
µJ up to 800 µJ while the intensity at the sample was about 1.5 µJ. The phase gratings in the X-ray
path were tilted in order to adjust their effective heights and then match the desired phase shift
condition.

2.4 Probe laser details

The optical probe laser was generated from a Ti:Sapphire laser delivering 35 fs pulses at 800 nm
(10 mJ) and 100 Hz. A Barium borate (BBO) crystal was used to generate the second harmonic (400
nm) with an intensity of about 1.2 µJ. A bandpass filter (40 nm bandwidth) was used to remove
the unwanted fundamental harmonic while a waveplate was used to control the intensity. Further
filtering was passively done by several bandpass reflecting mirrors. The spot size at the sample
was tuned to 190 x 150 µm2 (FWHM) by means of a lens. The arrival time of the probe laser was
tuned by a delay stage upstream the sample and the final reflection to the sample was done by
a D-shape mirror to accommodate for small phase matching angles. This D-shape mirror was
mounted on a linear stage (see Fig. 2) in order to change the phase matching angle when different
gratings were being used. The time overlap between the X-ray pump and the optical probe was
readjusted for every phase-matching angle.
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Figure 3: 45-degree-tilt-view SEM images of diamond gratings used in the experiment: a) an
overview of diamond membrane with a few gratings; b) closer look at the 1650 nm pitch grat-
ing; c) and d) zoomed in images of 960 nm and 1650 nm pitch gratings, respectively.

The optical probe laser operated at twice the repetition rate of the FEL to ensure that no XTG
signal was diffracted in the absence of excitation grating on the sample (pumped-unpumped sig-
nal). This check ensured that no permanent grating was printed on the sample and that the exci-
tation grating fully relaxed between FEL repetitions. The sample position was kept fixed during
the scans unless a permanent imprint was observed.

2.5 Detectors

The optical beams (both in the timing tool and the diffracted XTG beams) were measured by a
Charged-Coupled Device (CCD) PCO-edge camera. A 2f-2f lens (200 mm half distance) was in-
stalled in front of the CCD imaging the sample at the chip. This allowed to reduce the background
at the detector on the CCD camera. In order to control the angle of detection for different phase
matching angles, the CCD camera was mounted on an heavy load δ− γ diffractometer at about
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800 mm from the sample position and moved in the diffraction plane of the experiment. Then the
θ angle was scanned in order to locate the diffracted XTG signal nearby the calculated value.

A typical diffracted XTG spot recorded with the detector is displayed in Fig.4. The signal am-
plitude was obtained by integrating over the signal area while the weak background was sub-
tracted using an area where the signal is absent. This weak background originated from the
isotropic scattering of optical beam from the sample. Dark shots (unpumped signal) were recorded
too and used for normalizing the data as well as to check that the sample was not printed during
the measurements. The absence of a remnant grating, either from permanent imprinting or from
non-relaxed thermal grating from the previous shot, was constantly monitored by analyzing the
intermitted shots without x-rays.

Figure 4: Raw image of the XTG signals on BGO (delay of 1 ps with an excitation grating pitch of
660 nm). The XTG signal is obtained by integration over the diffraction peak for each shot.

Finally, an ultra-fast diode was positioned in transmission along the optical probe path with
the purpose to measure the laser transmitted thorough the sample (see Fig.2).

3 Theoretical estimation of the BGO phonons

Phonon calculations were performed by the supercell approach. The initial crystal structure used
to perform phonon calculation is obtained from the Materials Project [5]. Phonon frequencies
were calculated from the force constants using the PHONOPY code [Phonopy]. For the QHA
calculations, supercells containing 2x2x1 unit cells were used. The simulated A1 optical phonon is
2.609 THz, in excellent agreement with the measured value of 2.605 THz.

4 BGO time trace with 1650 nm π phase grating

In this section, we present XTG measurements on BGO with a 1650 nm pitch π phase grating
corresponding to a nominal excitation XTG pitch of about 660 nm. For this measurement, a fast
diode was used in transmission to detect the pump-probe signal.
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Figure 5: Phonon dispersion along Γ - N

The short and long XTG time traces are displayed in Fig.6a and b. The higher noise level
compared to the trace shown in the main text is attributed to instabilities of the FEL source during
the measurement and the laser incident angle not in a perfect phase matching condition. As for
the case reported in the main text, the short time trace displays an exponential ultra-fast decay. By
Fourier transforming the residual, see section 6.2, the optical phonon modulation is identified to
be equal to 2.6 ± 0.1 THz and is displayed in Fig. 6c.

The long time trace have been fitted with an exponential function and the residuals have been
Fourier transformed (Fig. 6 d). The obtained spectrum displays several frequency components at
24.1± 0.1 GHz, 47.8± 0.3 GHz and 70.± 1. GHz, similarly to the trace shown in the main text.

The probe laser intensity Itrans was recorded in transmission by means of an ultrafast diode.
Fig. 7a shows the fast response measured by the diode: the rise time, defined as the σdiode in
the erf( t−t0

σdiode
) function used to fit the transient traces, is σdiode = 159± 13 fs. As expected, the

transmitted signal does not display any signature of the optical phonon during the short time
trace. In the long time scale, Fig. 7b, the long lived oscillatory components at 24.0 ± 0.1 GHz,
47.9± 0.3 GHz and 70.± 1. GHz are present.

Since the 24 GHz oscillations are present both in the transmission and the XTG signals, we
can assume that they are caused by a modulation of the optical index within the material. To
our knowledge such evidence has never been reported. Additional experiments will be carried to
understand the nature and underlying mechanism involved in the generation of these frequencies.

5 Data Processing

In this section, we present the data reduction procedure applied to the shot-to-shot raw data. This
includes the jitter correction (section 5.1), the intensity normalization (section 5.2) and the stitching
of scans acquired over multiple acquisitions.

We also describe how the uncertainties have been calculated (5.4) as well as the XTG efficiency
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Figure 6: XTG measurements on BGO with a 660 nm excitation grating. a) Short time trace. b)
Long time trace. c) Fourier transform of the residual from the fit in Fig. 6a. d) Fourier transform
of the residual after subtraction of an exponential function from Fig. 6b.

and χ(3) estimation (5.5).

5.1 Timing tool corrections

Self Amplified Spontaneous Emission (SASE) FELs do not take advantage of external seed lasers.
As a consequence, the pump (or probe) laser is an independent system synchronized with the FEL
timing system. Nevertheless, the relative arrival time between the pump (or probe) laser compared
to the FEL beam is affected by short term fluctuations (jitter) which can be as high as hundred of
femtoseconds affecting the overall time resolution. The jitter is usually measured by means of
dedicated diagnostics systems, named timing tools, such as Spatial Encoding, Spectral encoding
and Terahertz streaking methods, which provide the relative arrival time on a shot-to-shot basis.
During our experiment we have taken advantage of a spatial encoding timing tool which relies on
the ultrafast induced transparency of a screen by the interaction with the X-rays. By impinging a
portion of the laser on the screen with an angle and measuring the transmitted laser beam with a
CCD camera. In this way different horizontal pixels in the CCD camera correspond to different
relative arrival times between the X-ray and optical pulses. By measuring the variation in position
of the ultrafast change of the transmitted signal it is then possible to retrieve the jitter for each shot
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Figure 7: Transient absorption on BGO with a 660 nm excitation grating (diffraction grating pitch
of 1650nm). a) Short time component. b) Long time trace. c) Fourier transform of the residual from
the fit in Fig. 7a. d) Fourier transform of the residual from the fit in Fig. 7b.

and to normalize the data with a resolution down to few femtoseconds.
We used a Ce:YAG screen positioned right after the KB mirrors and a portion of the optical

pump laser was directed on the screen (45 deg incidence angle) and monitored by a PCO Edge 5.5
camera. The expected resolution is about 2.65 fs/pixel.

For each shot, the CCD camera array was vertically binned and resulted in traces similar to
the one presented in Fig. 8a. To find the center of the rising slope, each trace was fitted using a
polynomial function (blue curve in Fig. 8a). Then, the resulting polynomial was derived and its
maximum was used as the rising slope center value (see Fig. 8b).

For each scan, the Gaussian-like distribution of these pixel values ∆pi was shifted by its mean
following the relation ∆pi −→ ∆pi − 1

n ∑n ∆pn. A calibration of the timing tool provided a con-
version rate between pixels on the CCD and their time delays ∆ttt

i in fs/pixel. These obtained
jitter values were then added to the pump-probe delay ∆tpp set by the delay stages for each shot
to obtain their timing tool corrected delays ∆ti = ∆tpp + ∆ttt

i .
Finally, the data was re-binned using the timing tool corrected data, leading a largely increased

time resolution limited by the pulses lengths instead of the time jitter. In Fig. 9, we display the
XTG signal for a 770 nm excitation grating before and after the timing tool correction.
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Figure 8: Left: Vertical binning of a single transmitted optical beam on the PCO and its polynomial
fit. The slope indicates a change of transmission induced by the coincident X-ray pulse. Right:
derivative of the polynomial fit. Its maximum point provides an accurate measurement of the
center of the slope while its variation is a good estimate of the time jitter. The pixel/fs conversion
is done by an independent calibration of the timing tool.

Figure 9: Blue: XTG signal before timing tool correction. Red: After the timing tool correction. The
blue curve has been vertically shifted for the display.

5.2 I0 correction

The XTG and diode signals were also normalised respect to the incoming FEL intensity on a shot-
to-shot basis. Each FEL shot intensity was measured using the photon beam position monitor
(PBPS) of SwissFEL[6] made of a thin 200 nm Si3N4 membrane that back-scatters a small portion
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of the incoming beam onto four diodes. The mean signal on the four diodes was used to deduce
the I0 incoming pulse intensity.

The XTG signal scales as

IXTG ∝ |χ(3)|2 I−1
XFEL I+1

XFEL Ilaser (12)

where I±1
XFEL is the intensity of the two XFEL diffracted±1 orders, Ilaser is the intensity of the probe

laser and χ(3) is the third order susceptibility of the system.
The Ilaser jitter was negligible during the acquisition. Moreover, the I+1

XFEL = I−1
XFEL intensities

are proportional to the total FEL intensity I±1
FEL = θ IFEL with θ being the efficiency of the diffractive

zone plate. The I0 correction on the experimental XTG signal was thus calculated as:

IXTG =
Iexp
XTG
I2
0

(13)

5.3 Stitching

Some traces were acquired over multiple scans due to various FEL instabilities. These traces had
to be stitched together to provide a full time trace, taking in account some changes in the FEL
parameters, in particular shifts in the mean value of IXFEL.

We took into account this shift by stitching our traces considering the time overlap and adjust-
ing the intensity using the proportionality condition expected by equation (12) and (13). Consid-
ering the mean value of I0 moving to I0 + ∆I0 in two subsequent scans, we expect the shift ∆IXTG
of the signal to be

IXTG

I2
0

=
IXTG + ∆IXTG

(I0 + ∆I0)2 =⇒ ∆IXTG = IXTG

[
(I0 + ∆I0)

2

I2
0

− 1

]
(14)

5.4 Uncertainty estimation

The uncertainty estimation was evaluated as a type A uncertainty within each bin after the time
tool correction. In each time bin, the standard deviation was evaluated and used as an uncertainty
in subsequent analyses.

Data curve fittings were weighted by the uncertainty to give more weights to the points with
the lowest uncertainties. This procedure provided fitting parameters with a much lower estimated
standard deviation on them (see section 6.2.)

All errors bar in the main text and Supplementary Materials are displayed as a ±1 s.e.m. inter-
val around the mean.
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Figure 10: Display of the type A uncertainty of the XTG time traces. σ is the standard deviation
of the data within each time bin and has been scaled by a factor of 50 to compare with the data
absolute amplitude. Top: short time traces with a XTG pitch of 660 nm. Bottom: Same with a 770
nm XTG pitch.

5.5 Efficiency and χ(3) estimation

Following the procedure given by [7] we estimated the efficiency ηeff of the XTG process and
the susceptibility value at the electronic peak. The efficiency was calculated as the ratio between

the incoming probe intensity Ilaser and the outgoing XTG signal intensity ηeff =
Iprobe
IXTG

= 1.3 ×
10−4. The χ

(3)
eff value was estimated using its classical definition, which can be expressed for our

configuration as follow[8]

PXTG = ε0χ
(3)
eff E−1

XFELE+1
XFELEprobe (15)

where PXTG is the XTG nonlinear polarization, E±1
XFEL is the field amplitude of the two XFEL pumps

±1 orders and Elaser is the electric field of the probe laser. The detected signal amplitude is given
by

∂EXTG(z, t)
∂z

= −i
ωprobe

2ε0cnprobe
PXTG(t)ei∆kz (16)
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Upon integration over the thickness of the transient grating in the sample ( L = 6µm), the emitted
field amplitude is:

EXTG(t) = i
ωprobe

2ε0cnprobe
PXTG(t)Lei∆kL/2sinc(∆kL/2) (17)

The detected signal is finally given by

IXTG(t) =
ε0cn

2
|EXTG(t)|2 =

π2

2nprobeZ0
|χ(3)

eff IXFEL I1/2
probe

L
λprobe

sinc(∆kL/2)|2 (18)

where Z0 is the impedance of free space. To get to the electric field value expressed in V/m starting
from an intensity measurement in µJ we first converted the intensity I[µJ] into a more suitable
form following the relation

I[W m−2] =
I[µJ]

∆tσxσy
(19)

Where ∆t is the time duration of the event which we set equal to the rise time σXTG and σx/y is
the x/y dimension of the overlap between pump and probe on the sample which were 250 µm
and 150 µm respectively. We estimated the electric field values to be E±1

XFEL = 5.86 · 108 V/m and
Eprobe = 5.14 · 1011 V/m, thus leading to the susceptibility value

χ
(3)
eff = 2.6 · 10−15 m2/V2 (20)

6 Data Analysis

6.1 Signal expression

A general homodyne-detected signal can be written as [8]:

Shom(Γ) = 2F2(∆k)
∣∣∣ ∫ dωsdteiωst〈µ(t)〉

∣∣∣2 + 2N<
∫

dtdt′eiωs(t−t′)〈µL(t)µR(t′)〉 (21)

where F2(∆k) = N(N − 1)δ(ks ± k3 ± k2 ± k1) ensures the phase-matching condition and N is
the number of scatterers contributing to the signal. Γ is the full set of experimental parameters on
which the homodyne signal depends on (central frequencies and time of arrival of the different
incoming pulses, etc), µ is the electric dipole operator.

In the condensed phase, the second term of the signal can be neglected compared to the first
one because N is large (on a scale similar to the Avogadro number). The XTG signal is detected by
placing the detector in the phase matching direction ks = k3 − k2 + k1:

SXTG(∆t, ks = k3 − k2 + k1) = 2N2E2
s

∣∣∣ ∫ dωsdteiωstP(3)
XTG(t, ∆t)

∣∣∣2 (22)

where P(3)
XTG(t, ∆t) is the third-order nonlinear polarization that depends parametrically on the

time delay ∆t between pump and probe pulses. The first two interactions are the X-ray pulses
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with wavevector k1 and −k2 that generate the transient grating. Immediately after the X-ray ex-
citations, the sample experiences a rapid relaxation process that refills the core-hole and induces
low-energy electronic excitations. In turn, the lattice responds to the charge motion caused by
these low-lying electronic states and phononic excitations are thus triggered. Most of the relax-
ation after the X-ray interaction is not resolved in the present experiment and only the subsequent
vibrational dynamics is observed.

Explicit expressions of the signal in terms of operator matrix elements can be obtained by ex-
panding the nonlinear polarization over states. In this case, the nonlinear polarization is usually
well-described by diagrammatic approaches[8]. Relaxation dynamics observed in the XTG sig-
nal are contained in the matter propagator between the X-ray pumps and the optical probe. Full
X-ray transient grating measurements with a high time resolution could be expected to also gain
information on the core dynamics.

6.2 Data fitting

Considerations from the previous section allow us to define the following model to represent the
XTG measured data.

SXTG =
∣∣∣1
2

(
1 + erf

( t− t0

σ

))(
c1e−

(t−t0)
t1 + c2e−

(t−t0)
t2 cos(2πν2(t− t0)) + c3

)∣∣∣2 (23)

We account for overdamped oscillation by adding two exponential decays t1 and t2. The
known optical phonon at 2.6 THz is assigned to the damped oscillation terms with frequency
ν3. Finally, t0 and σ are experimental parameters accounting for the time zero shift from arbi-
trary units to the absolute time zero of the time trace and for the instrument response function
respectively.

The short time traces are fitted with Eq. 1 of the main text and the resulting fitting parameter
are given in Table 1 and 2.

For convenience, we recall Eq. 1 of the main text:

SXTG =
∣∣∣1
2

(
1 + erf

( t− t0

σ

))(
c1e−

(t−t0)
τ + c2

)∣∣∣2 (24)

c1 c2 c3 t1 (ps) t2 (ps) t0 (ps) σ (ps)

estimate 0.7 0.25 0.74 0.04 1.05 0.05 0.08
standard error 0.1 0.01 0.01 0.01 0.05 0.01 0.01

Table 1: Fit parameters on the short XTG time trace of BGO, using Eq. 1 in the main text, with an
excitation grating pitch of 770 nm.

Finally, Table 3 provides a summary of all frequencies appearing in the signal and their corre-
sponding uncertainty for an excitation grating with a 660 nm pitch.

Standard errors in Tables 1 to 3 are obtained from the fitting routine and indicates the quality
of the fit to the experimental time trace. They are, however, not an indication of the experimental
uncertainty of these parameters.

In Fig. 11, we display a fit of the whole dataset using Eq. 23 and by fixing the fast time scales
using the results in Table 1 (for the fast response) and the frequency components obtained from
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Figure 11: Global fit of the data with Eq. 23. The short lifetimes have been fixed by a fit on the
short time trace, the fast and long modulation are fixed at the maximum of the Fourier transform
of the residuals and the low frequency modulation is fixed to the value obtained from optical
measurements.

c1 c2 c3 t1 (ps) t2 (ps) t0(ps) σ (ps)

estimate 0.91 0.37 0.60 0.05 6. 0.10 0.10
standard error 0.03 0.05 0.05 0.01 1. 0.01 0.01

Table 2: Fit parameters on the short XTG time trace of BGO, using Eq. 1 in the main text, with an
excitation grating pitch of 660 nm.

the Fourier transform of the residuals including the longitudinal acoustic phonon as well as the
additional frequencies seen also in transmission. In the fit only the c components were kept as free
parameters.
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ν3 (THz) ν4 (GHz) ν5 (GHz) ν6 (GHz) ν7 (GHz)
estimate 2.61 6. 23.5 47.4 70.
standard error 0.01 1. 0.1 0.4 1.

Table 3: Frequencies extracted from the XTG data obtained on BGO with a 660 nm pitch excitation
grating. ν3 is the optical phonon of BGO, ν4 its longitudinal phonon, ν5, ν6 and ν7 are the frequen-
cies obtained by Fourier analysis of the long time trace. Uncertainties of frequencies ν3, ν5 and ν6
have been obtained from fitting the data with a sine function while uncertainties on ν4 and ν7 have
been computed from the standard deviation of the Fourier peak since their residuals are too weak
for the fit to be accurate.
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