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ABSTRACT 

Current Human Reliability Analysis models express error probabilities as a function of task types and 

operational context, without explicitly modelling the influence of different crew behavioral characteristics 

on the error probability. The influence of such variability is treated only implicitly, by variability and 

uncertainty distributions with bounds primarily obtained by expert judgment. This paper presents a 

methodology to empirically incorporate crew performance variability in error probability quantification, 

from simulator data. Crew behaviors are represented by a set of “behavioral patterns” that emerge in the 

observation of operating crews (e.g. in information sharing or in adhering to procedural guidance). The 

paper demonstrates the use of a Bayesian hierarchical model to explicitly capture the performance 

variability emerging from data. The methodology is applied to a case study from literature. Numerical 

demonstrations are performed in order to compare the proposed approach to the existing quantification 

models used in HRA for treating simulator data. 

Keywords: human reliability analysis, human performance, simulator data, uncertainty and variability, 

teamwork, nuclear power plant, HAMMLAB, SACADA, HuREX, Bayesian hierarchical models. 

1 Introduction 

Human Reliability Analysis (HRA) assesses the contribution of human failures to the overall risk profile of 

industrial systems, e.g. nuclear power plants, chemical facilities and aerospace systems [1-2]. HRA methods 

support analysts to identify the safety-critical tasks performed by the personnel (e.g. operating crews in 

nuclear power plants), characterize the contextual factors influencing performance (the so-called 

Performance Shaping Factors, PSFs), and quantify the associated error probability (referred to as Human 

Error Probability, HEP). The HEPs are generally used in risk analysis for the quantification of the frequency 

of accident scenarios, typically in Probabilistic Safety Assessment (PSA). 

HRA methods use quantitative models to produce HEP values depending on the task to be performed 

and the associated operational context [3], both represented by sets of categories (typically, task types and 

PSF levels/ratings). Through these categories, HRA models produce HEP values as a function of scenario-

, task-, context-specific influences. HRA acknowledges that other aspects such as organizational factors as 

well as personal and team characteristics can have important influence on crew performance variability 

and, to some extent, addresses these in the qualitative analysis supporting HEP quantification [4-9]. 

However, their influence is typically not explicitly considered as input factors to quantitative HRA models 

(e.g. as PSFs) but implicitly, typically within the variability and uncertainty ranges associated to the HEP 

values [4, 10].  

In recent years, the HRA Empirical Studies (the International [11] and the US [12]) highlighted the key 

importance of several crew behavioral aspects, such as “team dynamics, work processes, communication 

strategies, sense of urgency and willingness to take knowledge-based actions” [11], as main contributors to 
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performance variability in operational tasks, especially in emergency situations where standard procedure 

following is challenged by a fast scenario progression and a limited procedural guidance. In such 

performance conditions, crew characteristics (e.g. in information sharing, task prioritization, adherence to 

procedural guidance) played a key role in determining not only the pace through the procedures, but also 

which procedural path to follow [11-12]. More recent studies in nuclear power plant control room 

simulators [13-14] further underscored that, for emergency scenarios characterized by a procedure-situation 

mismatch, “the crews that followed the procedures more strictly had lower performance than crews that 

engaged more in autonomous initiatives and extra-procedural activities”. These works [11-14] 

acknowledged the benefits of using simulator studies to investigate the effects of crew behavioral 

characteristics on performance variability in operational tasks as well as the need to formally incorporate 

these in the HEP quantification, especially for those “scenarios that exceed the limits of the basic nuclear 

power plant design” and “include multiple equipment failures” [11]. Indeed, incorporation of some crew 

variability aspects in HRA is one of the distinctive characteristics of the emerging modern HRA methods, 

for example through the use of Crew Response Diagrams in the Integrated Human Event Analysis System 

(IDHEAS) method [15] or Crew Response Trees in [16]. 

In view of the increasing use of PSA and HRA results in licensing and operational decisions of nuclear 

power plants, HRA data collection from main control room simulators have gained new momentum [17-

19]. Long-term, international simulator programs have been established, aiming at strengthening the 

empirical basis of future HEP estimates as well as at deriving insights for improving operating crew 

performance [20-21]. The exploratory approaches for the quantification of HEPs from the emerging data 

[22-24] maintained the traditional HEP formulation as a function of scenario-, task- and context-related 

factors, lumping together all other influences and performance variability aspects. These pioneering works 

focused on population-averaged HEP values, where the influence of other factors on the HEP values are 

thought of as a statistical population. These works demonstrated the advantages of using Bayesian methods 

(e.g. conjugate beta-binomial models [22-23]) in quantifying the HEP for sets of task and PSF categories 

of data collection taxonomies [20-21], but did not address the actual variability (e.g. organizational, plant, 

team and personal) within these sets of categories [25]. As the on-going data collection efforts will provide 

more evidence, it becomes important to strengthen the empirical basis of both the averaged HEP values, as 

well as of the HEP spectrum of variability and uncertainty, for the categories of HRA models.  

Previous work by the same authors have addressed crew performance variability as a continuum, without 

distinguishing crew behavioral characteristics in HEP quantification from simulator data [25-26]. In order 

to explicitly address these characteristics, this paper puts forward a new methodology based on the 

identification of “behavioral patterns” manifested during task performance (e.g. “collective” or “non-

inclusive” information sharing, “proactive” or “reactive” interpretation of procedures). The analysis via 

behavioral patterns builds on literature works on models of crew response in emergency situations for 

simulation-based applications [27] and retrospective analysis of past event [28]. Similarly to the present 

paper, both works interpret variability in crew behaviors as the result of the dynamic interaction between 

crew-specific and task-, context-related factors (modelled by “performance adjustment factors” in [27] and 

by “situation factors” in [28]). However, neither of these works had the objective of incorporating 

performance variability in HEP quantification. 

The identified set of behavioral patterns is included in a variability model to capture the influence of 

different crew behavioral groups on the error probability, for a given combination of task type and PSF 

ratings (representing the given scenario-, task- and context-related influences). The underlying concept is 

that crews sharing similar patterns are aggregated in the same behavioral group and associated the same 

value of error probability. A Bayesian hierarchical model is then used as framework for the HEP 

quantification from simulator data. Bayesian hierarchical models have been widely adopted in probabilistic 

safety assessment to treat source-to-source variability [29-36], as well as in many other applications for 

inference of population-level quantities from group-level evidence and vice versa [37-42].  

The paper is structured as follows. Section 2 first introduces the concept of crew behavioral patterns to 
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characterize behavioral aspects in nuclear power plant operations. Section 2 then presents how the patterns 

are quantitatively incorporated in the model for crew performance variability in HEP estimation. Section 3 

presents the methodology as two blocks: the first block derives the behavioral categories emerging from 

the simulator data and the second block groups the crews based on patterns of behavioral categories and 

quantifies the associated HEP. Section 4 presents the application of the methodology to a case study from 

literature, involving diagnosis tasks performed in different emergency scenarios [12, 43]. Crew behavioral 

aspects empirically observed during task performance are systematically characterized using a taxonomy 

of teamwork competences for nuclear power plant operating crews [44]. The results from the numerical 

application are compared to alternative quantitative approaches for simulator data [22-23, 25] to 

demonstrate the effects of incorporating operating crew behavioral variability on HEP estimates. The 

application and the underlying model assumptions are further discussed in Section 5, along with 

recommendations on the feasibility and applicability of the proposed methodology to HRA problems. 

Conclusions are given at closure. 

2 Concepts: behavioral patterns from simulator data and variability modelling 

2.1 Behavioral patterns: definition and relationship with typical HRA quantification 

Fig. 1 shows the relationship between the scope of the factors typically considered by HRA models, with 

respect to the whole set of human and organizational factor influences (an overview of the whole set of 

influences can be found in Appendix A of [45]): the figure also compares the factor-HEP links in typical 

models and in the present work. The models used in HRA explicitly address factors characterizing the 

operator tasks, as well as the scenario and context in which the tasks are carried out (e.g. adequacy of 

procedural guidance, of time available, human-machine interface). Examples are the generic task types (e.g. 

“shift or restore system to a new or original state”) and error producing conditions (e.g. “poor, ambiguous 

or ill-matched system feedback”) in the Human Error Assessment and Reduction Technique (HEART, [5-

6], newly issued in [46]); examples from newer methods are the crew macro-cognitive functions (e.g. 

“action”, “detecting and noticing”) and performance influencing factors (e.g. “high” or “low” workload, 

“poor” or “good” human-system interface) in IDHEAS [15]. Similar factor scope can be found in all other 

HRA methods, for example in the Technique for Human Error Rate Prediction (THERP, [4]), the 

Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H, [8]), and the Cognitive Reliability 

and Error Analysis Method (CREAM, [7]), to name a few.  

The influence on human performance of the other human and organizational factors (e.g. team dynamics, 

work processes, communication strategies, as well as managerial and organizational factors) is generally 

considered in the variability and uncertainty distributions associated to the HEP, as shown in Fig. 1 [4,47]. 

The uncertainty and variability bounds account also for several other aspects of uncertainty in the HRA 

results, e.g. uncertainty on the assessment of the PSF ratings, epistemic uncertainty due to model limitation 

and scarcity of data [10]. The variability and uncertainty distributions and bounds are derived by expert 

judgment. The main source is represented by the values proposed in the THERP handbook [4], themselves 

based on THERP authors’ judgment. One exception is the HEART method, in which the HEP uncertainty 

bounds are derived from human error data across different industries. The HEART bounds indeed reflect 

the empirical variability of the data, but their quantification does not explicitly address the source of the 

performance variability (the behavioral aspects that result in variability in performance and, consequently, 

in the HEP).  

This paper presents a first-of-a-kind attempt to empirically include crew performance variability in the 

HEP quantification, from simulator data. The concept blends elements from classical HRA methods as well 

as human factor studies, especially teamwork, decision-making and situation awareness studies in main 

control room simulators. In the proposed quantification model, the HEP is still expressed as a function of 

task-, scenario-, and context-based factors (task type and PSF levels/ratings in Fig. 1), as in typical HRA 
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models. On the other hand, human performance variability is captured by different “patterns” of crew 

behavioral categories (in teamwork, decision-making and situation awareness) emerging from simulator 

observations. As shown in Fig. 1, “behavioral patterns” are interpreted as manifestations of the overall 

spectrum of influences: task, scenario, context, as well as person, team and organizational ones. Therefore, 

similar to typical HRA quantification models, the HEP is expressed explicitly as a function of task-, 

scenario-, and context-based factors. Differently, in the proposed concept, HEP variability is expressed via 

a model (based on behavioral differences across groups of crews) and estimated from empirical data, 

whereas in most other HRA models HEP variability is not incorporated and not informed by data. 

The work addresses performance data from large-scale simulator programs (e.g. the HUman Reliability 

data EXtraction framework, HuREX [21]; the Scenario Authoring, Characterization, And Debriefing 

Application, SACADA [20]), an example of which is provided in Tab. 1. Data comes in the form of records 

of performance outcome (failure/success), behaviors gathered from different plants and operating crews, 

performing tasks in different simulated emergency scenarios (e.g. in Tab. 1, identification of the faulted 

steam generator in a SGTR scenario), under a given combination of PSF levels. The quantity of interest in 

this work is the HEP associated to a given set of task type / PSF levels (referred to in this paper as set F) 

adopted by the specific data collection taxonomy: HEP = HEP(F). For instance, in Tab. 1 (from SACADA 

taxonomy), F represents the task type “understanding the situation/problem” and PSF “information quality” 

with level “missing/masked” (the latter capturing the operational context “failure of secondary radiation 

indications”). Depending on the taxonomy, the PSF levels can be defined as a binary (e.g. low/high; 

adequate/not adequate) or multi-valued (e.g. rating) variable. 

Besides information on tasks and PSFs, i.e. the set F, the proposed methodology requires information 

on observed crew behaviors to populate the behavioral patterns, such as those in the last column of Tab. 1. 

Note that the current version of the HuREX taxonomy does not foresee the collection of such observed 

behaviors. For SACADA, such details on performance are foreseen only if failures or any performance 

issues are observed, but not for every simulator run as shown in the exemplification case in Tab. 1. This 

indeed has implications on the possibility to apply the proposed model to the currently available HRA data, 

as further discussed in Section 5. 

Fig. 1. Relationship between performance influencing factors (taxonomy from [45]) and behavioral patterns used in 

this work to represent crew performance variability in HEP quantification. 
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In the present work, the crew behaviors collected for a given set F (Tab. 1, last column) are 

systematically analyzed adopting teamwork, decision-making and situation awareness taxonomies and 

classified into “behavioral categories” accordingly, for instance: concerning communication, the frequency 

with which strategic meetings are held (e.g. “frequent strategic meetings” in Fig. 1); concerning work 

attitudes, the compliance to procedure indications (e.g. “strict procedure following” or “more autonomous 

initiatives” in Fig. 1), and the like. Each crew performance is then represented by a specific combination 

(i.e. a specific pattern) of behavioral categories (see examples in Fig. 1): according to this classification, 

crew performances can be clustered in “behavioral groups” (each group being identified by a specific 

behavioral pattern), representing the spectrum of performance variability empirically observed for the set 

F. Each behavioral group is then associated an HEP value (Fig. 1) in the variability model presented in the 

next Section 2.2. This concept emphasizes the impact of crew behavioral characteristics on performance 

and, ultimately, on the resulting HEP value. For instance, Forester et al. [11] observed several crews 

performing a complex diagnosis tasks with masked indications (defining the set F): seven crews “followed 

procedures too literally” with “no structured meeting for decision making”, a pattern leading to five failures 

(five failures out of seven); two crews “investigated alternative causes to the increasing level” in the 

ruptured steam generator and overall were “well updated on the process” thanks to frequent meetings, a 

pattern resulting in task success (no failures out of 2). Similar situations can be found in [13].  

The following list briefly restates the key terminology used in Section 2, in order to support the 

understanding of model development in the remainder of this section, as well as the methodology presented 

in Section 3: 

 “set F”: set of task and PSF categories, respectively representing the task characteristics and the 

operational context (e.g. “understanding the situation/problem”, PSF “information quality” with 

level “missing/masked”). Category definitions vary with the given data collection taxonomy (e.g. 

SACADA [20], HuREX [21]);  

 “crew behaviors”: behaviors observed during crew performances in simulated scenarios, typically 

recorded in simulator logs (examples in Tab. 1, last column). Represent the “observable” of crew 

behavioral characteristics (in teamwork, decision-making and situation awareness) emerging from 

simulator observations; 

 “behavioral categories”: classification of the crew observed behaviors via categorical definitions 

(from Fig. 1: “strict procedure following”, “frequent strategic meetings”). In this paper, behavioral 

categories are intended to represent the relevant aspects of teamwork, decision-making and situation 

awareness in crew performances. Definitions vary with the adopted taxonomy of metrics (e.g. [44]); 

 “behavioral pattern”: refers to a specific combination of the aforementioned categories (e.g. from 

Fig. 1, pattern #1: “strict procedure following & non-inclusive decision making & [...]”). In this 

paper, patterns are interpreted as the direct manifestation of the overall spectrum of influencing 

factors in Fig. 1 (task, scenario, context, as well as person, team and organizational ones). 

 “behavioral group”: group of crews uniquely identified by a specific behavioral pattern (e.g. in Fig. 

1, the three patterns represent three different behavioral groups). All crew performances manifesting 

the same behavioral pattern are clustered in the same group and associated to a unique HEP value 

in the variability model (Section 2.2). In this paper, the set of behavioral groups emerging from data 

is used to model performance variability in the given F.   
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Tab. 1. Grouping hypothetical data from different simulator contexts to inform the set of categories (F) of a generic HRA model. Operational contexts and crew observed behaviors 

are adapted from [13,43]. 

Set F: task type = “understanding the situation/problem”, PSF “information quality” = “missing/masked” (taxonomy from SACADA, [20] 

Scenario Operational context Task realization Plant Crews Failures Observed behaviors  

SGTR  Failure of secondary radiation 
indications 

Identification of 
faulted SG 

A 5 2 Crew 1 (failure): “shift supervisor makes most decisions”, “did not try extra 
procedural isolations”… 
Crew 2 (success): “performed isolations that were not contained in the 
procedures”, “shift supervisor is hesitant about what to do”… 

SGTR  Radiation alarms already activated 
by early releases  

Identification of 
faulted SG 

B 6 1 Crew 3 (success): “reactor operator works alone and does not wait for answers 
from the assistant”, “shift supervisor is very active in asking questions, and 
discussing the situation with the crew”… 
Crew 4 (success): “shift supervisor quickly orders important actions”, “worked 
well with extensive three-way communication”… 

SGTR (…) (…) (…) (…) (…) (…) 

   Total 50 12  

ISLOCA No indications on leaks’ specific 
location 

Identification and 
isolation of leaks 

A 5 3 Crew 5 (failure): “shift supervisor leads communication without having 
structured meetings”, “board operators more involved in decisions”… 
Crew 6 (failure): “shift supervisor gives orders without discussion”, “waits for 
the expected result without questioning the situation”… 

ISLOCA No indications on leaks’ specific 
location 

Identification and 
isolation of leaks 

B 6 2 Crew 7 (failure): “investigated an alternative cause to the increasing level in 
steam generator”, “stuck in discussions” …  
Crew 8 (success): “shift supervisor is good at prioritizing”, “good updates and 
briefings”… 

ISLOCA (…) (…) (…) (…) (…) (…) 

   Total 50 15  
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2.2 Using behavioral patterns in a variability model for HEP 

This subsection presents the variability model for HEP(F) (shown in Fig. 2, left) to capture HEP variability 

across behavioral groups (the identification of the groups will be presented in Section 3).  

The model is based on the assumption that each “behavioral group” (pedix c in Fig. 2, left) is 

characterized by a unique error probability, pc|F; therefore, pc|F is intended as the failure probability 

associated to the crews of the c-th group in performing a task described by the task type and PSF levels in 

the set F. In this formulation, pc|F represents possible outcomes of HEP(F): the HEP is intended as a variable 

quantity, discretized over the number of identified behavioral groups (C in Fig 2, left). The pc|F’s (the arrows 

in Fig. 2, left) are interpreted as group-specific realizations of the HEP variability in F.  

The variability across the pc|F’s is captured assuming that the pc|F’s are continuously distributed 

according to a parametric variability distribution, represented by the following function: 

𝑝𝑐|𝑭 ~ 𝑓𝑭(𝑝𝑐|𝑭|𝜽𝑭)                   (1) 

where θF represents the vector of the unknown parameters of the variability distribution (e.g. for a 

lognormal, the mean and standard deviation). The parameters in θF are uncertain quantities and are inferred 

from simulator data, aggregated within the c-th group (from here, “aggregation by groups” in Fig. 2, left) 

in the form of observed failures and crew observations (respectively kc and Nc in Fig. 2, left). 

In the numerical application of Section 4, the proposed variability model is tested and compared against 

two alternative modelling approaches for HEP quantification: a “lumped-data” model (as in [22-23]), and 

the “continuous” variability model presented in previous work by the same authors [25]. The lumped-data 

model (Fig. 2, center) associates all the simulator records relevant to F (the rows in Tab. 1) to a single-

value HEP, pF, i.e. the population average over the variability within F: failures and crew observations 

relevant to F are lumped into a single piece of evidence (respectively ktot and Ntot in Fig. 2, center) to infer 

on the unique, unknown pF. The variability model proposed in Greco et al. [25] formulates performance 

variability in HEP(F) as a “continuum” of crew-, task-specific error probabilities, pij|F’s (Fig. 2, right). The 

variable pij|F models the failure probability of the j-th crew in performing the i-th task of a specific simulator 

scenario in data collection, i.e. one realization of the set F (e.g. from Tab. 1, identification and isolation of 

the leaks in a ISLOCA scenario). Similarly to the pc|F variable in eq. 1, the pij|F’s are assumed to be 

continuously distributed according to a known variability function, namely fF(pij|F|θF). Contrary to the 

formulation proposed in this paper, the set of parameters θF of the continuous variability model is inferred 

from crew-, task-specific data in the form of couples kij/Nij, respectively representing the kij failures 

observed for the i-th crew in Nij repetitions of the i-th task (from here the term “no aggregation” in Fig. 2, 

right). Simply put, Greco et al. [25] assumes different failure probabilities per each crew, while the present 

paper per each behavioral group, aggregating different crews manifesting with similar behaviors. 

Fig. 2. Comparison of the HEP formulations and the associated data aggregation adopted by the proposed variability 

model (left: “aggregation by groups”) and the alternative approaches tested in the case study (center: “lumped-data”, 

with HEP as population average; right: “no aggregation”, with HEP as a “continuum” of task-, crew-specific error 

probabilities). All the p’s are intended as conditional on the given set F, e.g. pc|F, pij|F. 
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The unknown parameters for the three mathematical formulations of HEP(F) described in this 

subsection (the single pF in the lumped model, the sets θF in both the variability models) are derived from 

simulator data by Bayesian inference models and used to quantify the population-level HEP uncertainty 

distribution for the set F, namely P(HEP). The development of the Bayesian models for the HEP 

quantification is discussed in details in subsection 3.3. 

It is important to stress the conceptual differences in HEP(F) formulation between the three modelling 

approaches. Compared to the variability models, the lumped approach does not explicitly model 

performance variability across the crews but rather treat HEP as population average for the set of categories. 

The more data is collected for F (ktot and Ntot), the more the epistemic uncertainty on the population average 

is reduced: ideally, with infinite data, the resulting P(HEP) will shrink to the single-value HEP (pF in Fig. 

2, center). Compared to the quantitative approach proposed in this paper, the continuous variability model 

captures performance variability in HEP(F) at a lower level with crew-, task-specific error probabilities. 

However, the continuous variability model does not formally consider the different behavioral 

characteristics manifested by the crews during task performance (in this paper characterized by behavioral 

patterns): rather, it considers their behavioral differences in the realizations of the spectrum of HEP(F) 

variability (the pij|F’s, i.e. the arrows in Fig. 2, right). Compared to the continuous variability formulation, 

in this paper performance variability in HEP(F) is modelled across behavioral groups, assuming the HEP 

population can be ideally represented by a finite number of group-specific error probabilities (the pc|F’s, i.e. 

the arrows in Fig. 2, left). With increasing data available (kij and Nij for the continuous variability model, kc 

and Nc for the variability model with behavioral groups), epistemic uncertainty on the p’s of both variability 

models is reduced and the P(HEP)’s estimated by the models tend to the actual HEP(F) variability 

distribution. 

3 A methodology to incorporate crew behavioral patterns in HEP quantification  

This section presents the multi-step methodology to identify the crew behavioral groups and account for 

them in the HEP quantification from simulator data (Fig. 3). The methodology is presented for a generic 

combination of task type and PSF ratings (F), e.g.: task type “understanding the situation/problem” and 

PSF “information quality” rated as “missing/masked”, from SACADA taxonomy [20]; cognitive activity 

“response planning and instruction” and task type “transferring step in procedure”, from HuREX [21]. In 

Section 4, it is applied to a specific F characterizing a case study from literature.  

The methodology comprises two blocks (Fig. 3). The first block (Fig. 3, blue box) derives the behavioral 

categories emerging from the simulator data relevant to the combination F. The second block (Fig. 3, red 

box) groups the crews based on patterns of behavioral categories and quantifies the associated HEP. The 

set of behavioral categories can indeed be already available from other studies: in this case, the second 

block can be applied directly.  

3.1 Derivation of behavioral categories from data collection 

Steps I.1-I.3 in Fig. 3 (blue box) address the derivation of the behavioral categories: 

 grouping simulator data per task type / PSF ratings, 

 extrapolation and classification of crew observed behaviors, 

 development of a list of behavioral categories. 

In step I.1, the simulator records are grouped by different F’s, where each F represents a combination of 

task types and PSF ratings for which data is available. The definition of representative sets F depends on 

the purpose of the application. For instance, if interested in deriving HEP estimates for the task categories 

of a data collection taxonomy (similarly to [23], for HuREX taxonomy), then the set F reduces to a single 

element, i.e. the specific task type of interest (e.g. from [23]: “transferring step in procedure”), grouping 

the observations from all the relevant task realizations in data collection. On the other hand, if interested in 
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the effect of a specific combination of PSFs on task HEP (e.g. to inform an HRA model, as in [22] with the 

SPAR-H), then the set F comprehends both task type and PSF ratings (e.g. from [22], F: {task type: 

“action”; PSF: “time available” with rating “barely adequate, PSF: “procedures” with rating “available but 

poor”, etc.}). 

The proposed methodology is intended to identify a manageable set of patterns for the given set F (e.g. 

in Tab. 1, task type “understanding the situation/problem” and PSF “information quality” rated as 

“missing/masked”), comprehensive enough, but not leading to a combinatorial explosion of possibilities. 

This requires a set of behavioral indicators (“metrics”) in order to support the classification of crew 

behaviors (step I.2) across the respective team- and person-based performance influencing factors discussed 

in subsection 2.1 (e.g. in Fig. 1, in communication, supervision, coordination etc.).  

Different taxonomies of metrics in teamwork and individual aspects of nuclear power plant operations 

are available in literature [44,48-49]. Amongst those examined, the taxonomy provided by Skjerve and 

Holmgren [44] was selected by the authors for the purposes of this paper. This taxonomy accomplishes two 

important requirements. First, it comprehensively covers a broad range of team- and person-based factors: 

attitudes, communication, coordination, decision making, interpersonal competences, leadership, and 

situation awareness. Second, being the taxonomy originally derived to support the data collection protocol 

for Halden simulator [50], the metrics provided per each dimension are compatible with what is 

“observable” in the context of a simulator study during different operational phases (normal operations, 

outage, emergency situations). This aspect eases the interpretation of crew behaviors in a given operational 

context and allows for a systematic classification of behaviors across the teamwork and individual 

dimensions. An example of the classification in step I.2 is provided in Tab. 2 (second column), with crew 

behaviors (first column) adapted from [13,43]. The full list of factor-specific metrics can be found in [44]. 

Fig. 3. Overview of the multi-step methodology to derive and use behavioral patterns in HEP quantification for a 

generic set F. 
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In step I.3, the behavioral categories are derived from crew behaviors and assigned to labels reflecting 

the classification performed in step I.2. For example, in Tab. 2: for behaviors relevant to “team orientation 

in decision making”, the categories “collective decision making” or “non-inclusive decision making” 

characterize crews within which all members were involved in the decision process or the supervisor took 

most of the decisions, respectively; for “progression in decision making”, “prioritizing, fast decision maker” 

or “hesitating, slowly building up” refer to crews showing the tendency to prioritize goals and resources or 

a step-by-step progression during the scenario, respectively. A more detailed description of the categories 

shown in Tab. 2 is given in the application of steps I.1-I.3 to the case study (Section 4, Tab. 5). 

Different modelling aspects should be considered when developing the list of behavioral categories for 

a given F. First, the same category of behaviors can have different influences on task performance, based 

on the scenario progression. For example, in a complex diagnosis task (e.g. from Tab. 1, the identification 

of the ruptured steam generator in a STGR scenario masked by the failure of secondary radiation 

indications), a “collective decision making” can have positive effects on the diagnosis at an early stage of 

the scenario, when more time is available to the crew. On the other hand, the same category can have 

negative effects when the diagnosis is performed in the final phase of the scenario (e.g. due to a slow 

progression in previous tasks of the operational sequence). In the latter case, with limited time available for 

the diagnosis, a participatory approach in decision making can delay the diagnosis as opposed to a more 

authoritarian approach (“non-inclusive decision making”). Considering this aspect, the behavioral 

categories should be defined with “neutral” attributes (see definitions in Tab. 2) rather than being a priori 

characterized as “negative” or “positive”.  

Second, the number of categories identified for F is expected to grow with increasing available data: 

taking as reference behaviors relevant to “progression in decision making” in Tab. 2, a third category could 

emerge from simulator observations, e.g. “fast decision maker without prioritizing”. This aspect can have 

practical implications on HEP estimation, considering that a larger number of categories potentially leads 

to a larger number of patterns identified across crews and consequently hinder data aggregation in crew 

groups (in step II.2 in Fig. 3, red box). On the other hand, with limited data, a small number of categories 

may not adequately represent the performance variability observed across crews for the set F. There is 

obviously not an “optimum” number of behavioral categories: being an empirically-driven process, the 

number will depend on the information available from simulator observations. Data analysis and statistical 

tests could be used in step I.3 to rank the most relevant categories for the given set F and inform the final 

list accordingly (e.g. ruling out the categories with no meaningful impact on task performance). On the 

other hand, when simulator observations are not sufficient to apply data analysis tools with statistically 

significant results, the set of categories preliminarily identified from available data could be refined by 

expert-based aggregation, consistently with the purposes of the application. As a general rule, the authors 

recommend avoiding partially-overlapping definitions and to aggregate, as reasonably as possible, affine 

behavioral aspects into the same category (e.g. in Tab. 2, the behaviors “crew worked well with extensive 

three-way communication” and “good updates and briefings” are enveloped as different realizations of the 

category “adhering” in “adherence to communication and meeting protocol”). 

3.2 Grouping crew performance data and HEP quantification 

Steps II.1-II.3 in Fig. 3 (red box) address the use of behavioral patterns to group performance data and 

estimate the HEP for the set F: 

II.1: matching crew performance data to behavioral categories, 

II.2: identification of behavioral patterns and aggregation in crew groups, 

II.3: HEP quantification in the Bayesian model. 

In step II.1, for each simulator record associated to F, crew behaviors reported in performance data are 

analyzed and matched to the relevant behavioral categories. Examples of matching are shown in Tab. 3, 

with reference to the categories reported in Tab. 2: for instance, a crew within which “the shift supervisor 
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leads the communication without having structured meetings” and “board operators are more involved in 

decisions” is matched to the categories “diverging” in “adherence to communication and meeting protocol” 

and “collective” in “team orientation in decision making”; a second crew “investigated an alternative cause 

to the increasing level in steam generator” in a SGTR scenario during which members were often “stuck in 

discussions”, both behaviors corresponding to the categories “beyond/proactive” in “adherence 

to/interpretation of procedures” and “hesitating, slowly building up” in “progression in decision making”. 

Note that the crew factor-specific behavioral metrics in [44] can also be used to support the matching in 

step II.1, in case a list of behavioral categories is already available from external sources (e.g. from previous 

applications of steps I.1-I.3 to the same set F). 

In step II.2, combinations of behavioral categories emerging across crew performances are identified 

and clustered as behavioral patterns. For instance, in Tab. 3, “pattern 1” refers to all crews manifesting a 

“non-inclusive decision making process” and a “close adherence to procedures” during the respective 

performances; “pattern 2” comprehends crews performing with a “proactive interpretation of procedures” 

and “slowly building-up in their decision making process”. The output of step II.2 is therefore an aggregated 

dataset populated by group-specific failures and crew observations (kc and Nc in Tab. 3). 

In the last step of the methodology, i.e. II.3, the aggregated dataset enters as input in the Bayesian model 

in order to infer on the group-specific error probabilities (the pc|F’s in eq. 1) and quantify the HEP 

uncertainty distribution, i.e. the P(HEP), for the set F. In the Bayesian framework [10], the initial degree 

of belief on the parameters of the HEP variability function (θF in eq. 1) is modelled by the so-called “prior 

distribution”, π0(θF) in Fig. 3. The prior is updated by the group-specific simulator data (the “evidence” E 

in Fig. 3) in the likelihood function, i.e. L(E|θF) in Fig. 3. The output of the Bayesian update (i.e. the 

“posterior distribution” π(θF|E) in Fig. 3) represents the final state of knowledge on model parameters after 

the evidence. The P(HEP) associated to the set F is eventually derived by averaging the variability function 

(i.e. fF(pc|F|θF) in eq. 1) over the posterior π(θF|E): 

𝑃(𝐻𝐸𝑃) = ∫ 𝑓𝑭(𝑝𝑐|𝑭|𝜽𝑭)𝜋(𝜽𝑭|𝐸)𝑑𝜽𝑭
𝜽𝑭

 (2) 

The development of the Bayesian model is discussed in details in the next subsection. 
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Tab. 2. Derivation of behavioral categories from crew observed behaviors classified by team-, person-based factors: examples of application of steps I.2-I.3 in Fig. 

3, adapted from the case study in Section 4.   

Crew observed behaviors  
(from Tab. 1) 

Classification by team-, person-based factors and associated metrics 
(taxonomy from [44]).  

Behavioral categories 

(a) “board operators more involved in decisions”, “shift 
supervisor is very active in asking questions, and discussing the 
situation with the crew”. 

(b) “shift supervisor makes most decisions”, “shift supervisor 
gives orders without much discussion”. 

COMMUNICATION: 
upholding continuous communication during complex situations to promote 
collective sense-making. 
LEADERSHIP: 
developing strategies based on consultations with subordinates; mastering a more 
authoritarian leadership style during emergencies. 
ATTITUDE: 
team orientation. 

In “Team orientation in decision 
making”: 

(a) Collective 

(b) Non-inclusive 

(c) “shift supervisor is good at prioritizing”, “shift supervisor 
quickly orders important actions”. 

(d) “shift supervisor is hesitant about what to do”, “crew is 
stuck in discussions”. 

LEADERSHIP: 
setting well-defined, realistic goals. 
DECISION MAKING: 
prioritize safety goals and concerns; Stop-Think-Act-Reflect when needed; 
develop a tactic/strategy for how to achieve performance goal. 

In “Progression in decision making”: 

(c) Prioritizing, fast decision maker 

(d) Hesitating, slowly building up 

(e) “crew worked well with extensive three-way 
communication”, “good updates and briefings”. 

(f) “shift supervisor leads the communication without having 
structured meetings”, “reactor operator works alone and does 
not wait for answers from the assistant”. 

COMMUNICATION: 
three-way; active listening and follow up/verify/provide feedback.  
COORDINATION:  
carry out pre-job briefings when required/needed. 
SITUATION AWARENESS:  
informing colleagues when initiating important tasks. 

In “Adherence to communication and 
meeting protocol”: 

(e) Adhering 

(f) Diverging 

(g) “crew performed isolations that were not contained in the 
procedures”, “crew investigated an alternative cause to the 
increasing level in steam generator” 

(h) “crew did not try extra procedural isolations”, “crew waits 
for expected result, instead of questioning the situation” 

COORDINATION: 
proactivity: think ahead possibilities for optimizing activities. 
DECISION MAKING: 
thinking outside the box. 
ATTITUDE: 
uphold a questioning attitude and willingness to consider a situation from 
multiple perspectives. 

In “Adherence to / interpretation of 
procedures”: 

(g) Beyond / proactive 

(h) Close / reactive 
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Tab. 3. Matching crew behaviors to behavioral patterns: examples of application of steps II.1-II.2 in Fig. 3. Note that a predefined list of behavioral categories has 

to be available prior to the matching, e.g. from the application of steps I.1-I.3 in Fig. 3. 

Performance data (Tab. 2) Behavioral patterns and associated categories Failures ki, observations Ni 

Crew 1 (failure): “shift supervisor makes most decisions”, “did not try 
extra procedural isolations”… 
Crew 6 (failure): “shift supervisor gives orders without discussion”. 
“waits for expected result, instead of questioning the situation”… 

Pattern 1 
Team orientation in decision making: “non-inclusive” + 
Adherence to/interpretation of procedures: “close/reactive” + 
... 

ki = 5, Ni = 6 

Crew 2 (success): “performed isolations that were not contained in the 
procedures”, “shift supervisor is hesitant about what to do”… 
Crew 7 (failure): “investigated an alternative cause to the increasing 
level in steam generator”, “stuck in discussions” … 

Pattern 2 
Adherence to/interpretation of procedures: “beyond/proactive” + 
Progression in decision making: “hesitating, slowly building up” + 
... 

ki = 2, Ni = 5 

Crew 3 (success): “reactor operator works alone and does not wait for 
answers from assistant”, “shift supervisor is very active in asking 
questions, and discussing the situation with the crew”… 
Crew 5 (failure): “shift supervisor leads the communication without 
structured meetings”, “board operators more involved in decisions”… 

Pattern 3 
Adherence to communication and meeting protocol: “diverging” + 
Team orientation in decision making: “collective” + 
... 

ki = 2, Ni = 4 

Crew 4 (success): “shift supervisor quickly orders important actions”, 
“worked well with extensive three-way communication”… 
Crew 8 (success): “shift supervisor is good at prioritizing”, “good 
updates and briefings”… 

Pattern 4 
Progression in decision making: “prioritizing, fast decision maker” + 
Adherence to communication and meeting protocol: “adhering” + 
... 

ki = 1, Ni = 10 

(...) (...) ktot = 22, Ntot = 50 
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3.3 Development and implementation of the Bayesian model 

In the numerical application (Section 4), the fF(pc|F|θF) of eq. 1 is modelled with a beta distribution (pc|F ~ 

Beta(α, β) in Fig. 4, left) in a hierarchical beta-binomial model [51], to capture performance variability 

across the different behavioral groups. Accordingly, θF = {α, β} become the parameters of the variability 

model to be inferred from data collection. The hierarchical structure reflects the mathematical formulation 

of HEP proposed in subsection 2.2. Indeed, the evidence (failures, kc, and crew observations, Nc, for the c-

th group, Fig. 4, left) enters at group-level in the binomial likelihood function (kc ~ B(Nc, pc|F) in Fig.4, left) 

to inform the specific pc|F, i.e. the group-specific realization of fF(pc|F|θF) associated to F. The pc|F’s are 

then used to infer, at population-level, the unknown θF of fF(pc|F|θF), i.e. the so-called “hyper-parameters” 

of the Bayesian model.  

Beta distributions are commonly adopted in PSA domain for Bayesian hierarchical models where the 

group-level variable (pc|F in this formulation) represents a probability value, as to constrain the outcomes 

of the latter between 0 and 1 [35]. Alternative choices for fF(pc|F|θF) are discussed in subsection 4.2.2. 

Further information on Bayesian hierarchical models can be found in Bayesian literature [51-52].  

In the numerical application, the lumped-data model is coupled to a simple Bayesian conjugate beta-

binomial model (Fig. 4, center) to derive the single pF (Fig. 2, center) from the lumped data (ktot and Ntot in 

Fig. 4, center). The continuous variability formulation (Fig. 2, right) is coupled to a Bayesian model with a 

population variability curve (PVC in Fig. 4, right) representing the variability in the crew-, task-specific 

pij|F. To ensure a fair comparison between the models, the variability function of the continuous model, i.e. 

fF(pij|F|θF), is specialized with a beta PVC (pij|F ~ Beta(α, β) in Fig. 4, right), with θF = {α, β} to be inferred 

from the crew-, task- specific data (kij and Nij in Fig. 4, right). Fig. 4 shows an overview of the three Bayesian 

models tested in Section 4. 

The Bayesian models are implemented in “Just Another Gibbs Sampler” (JAGS, [53]), a software using 

Markov Chain Monte Carlo (MCMC) simulation to approximate the solution of π(θF|E). The JAGS models 

are run in R programming environment via the “runjags” library [54].  

In both the hierarchical beta-binomial and continuous variability models, the Beta(α, β) functions are 

reparametrized in terms of mean (μ) and a dispersion measure (i.e. the concentration, κ) as to improve the 

computational efficiency of MCMC simulations, as recommended in [35]. In the numerical application, 

non-informative priors are set on the hyper-parameters of the hierarchical model (π0(θF) in Fig. 4, right) as 

common practice in lack of information [35], specifically: a diffuse π0(μ), defined between 1e-5 and 1; a 

diffuse π0(κ), defined between 0 and 10. Similar priors are set on the parameters of both the conjugate beta-

binomial and the continuous with beta PVC models, respectively: a diffuse π0(p) for the single-value HEP; 

diffuse π0(μ) and π0(κ) for mean and concentration. 

Fig. 4. Bayesian models for HEP quantification coupled to the three modelling approaches of Fig. 2. All the p’s are 

intended as conditional on the given set F, e.g. pc|F, pij|F. 
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Tests on the convergence of the MCMC simulations were performed using “diagMCMC”, a set of 

diagnostic tools provided by [52]. Further information on MCMC methods are given in Bayesian literature 

[51-52]. 

4 Case study from literature data  

This section presents the application of the multi-step methodology to the case study. Subsection 4.1 first 

describes the data source, then presents the set of behavioral categories identified and the HEP 

quantification considering behavioral groups via the hierarchical beta-binomial model (Fig. 4, left). The 

results are compared to the alternative modelling approaches, i.e. the lumped-data and the continuous 

variability models (Fig. 4, respectively center and right). Sensitivity analysis on model results is presented 

in subsection 4.2. 

4.1 Case study 

The case study processes data from two simulator experiments [13,43], involving different emergency 

scenarios characterized by multiple concurrent malfunctions. As discussed in Section 2, due to procedural 

guidance-situation mismatches, crew behavioral characteristics played a key role in task performance. 

4.1.1 Derivation of behavioral categories (methodology: block I) 

From the application of step I.1 of the methodology (Fig. 3), 27 crew observations were identified as 

belonging to the combination F of task type and PSF ratings reported in Tab. 4 (the SACADA taxonomy 

is used for illustration purposes). The selection of the PSF ratings was done by the authors of the present 

paper, based on the information available in [13,43]. In the simulated scenarios, the operating crews 

performed different diagnosis tasks (task type “understanding the situation” in Tab. 4), in all cases with 

masked indicators (PSF “information availability” with rating “missing/masked” in Tab. 4). All the 

involved crews experienced for the first time the operational situation replicated by the simulated scenario 

(PSF “familiarity” with rating “anomaly” in Tab. 4); moreover, the diagnosis had to be performed in 

absence of alarms directly pointing to the problem (PSF “information specificity” with rating “not specific” 

in Tab. 4) and with relatively high-tempo (PSF “time criticality” with rating “barely adequate” in Tab. 4).  

Tab. 4 summarizes the failure data extrapolated from the simulator records (total observations Ntot = 27, 

with failures ktot = 15). Note the high ratio of failures in the dataset (overall, ~0.56), justified by the complex 

nature of the tasks and the associated operational contexts under investigation. 

In the application of steps I.2-I.3 of the methodology (Fig. 3), for each of the simulator records in Tab. 

4, the observed crew behaviors were analyzed using the team and person-specific metrics from [44] and 

classified in behavioral categories accordingly. Examples of the classification process are provided in Tab. 

2. Tab. 5 (left) shows the list of the twenty behavioral categories preliminarily identified for the case study 

and organized by ten dimensions, together with a short description for each category. For instance, in Tab. 

5 (left), crew behaviors relevant to the dimension “adherence to / interpretation of procedures” were 

classified in two categories, “beyond / proactive” and “close / reactive”, based on metrics from [44] 

concerning team coordination (e.g. “proactivity: think ahead possibilities for optimizing activities”), 

decision making (“thinking outside the box: regularly considering the situation at hand from different 

perspective”), and attitude (“uphold a questioning attitude and willingness to consider a situation from 

multiple perspectives”. The category “beyond / proactive” refers to crews that considered alternative causes 

and upheld a questioning attitude during the diagnosis, trying extra-procedural tasks not contained in 

procedures; on the other hand, “close / reactive” describes crews that waited for the procedures to provide 

explicit indications on how to perform the diagnosis. The full set of metrics associated to each behavioral 

category is provided in Tab. A1 (Appendix). 

As mentioned in subsection 3.1, the aggregation in behavioral groups (steps II.1-II.2 in Fig. 3) can be 

problematic in presence of a large set of categories but only few data points at disposal. For the purposes 
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of the present application, in order to avoid too much data dispersion over the categories due to the small 

number of observations available (Ntot=27 in Tab. 2), the category list was further compacted by expert-

based aggregation, and the respective metrics combined into ten categories as shown in Tab. 5 (right), with 

dimensions: “progress through procedures”, “flexibility in dealing with procedures and cues”, “role 

awareness”, “prioritization of goals and resources”, and “decision making and information sharing”. 

Tab. 4. Simulator data used in the case study. 

Set F (taxonomy from SACADA, [20]): 

{task type = understanding the situation, information quality = missing/masked, information specificity = not specific,  
familiarity = anomaly, time criticality = barely adequate1} 
Source Scenario Realization of contextual factors Task  Observations Failures 
[43]2 SGTR  Failure of secondary radiation 

indications 
Identification and isolation 
of faulted SG (“HFE1B”) 

12 6 

[13]3 Multi SGTR Radiation alarms already activated by 
early releases due to initiating event 

Identification and isolation 
of faulted SG 

5 4 

ISLOCA No indications on leaks’ specific 
location 

Identification and isolation 
of leaks 

5 2 

LOFW+SGTR Water level increase and absence of 
radiation indication mask faulted SG 
identification 

Identification and isolation 
of faulted SG 

5 3 

  Aggregated data (ktot, Ntot) 27 15 
.

                                                      
1  In “LOFW+SGTR” scenario, the execution of the considered task (“identification and isolation of the faulted steam 

generator”) can overlap in time with the other main safety-critical operator actions (e.g. restore feed-water to the steam generators, 

control cooling system cool-down and pressurization to prevent “pressurized thermal shock” condition): therefore, the effective 

time available for the diagnosis can differ according to the scenario evolution experienced by each crew. For the purposes of the 

application, the authors assumed a “barely adequate” time for all the five crew observations. 
2 Performance outcome (failure or success) was considered according to the time criterion (25 minutes) set by the trainers for 

the task. 
3 Given that task-specific time criteria are not adopted, the outcome of each task was considered as a failure when the 

performance standards established by trainers were not met at the end of the scenario, e.g.: for the task in the ISLOCA scenario, 

failure when crews did not try to identify and isolate the leaks, success in the opposite case. 
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Tab. 5. Left: preliminary list of behavioral categories emerging from the empirical data for the case study [13, 43]. The associated team-, person-based metrics [44] used for the 

preliminary categorization are provided in Tab. A1 (Appendix). Right: compact set after expert-based aggregation, for use in the numerical application (subsection 4.1.2). 

Preliminary set of behavioral categories identified from empirical data  (categorization supported by metrics in [44]) Aggregated set for the numerical application 

Dimensions Behavioral categories Dimensions Behavioral categories 

Progress through procedures  “Sequential”: systematic procedure reading (inc. 
foldout pages and warnings in appendix), 
transferring only when conditions are met. 

“Adaptive”: move forward and loop back through 
procedures, sometimes anticipating transferring 
conditions. 

Progress through 
procedures  

Thorough Jumping 

Adherence to / interpretation 
of procedures 

“Beyond / proactive”: address alternative causes 
with questioning attitude and willing to perform 
extra procedural tasks. 

“Close / reactive”: wait for explicit indications 
from procedures, performing tasks only if 
prescribed. 

Flexibility in dealing 
with procedures and 
cues 

Beyond Close 

Diversity of information 
sources  

“Diverse cues”: rely on diverse, redundant 
information, including outside-control room 
indications (local information). 

“Prescribed cues”: rely mostly on cues indicated 
in procedures. 

Monitoring indications when 
reacting to anomalies 

“Follow-up trends”: anomalies are immediately 
addressed and followed up over time. 

“Focus only on initial deviations”: indications are 
mostly monitored at the early stage of the 
anomaly. 

Role awareness “Adhering”: operators adhere to prescribed roles, 
with the supervisor maintaining a global 
overview. 

“Diverging”: some members perform tasks 
outside their responsibilities, with the supervisor 
more involved in details 

Role awareness Adhering Diverging 

Progression in decision 
making 

“Prioritizing, fast decision maker”: schedule tasks 
and goals to favor quick response. 

“Hesitating, slowly building up”: proceed step-by-
step, upholding an explanation-building 
orientation. 

Prioritization of goals 
and resources 

Fast 
adaptation  

Slow 
adaptation 

Operator involvement “All are involved”: everyone is active during task 
execution. 

“Some involved, some passive”: some members 
are more active, some other more passive. 

Resource optimization during 
scenario 

“Flexible redistribution”: tend to optimize 
resources and flexibly adapt work redistribution 
according to task progression. 

“Rigid”: focus more on getting on with the work, 
keeping constant workload distribution during 
scenario (e.g. no parallel tasks). 

Team orientation in decision 
making 

“Collective”: supervisor develops strategies 
consulting the operators, taking into account their 
opinions and suggestions. 

“Non-inclusive”: supervisor takes most decisions 
alone, without much discussion with the rest of 
the team. 

Decision making and 
information sharing 

Collective Non-inclusive  

Adherence to communication 
and meeting protocol  

“Adhering”: meetings and briefings are held when 
necessary and structured according to protocols, 
with follow-up when needed. 

“Diverging”: meetings and briefings held with 
low frequency, when held: operators do not stick 
to form (e.g. not definitive endings). 
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4.1.2 Grouping in behavioral groups and HEP quantification (methodology: block II) 

The crew behaviors collected for each of the 27 observations were first matched to the categories of the 

compact list in Tab. 5, right (application of step II.1). The matching was based on the crew performance 

analysis available in the information sources [13,43]. The metrics associated to each category (see Tab. A1 

in Appendix) were used as basis for the category association. The behavioral patterns were identified by 

the combinations of categories (step II.2), similarly to the examples provided in Tab. 3. Tab. 6 shows the 

seven groups identified for the case study, together with the respective behavioral patterns and the group-

specific failure data (number of failures kc in Nc observations). The aggregated dataset in Tab. 6 highlights 

in qualitative terms what discussed in Section 2: different behavioral patterns can have different impacts on 

the task outcome (see the frequentist ratios kc/Nc for each group) and determine crew performance 

variability within the set F. For instance, the pattern associated to “group 2” in Tab. 6 overall exerts a 

positive impact on task outcome (zero failures out of six observations) compared to “group 5” (eight failures 

out of nine observations).  

The group-specific failure data (kc and Nc in Tab. 6) was used as input in the hierarchical beta-binomial 

model to infer the error probabilities for the seven behavioral groups and quantify the HEP uncertainty 

distribution, P(HEP), for the set F (step II.3). Fig. 5 shows the results, along with the comparison with the 

alternative models conjugate beta-binomial model with lumped-data (ktot = 15 and Ntot = 27 in Tab. 5) and 

the beta-PVC variability model with crew-, task-specific data (kij and Nij). For the latter, considering that 

each crew (index j) performed only one repetition of the same task (index i) in data collection, each Nij was 

set to one, with the kij equal to one in case of failure (zero otherwise). Numerical results are given in Tab. 

7. 

Tab. 6. Seven crew groups and associated behavioral patterns identified in the case study (note that each group 

corresponds to a specific behavioral pattern).  

 Progress through 
procedures 

Flexibility in dealing 
with procedures/cues 

Role awareness Prioritization of 
goals and resources 

Decision making and 
information sharing 

 

Categories 
Groups 

Sequential Adaptive Beyond Close Adhere Diverge Fast 
adapt. 

Slow 
adapt. 

Collective Non-
inclusive 

kc / Nc 

Group 1 X 
 

X 
 

X 
 

X 
  

X 0 / 1 

Group 24 X 
 

X 
 

X 
 

X 
 

X 
 

0 / 6 

Group 3 X 
 

X 
 

X 
  

X X 
 

1 / 2 

Group 4 X 
  

X 
 

X 
 

X 
 

X 2 / 4 

Group 5 
 

X 
 

X 
 

X 
 

X 
 

X 8 / 9 

Group 6 
 

X 
 

X X 
  

X 
 

X 3 / 3 

Group 7 
 

X 
 

X X 
  

X X 
 

1 / 2 

 

 

                                                      
4 For crew “N ” in the SGTR scenario from [43], the available information was not sufficient to fully characterize crew 

performance in three out of five categories (i.e. “progress through procedures”, “role awareness”, and “prioritization of goals and 

resources”): in this case, for practical reasons, the categories in line with the crew behaviors “recommended” by the training 

standards (see Chapter 2.4 in [43]) were assigned (respectively: “sequential”, “adhere”, and “fast adaptation”). 
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Fig. 5. Results from the numerical application to the case study. In x axis, from left to right: conjugate beta-binomial 

with lumped data (“Lumped”); continuous variability model with crew-, task-specific data (“No aggregation”); 

hierarchical beta-binomial model with seven behavioral groups (“7 groups”); and group-specific P(HEP)’s (“Groups: 

1 to 7”). In y axis (log scale): mean (symbols), 5th and 95th percentiles (whiskers) of the P(HEP). Dotted line: overall 

frequentist failure ratio (ktot/Ntot). 

Tab. 7. Numerical results from Fig. 5 (note that each group corresponds to a specific behavioral pattern). 

Model (data aggregation in Fig. 5) Mean 5th 50th 95th EF 

Conjugate beta-binomial (“lumped”) 5.5e-01 4.0e-01 5.5e-01 7.0e-01 1.3 

Continuous with beta PVC (“no aggregation”) 5.4e-01 1.6e-01 5.5e-01 8.9e-01 2.4 

Hierarchical beta-binomial (“7 groups”)   5.1e-01 3.9e-02 5.2e-01 9.6e-01 4.9 

Group 1 3.8e-01 1.5e-02 3.7e-01 7.9e-01 7.3 

Group 2 1.9e-01 3.7e-03 1.6e-01 4.6e-01 11.2 

Group 3 5.1e-01 1.5e-01 5.1e-01 8.6e-01 2.4 

Group 4 5.1e-01 2.0e-01 5.1e-01 8.1e-01 2.0 

Group 5 7.8e-01 5.6e-01 8.0e-01 9.6e-01 1.3 

Group 6 7.5e-01 4.2e-01 7.8e-01 9.9e-01 1.5 

Group 7 5.1e-01 1.5e-01 5.1e-01 8.6e-01 2.4 

 

The three models return similar values of the expected HEP (“lumped”: 5.5e-01, “no aggregation”: 5.4e-

01, “7 groups”: 5.1e-01) in line with the overall frequentist ratio (5.6e-01), but with very different expected 

variability (see Fig. 5 and error factor, EF, values in Tab. 7). The differences in the variability distributions 

provided by the models can be interpreted according to the HEP formulations. In the lumped-data approach, 

variability in crew performances is averaged in the single piece of evidence (ktot/Ntot): the P(HEP) tends to 

shrink around the population average (with EF = 1.3). The continuous model with beta PVC “breaks down” 

HEP variability at crew-, task-level. Since the crews performed only one task repetition, the disaggregated 

data (kij/1) informs the pij|F’s of the beta variability distribution only with 0’s and 1’s: consequently, 

variability across differently performing crews does not clearly emerge in the uncertainty distribution, 
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resulting in a lower spread around the mean value (EF = 2.4) compared to the hierarchical beta binomial 

model. On the other hand, the latter “clusters” performance data in seven behavioral groups: the group-

specific data (kc/Nc) informs the seven pc|F’s of the beta variability distribution with less uncertainty 

compared to the continuous formulation (for example, 8/9 and 2/4 are more informative evidence compared 

to 0/1 and 1/1). In this case, the group-specific error probabilities capture variability in crew performances 

(see the pc|F expected values in Tab. 7) and this reflects in a larger spread around the mean value (EF = 4.9) 

of the HEP uncertainty distribution. 

4.2 Sensitivity analysis 

This subsection discusses the influence of the number of and the degree of performance variability across 

the identified behavioral groups (subsection 4.2.1), and the choice of the variability function (subsection 

4.2.2) on the estimated HEP uncertainty distribution. The artificial datasets used in the tests are adapted 

from the case study. 

4.2.1 Number of and degree of performance variability across behavioral groups  

As discussed in subsection 3.1, the number of identified crew groups is directly influenced by the amount 

of behavioral categories used to classify crew behaviors: this number depends on how many team- and 

person-based dimensions in Skjerve and Holmgren taxonomy [44] are considered by the analyst. As a 

general rule, the more behavioral categories are modelled, the higher the number of groups emerging from 

data. To investigate the extent to which this number can influence model results, the categorization in Tab. 

6 is reinterpreted by not explicitly modelling behaviors related to “decision making and information 

sharing” and “role awareness”: this specific case would be equivalent to considering crew as a “single 

entity”, averaging the effects of interpersonal aspects (e.g. team coordination, communication strategies) 

over the remaining categories (i.e. in “progress through procedures”, “flexibility in dealing with 

procedures/cues”, “prioritization of goals and resources”). This corresponds to a higher level of data 

aggregation with only four behavioral groups, as shown in Tab. 8. 

An additional aspect to consider is that the case study focused on a set F characterized by large 

performance variability. The influence of data aggregation (see Tab. 6 vs Tab. 8) on model results would 

need to be reconsidered in case of lower variability in performance data, e.g. as observed for those F’s 

representing tasks/operational contexts for which the effect of crew behaviors plays a minor role in 

determining task failure (e.g. tasks in the base SGTR scenario in [11]). In order to include this aspect in the 

analysis, the group-specific failure data in Tab. 6 (seven groups) and Tab. 8 (four groups) was arbitrarily 

redistributed as to simulate conditions of lower performance variability across the behavioral groups, i.e. 

“equalizing” the frequentist ratios kc/Nc towards the population average ktot/Ntot. The resulting datasets are 

summarized in Tab. A2 (Appendix), together with the numerical results of the sensitivity analysis.  

Tab. 8. Higher level of data aggregation: an example with four behavioral groups (note that each group corresponds 

to a specific behavioral pattern). 

 Progress through 
procedures 

Flexibility in dealing 
with procedures/cues 

Role awareness Prioritization of 
goals and resources 

Decision making and 
information sharing 

 

Categories 
Groups 

Sequential Adaptive Beyond Close Adhere Diverge Fast 
adapt. 

Slow 
adapt. 

Collective Non-
inclusive 

kc / Nc 

Group 1 X  X    X    0 / 7 

Group 2 X  X     X   2 / 4  

Group 3 X   X    X   1 / 2 

Group 4  X  X    X   12 / 14 
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Fig. 6 shows the P(HEP)’s provided by the hierarchical beta-binomial model informed with real data 

from Tabs. 6 and 8 (“large variability”, respectively “7 groups” and “4 groups”) and the artificial data from 

Tab. A2 (“low variability”, “7 groups” and “4 groups”). For “large variability” datasets, the aggregation 

from seven to four groups corresponds to a more heterogeneous failure data across the behavioral groups 

(e.g. in Tab. A2: k1/N1=0/7 and k4/N4=12/14 for “4 groups” vs k1/N1=0/6 and k4/N4=8/9 for “7 groups”): 

consequently, the hierarchical beta-binomial model captures a larger variability in pc|F values (see E[pc|F]’s 

in Tab. A2) and returns a P(HEP) with an increased spread around the population average (EF = 8.3 for “4 

groups” vs EF = 4.9 for “7 groups”). For “low variability” cases, being failure data more homogeneously 

distributed across the groups, the E[pc|F]’s in Tab. A2 get closer to the population average and the number 

of identified behavioral groups plays a minor influence on the estimated P(HEP): mean = 5.3e-01 and EF 

= 2.2 for “7 group” case, mean = 5.4e-01 and EF = 2.4 for “4 group” case. Note that the results for “low 

variability” datasets are identical to the continuous variability formulation (mean = 5.4e-01 and EF = 2.4 in 

Tab. 7). The practical implications on HRA applications are discussed in the next section. 

To summarize the results from the sensitivity analysis, the investigation showed that the proposed model 

is able to capture differences in performance variability compared to the alternative approaches. Also, the 

more heterogeneous is the group-specific failure data (see Tab. 8), the more the results diverge from the 

lumped and continuous variability formulations. On the other hand, the benefits of using a variability model 

based on behavioral patterns compared to simpler approaches (e.g. the continuous variability formulation) 

diminish with reduced performance variability underlying the dataset. 

4.2.2 Choice of the variability function  

Alternative variability functions (i.e. lognormal, logistic-normal) were tested for both the hierarchical and 

the continuous variability models: the numerical results are included in Tab. A3 (Appendix). In general, the 

considerations drawn from the sensitivity analysis still apply (see in Tab. A3 the evolution of P(HEP) 

statistics with varying number of groups and degree of performance variability). Concerning the case study, 

the hierarchical model set with lognormal and logistic-normal variability functions returns uncertainty 

distributions with higher EFs (EF = 10.5 and EF = 16.2, respectively) compared to beta case (EF = 4.9). 

The reason is because the lognormal and logistic-normal PVCs converge more slowly with smaller datasets 

compared to the beta PVC (i.e. with few observations, the beta distribution peaks faster and returns less 

uncertain pc|F estimates).  

Note that the choice of an appropriate variability function should also take into consideration the 

expected HEP order of magnitude of the investigated F. For instance, when treating higher HEP values as 

in the case study of this paper (between 1e-1 and 1), the lognormal variability function tends to 

systematically underestimate the mean HEP (e.g. 3.4e-01 for the case study) compared to beta and logistic-

normal functions (respectively, 5.1e-01 and 4.9e-01), as confirmed by Kelly and Smith [35]. In addition, 

the authors tested the sensitivity to different (reasonable) hyper-priors (e.g. constrained non-informative, 

Jeffreys, etc.) for the mean of the beta PVC, i.e. π0(μ). The results did not highlight any significant 

dependence from the adopted π0(μ), given the strong informative power of the particular dataset (15 failures 

over 27 observations, with very high frequentist ratio, i.e. 0.56). Indeed more in-depth analysis of possible 

choices for the prior function and the associated parameters would be required for less informative data 

sets. 

Different techniques for model comparison (e.g. posterior predictive checks) are available in Bayesian 

literature to assist the analyst in selecting an appropriate variability function (for further details, the reader 

should refer to [51]). 
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Fig. 6. Influence of the number of identified behavioral groups (“7 groups” vs “4 groups”) on the P(HEP) estimated 

by the hierarchical beta-binomial model for both the case study (Tabs. 6-8) and the artificially-generated dataset with 

less performance variability (Tab. A2, Appendix). 

5 Discussion  

Concerning data requirements, the methodology presented in this paper requires the availability of crew 

behavior records to classify the crews in groups. As anticipated in Section 2, this information goes beyond 

what would be collected if strictly adopting currently available protocols for large-scale data collection 

programs (SACADA [20], HuREX [21]). To some extent, the SACADA taxonomy could be extended 

relatively easily, given that some piece of information on crew behaviors is already collected in the 

SACADA framework, although only for crews for which performance issues are observed. Indeed, for the 

methodology to be applicable, information on crew behaviors should be available for all sessions, 

independently on the crew performance outcome. It has to be mentioned that SACADA has been developed 

to collect data within the operator training sessions: therefore any extension of the amount of data collected 

would have to be evaluated in terms of overload on trainers and operators.  

On the other hand, records of crew behaviors are available from other human factor studies, not 

necessarily intended for HRA applications. Indeed, this has been the case for the application presented in 

this paper. Therefore, the collection of crew behaviors does not necessarily have to be integrated in HRA 

data collection protocols such as SACADA and HuREX. An alternative could be to decouple data collection 

on crew variability from those on the mean HEP values. Specific data collection studies could be directed 

only to subsets of tasks type and PSF combinations to identify dominant crew behavioral groups and their 

associated variability, while maintaining the available taxonomies for estimation of population-averaged 

HEPs. Indeed, although the aim of the methodology presented in this paper is to estimate HEP distributions 

conditional on the set F of task types and PSF levels, the methodology is not intended for application to all 

possible combinations. Besides being unrealistic for the amount of data required, this would also be 

unnecessary for those sets F expected to trigger a similar spectrum of crew behaviors. These studies may 

give empirical indications of the actual HEP spread, which could be then assigned to the estimates from the 

population-averaging data collection protocols.   

The crew behavioral categories identified in this work emerged from very challenging scenarios, 

characterized by high failure probabilities. The scenarios were characterized by masked indications and 

symptoms-procedural mismatches, with stringent requirements on which behaviors would lead to 
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successful performance: ability to adapt, fast decisions, questioning attitude were all crew characteristics 

necessary to success. The result is a large variability in crew performance: those crews manifesting these 

characteristics were much more likely to succeed compared to other crews (compare performance results 

of group 2 and group 5 in Tab. 6). This also coverts in the large variability for the resulting HEP distribution, 

EF of about 5 in Tab. 7). The characteristics of the scenarios analyzed in the present paper were imposed 

by the available data; for future analysis, with larger amount of data available, it would be beneficial to 

address diverse scenarios, as well as less challenging situations to investigate more comprehensively the 

effect of crew behavioral variability on the HEP variability. 

The proposed methodology acknowledges that crew behaviors are neither merely “situation-driven” (i.e. 

“task, scenario, context” factors predominantly determine mechanisms and pace of performance, 

independently on crew characteristics) nor “crew-driven” (i.e. each crew has an “inherent” problem solving 

style and communication strategy, independently of task/context). For instance, in the empirical 

observations analyzed in the case study [13, 43], on the one hand, in the same situation (scenario) significant 

differences in crew behaviors were observed. On the other hand, the same crew did not always adopted the 

same problem solving style (e.g. fixation-prone or prioritization-oriented) or communication strategy (e.g. 

frequent meetings/briefings or few strategic discussions) across different simulated scenarios [13]. Indeed 

as shown in Fig. 1, all factors (situation- as well as crew-driven) interplay in the determination of the crew 

behaviors. The proposed methodology acknowledges this and generalizes both the situation- and the crew-

driven interpretations: indeed, the analysis of the behavioral characteristics is made conditional on the 

“situation-driven” set F, but the actual set of characteristics is made emerging from the actual observations, 

which are a result of the interactions of all factors. Besides the specific analyses of the present paper, the 

proposed framework offers a tool for future works to study the interplay across these influences.  

For the purposes of the present work, the set of behavioral categories has been defined based on the 

analysis of the crew performances and the expertise of the authors, aiming at a tradeoff between coverage 

of characterization and the number of categories. Since the behavioral groups are identified based on the 

category combination, the number of categories has to be maintained low enough to avoid combinatorial 

explosion. Note that, while the set of categories adopted in this work is indeed subjective, the authors linked 

the definition of each category to an established set of teamwork competences (see Tab. 2 and Appendix 

A), which in turn can be associated to observable crew behaviors [44]. When processing a simulator record, 

the categorization is based on the observed crew behaviors (step II.1) and not directly on the categories: 

this has been done to make the behavior categorization more objective and traceable. Additionally, this 

opens to the test of different category sets: as long as the crew behaviors are recorded and a link to these 

behaviors is established as shown in Tab. 2 and Appendix A. In the long term, as more data on crew 

behaviors may be available, consolidated sets of behavioral categories may be identified and reused across 

studies to investigate their relative importance and impact on crew performance. As mentioned, this “library 

of categories” would identify the categories relevant for groups of F, ideally defined to group situations by 

type, e.g. “fast-pacing”, “standard procedure-following”, “conflicting goals” in a similar way as proposed 

in [28]. Also, with more data available, data analysis and statistical tests could be used to derive the groups 

(e.g. via cluster analysis), identify dominant categories, and  rule out or aggregate categories with limited 

impact on task performance and support accordingly the library of categories, reducing the subjective 

component in category definitions. Besides more established sets of categories and groups, the accumulated 

data can be used to provide information on the frequency of each group, per given set F. This information 

(possibly complemented with expert judgment on the plant crew specificity) can be used to inform HRA 

prospective analyses for which many crew observations are not possible.  

The methodology presented in this paper could be used to support the development of future, advanced 

crew performance models, representing the complex relationships among the performance influencing 

factors (task-, context-, team-, and person-based, see Fig. 1) and the HEP. In this direction, modern 

approaches based on Bayesian Belief Networks (BBN) [55-56] resort to a flexible framework to represent 

crew performance variability, either implicitly (into the BBN conditional probability distribution), as well 

as explicitly (as dedicated input nodes). Concerning the former (implicit incorporation), the variability 
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model presented in this work can enhance the empirical basis of the BBN distributions, e.g. producing 

anchoring distributions to populate the BBN relationships via filling algorithms (such as those in [57]). 

Concerning the latter (explicit representation), the proposed methodology could inform crew-to-crew 

variability nodes with behavioral patterns that are relevant for a given status of the task and PSF nodes (i.e. 

for a given F). 

6 Conclusions 

As acknowledged by recent simulator studies, crew performance variability plays an important role in 

nuclear power plant operational tasks and requires explicit consideration in the estimation of the HEP (and 

the associated uncertainty). Characterizing the performance drivers for different task types and operational 

contexts is not straightforward, given the complexity of both human behaviors and emergency scenarios 

typically addressed in PSA applications. 

As a first-of-a-kind attempt in this direction, the present work shows how to formally incorporate crew 

behavioral characteristics observed in simulator experiments in a variability model for HEP quantification. 

Crew behaviors are here categorized by behavioral patterns, modelling the dynamic influence of crew-

specific (e.g. communication strategies, attitude, decision making and leadership styles) and task-, scenario-

specific factors (e.g. task complexity, procedural guidance, information availability) on crew performance. 

This approach allows aggregating crews sharing a similar behavioral profile in a unique behavioral group, 

and associate each group to a specific error probability value in the HEP variability model. 

The paper presents a multi-step methodology that can be generally applied to multiple sets of HRA 

method categorical elements (task type, PSF ratings) to systematically process the information on crew 

behaviors in simulator data collection, identify behavioral groups and finally use group-specific failure data 

to inform a Bayesian hierarchical model for HEP estimation. A case study demonstrates the feasibility of 

the proposed methodology to a practical HRA application, focusing on data from complex emergency 

scenarios where diagnosis tasks are challenged by masked indicators. The numerical application showed 

that, compared to existing approaches in treating simulator data, the Bayesian hierarchical model with 

behavioral groups is able to capture variability across different-performing crews, representing a versatile 

solution for estimating HEP uncertainty and variability distributions to feed HRA methods with 

empirically-based reference data.  

Besides enabling data aggregation from different crews on the basis of their behavioral commonalities, 

this new formulation allows identifying the crew characteristics that determine performance variability in 

the failure probability. From this perspective, the proposed methodology can be also used to highlight those 

crew behavioral patterns that favor lower failure probability values for a given task and operational context, 

therefore supporting training of operators accordingly. 
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Appendix A 

Tab. A1: List of teamwork competences and the associated metrics (taxonomy from [44]) used to categorize crew behaviors emerging from the case study (descriptions for each 

behavioral category are provided in Tab. 5).   

Behavioral categories  Associated teamwork competences (dimensions and metrics) 

Progress through procedures: 
 “Sequential” 
 “Adaptive” 

LEADERSHIP 
 
 
ATTITUDE 

- Analytical competence 
- Enforcing adherence to standards for plant and personnel safety (e.g. operational plans, documents) 
- Behaving as a good example for subordinates 
- Conscientious and commitment to quality 

Adherence to / interpretation of procedures: 
 “Beyond / Proactive” 
 “Close / Reactive” 

COORDINATION 
LEADERSHIP 
DECISION MAKING 
 
ATTITUDE 

- Proactivity: think ahead possibilities for optimizing activities 
- Encourage out-of-the-box thinking if needed 
- Thinking outside the box: regularly considering the situation at hand from different perspective 
- Understanding the overall goal and which decision(s) should aim at achieving 
- Uphold a questioning attitude and willingness to consider a situation from multiple perspectives 

Diversity of information sources: 
 “Diverse cues” 
 “Prescribed cues” 

LEADERSHIP 
COORDINATION 
DECISION MAKING 
 
SITUATION AWARENESS 

- Ensuring that preconditions exist for successful task execution 
- Proactivity: collecting information that may be useful at later stages 
- Proactively determining how to verify the consequences/adequacy of a decision 
- Acknowledging and proactively addressing uncertainties 
- Managing periods with incomplete/insufficient/uncertain information: distinguish facts from interpretations 

Monitoring indications when reacting to anomalies: 
 “Follow-up trends” 
 “Focus only on initial deviations” 

COORDINATION 
SITUATION AWARENESS 

- Timely updating on progress and deviations 
- Attending to details to identify unexpected states/occurrences and follow up on these 
- Monitoring control-board indications frequently 
- Addressing process deviations immediately, as well as important indications and trends 

Role awareness: 
 “Adhering” 
 “Diverging” 

LEADERSHIP 
 
INTERPERS. COMPETENCE 
 
 
 
SITUATION AWARENESS 

- Maintaining a global, stand-back, overview 
- Monitoring sub-ordinates and colleagues  
- Built trust, treat colleagues with respect 
- Familiarity with the work organization, roles & responsibilities, as well as with individuals 
- Acknowledging that different roles have different authority associated (leadership, followership) 
- Mastering negotiation and conflict resolution 
- Ensuring (or helping to ensure) that someone on the shift always uphold a global overview 

Progression in decision making: 
 “Prioritizing, fast decision maker” 
 “Hesitating, slowly building up” 

COORDINATION 
 
LEADERSHIP 
DECISION MAKING 
 
 
SITUATION AWARENESS 

- Clarifying operational goals and the associated tasks, incl. addressing inter-dependencies 
- Summarizing and documenting plans, goals, tasks, and deviations on a joint surface 
- Setting well-defined, realistic goals 
- Prioritize safety goals and concerns  
- Stop-Think-Act-Reflect when needed, develop a tactic/strategy for how to achieve the performance goal 
- Develop a tactic/strategy for how to achieve performance goal. 
- Making sense of the situation based on a working mental model of the process system 
- Ability to make sense of the operational situation “on-the-fly” 

Operator involvement: 
 “All are involved” 
 “Some involved, some passive” 

COORDINATION 
DECISION MAKING 
INTEPERS. COMPETENCE 
 

- Mutual performance monitoring and provision of needed support, to the extent possible 
- Ensuring that crew members are adequately involved  
- Assess if colleagues need assistance 
- Follow up on colleagues in situations where they do not provide any information  
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ATTITUDE 

- Contributing to ensure that the crew keeps functioning as a team, even under trying conditions 
- Engaging constructively in task performance 

Resource optimization during scenario: 
 “Flexible redistribution” 
 “Rigid” 

LEADERSHIP 
COORDINATION 
 
ATTITUDE 
 
SITUATION AWARENESS 

- Delegating tasks 
- Being ready for adapting performance on-the-fly, engaging back-up behavior 
- Thinking ahead for extra resources 
- Conservative attitude: safety concerns pervade all thinking and decision making processes 
- Mental preparedness for the unforeseen/unexpected: willingness to adapt performance 
- Demonstrating readiness to re-interpret information in light of new insights/events 

Team orientation in decision making: 
 “Collective” 
 “Non-inclusive” 

COMMUNICATION 
LEADERSHIP 
 
DECISION MAKING 
INTERPERS. COMPETENCE 
ATTITUDE 
SITUATION AWARENESS 
 

- Upholding continuous communication during complex situations to promote collective sense-making 
- Developing strategies based on consultations with subordinates 
- During emergencies: mastering a more authoritarian leadership style 
- Less participatory approach when information is limited/incomplete and time pressure higher  
- Recognizing the achievements of colleagues 
- Team orientation 
- Ability as a team to pool and assess information to make sense of the occurrences 
- Ensuring that updates, briefings and problem solving meetings are held when necessary 

Adherence to communication and meeting protocol:  
 “Adhering” 
 “Diverging” 

COMMUNICATION  
 
 
 
 
 
 
 
LEADERSHIP 
 
COORDINATION 
SITUATION AWARENESS 

- Communicating in an assertive way: concise, clear and calm manner 
- Communicating using required standards when giving orders and sharing safety-critical information 
- Three-way communication 
- Phonetic alphabet and tag numbers, especially when communicating over the phone 
- Communicating in such a way that there is never doubt 
- Adapting communication to the receiver(s)'s competencies 
- Active listening and follow up/verify/provide feedback 
- Using robust, “stress-resistant”, communication practices (e.g. more information channels) 
- Announcing strategies and goals clearly 
- Giving orders clearly and follow-up on ask execution continuously 
- Carry out pre-job briefings when required/needed 
- Informing colleagues when initiating important tasks 

 

Tab A2. Numerical results from the sensitivity analysis on the hierarchical model with varying number of and degrees of variability across behavioral groups (Fig. 6). 

Case  Failure data (group-specific E[pc]) Mean 5th 50th 95th EF 

Case study 
(large variability) 

“7 groups”: k1/N1=0/1, k2/N2=0/6, k3/N3=1/2, k4/N4=2/4, k5/N5=8/9, k6/N6=3/3, k7/N7=1/2 
(E[p1]: 3.8e-01, E[p2]: 1.9e-01, E[p3]: 5.1e-01, E[p4]: 5.1e-01, E[p5]: 7.8e-01, E[p6]: 7.5e-01, E[p7]: 5.1e-01) 

“4 groups”: k1/N1=0/7, k2/N2=2/4, k3/N3=1/2, k4/N4=12/14 
(E[p1]: 1.5e-01, E[p2]: 4.9e-01, E[p3]: 4.8e-01, E[p4]: 7.8e-01) 

5.1e-01 
 

4.7e-01 

3.9e-02 
 

1.4e-02 

 

5.2e-01 
 

4.6e-01 

 

9.6e-01 
 

9.6e-01 

 

4.9 
 

8.3 

 

Artificial data 
(less variability) 

“7 groups”: k1/N1=0/1, k2/N2=4/6, k3/N3=1/2, k4/N4=2/4, k5/N5=5/9, k6/N6=2/3, k7/N7=1/2 
(E[p1]: 4.6e-01, E[p2]: 5.9e-01, E[p3]: 5.2e-01, E[p4]: 5.2e-01, E[p5]: 5.5e-01, E[p6]: 5.8e-01, E[p7]: 5.2e-01) 

“4 groups”: k1/N1=4/7, k2/N2=2/4, k3/N3=1/2, k4/N4=8/14 
(E[p1]: 5.6e-01, E[p2]: 5.2e-01, E[p3]: 5.3e-01, E[p4]: 5.6e-01) 

5.3e-01 
 

5.4e-01 

1.7e-01 
 

1.6e-01 

5.3e-01 
 

5.4e-01 

8.7e-01 
 

8.9e-01 

2.2 
 

2.4 
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Tab. A3. Alternative variability functions tested for the variability models: lognormal, p ~ LN(μ,σ2); logistic-normal, p ~ P(N(μ,σ2)). Prior distributions: diffuse π0(μ) between 

log(1e-5) and log(1) for the lognormal formulations, between logit(1e-5) and logit(1) for logistic-normal formulations; diffuse π0(σ) between 0 and 5 (as recommended in [35]). 

 

 

Model (variability function) Dataset (group-specific E[pc] for hierarchical model) Mean 5th 50th 95th EF 

Continuous (lognormal PVC) Case study (Tab. 6)  4.9e-01 1.2e-01 4.9e-01 9.1e-01 2.8 

Continuous (logistic-normal PVC) Case study (Tab. 6) 5.5e-01 5.7e-03 6.0e-01 1.0e-00 13.2 

Hierarchical with groups 
(lognormal-binomial)  

Case study (large variability) – “7 groups” (Tab. A2) 
(E[p1]: 2.5e-01, E[p2]: 1.3e-01, E[p3]: 4.0e-01, E[p4]: 4.3e-01, E[p5]: 7.9e-01, E[p6]: 7.4e-01, E[p7]: 4.0e-01) 

Case study (large variability) – “4 groups” (Tab. A2) 
(E[p1]: 7.8e-02, E[p2]: 4.1e-01, E[p3]: 3.6e-01, E[p4]: 8.0e-01) 

Artificial data (less variability) – “7 groups” (Tab. A2)  
(E[p1]: 4.3e-01, E[p2]: 5.6e-01, E[p3]: 4.9e-01, E[p4]: 4.9e-01, E[p5]: 5.2e-01, E[p6]: 5.4e-01, E[p7]: 4.9e-01) 

Artificial data (less variability) – “4 groups” (Tab. A2)  
(E[p1]: 5.3e-01, E[p2]: 4.9e-01, E[p3]: 4.8e-01, E[p4]: 5.4e-01) 

3.4e-01 
 

2.5e-01 
 

4.9e-01 
 

4.8e-01 
 

8.0e-03 
 

1.1e-03 
 

1.2e-01 
 

6.8e-02 
 

2.9e-01 
 

1.6e-01 
 

4.9e-01 
 

4.8e-01 
 

8.7e-01 
 

8.2e-01 
 

8.5e-01 
 

8.7e-01 
 

10.5 
 

28.0 
 

2.6 
 

3.6 
 

Hierarchical with groups  
(logistic-normal-binomial) 

Case study (large variability) – “7 groups” (Tab. A2) 
(E[p1]: 2.6e-01, E[p2]: 9.3e-02, E[p3]: 5.0e-01, E[p4]: 5.0e-01, E[p5]: 8.5e-01, E[p6]: 8.6e-01, E[p7]: 5.0e-01) 

Case study (large variability) – “4 groups” (Tab. A2) 
(E[p1]: 7.1e-02, E[p2]: 4.9e-01, E[p3]: 4.8e-01, E[p4]: 8.3e-01) 

Artificial data (less variability) – “7 groups” (Tab. A2)  
(E[p1]: 5.0e-01, E[p2]: 5.8e-01, E[p3]: 5.4e-01, E[p4]: 5.4e-01, E[p5]: 5.5e-01, E[p6]: 5.7e-01, E[p7]: 5.4e-01) 

Artificial data (less variability) – “4 groups” (Tab. A2) 
(E[p1]: 5.6e-01, E[p2]: 5.4e-01, E[p3]: 5.4e-01, E[p4]: 5.6e-01) 

4.9e-01 
 

4.4e-01 
 

5.4e-01 
 

5.5e-01 
 

3.8e-03 
 

1.3e-03 
 

2.2e-01 
 

1.4e-01 
 

4.9e-01 
 

3.9e-01 
 

5.5e-01 
 

5.6e-01 
 

1.0e-00 
 

1.0e-00 
 

8.3e-01 
 

9.0e-01 
 

16.2 
 

27.8 
 

2.0 
 

2.6 
 


