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We propose a sparse grid-based adaptive noise reduction strategy for electrostatic particle-
in-cell (PIC) simulations. By projecting the charge density onto sparse grids we reduce 
the high-frequency particle noise. Thus, we exploit the ability of sparse grids to act as 
a multidimensional low-pass filter in our approach. Thanks to the truncated combination 
technique [1–3], we can reduce the larger grid-based error of the standard sparse grid 
approach for non-aligned and non-smooth functions. The truncated approach also provides 
a natural framework for minimizing the sum of grid-based and particle-based errors in the 
charge density. We show that our approach is, in fact, a filtering perspective for the noise 
reduction obtained with the sparse PIC schemes first introduced in [4]. This enables us 
to propose a heuristic based on the formal error analysis in [4] for selecting the optimal 
truncation parameter that minimizes the total error in charge density at each time step. 
Hence, unlike the physical and Fourier domain filters typically used in PIC codes for noise 
reduction, our approach automatically adapts to the mesh size, number of particles per 
cell, smoothness of the density profile and the initial sampling technique. It can also be 
easily integrated into high performance large-scale PIC code bases, because we only use 
sparse grids for filtering the charge density. All other operations remain on the regular grid, 
as in typical PIC codes. We demonstrate the efficiency and performance of our approach 
with two test cases: the diocotron instability in two dimensions and the three-dimensional 
electron dynamics in a Penning trap. Our run-time performance studies indicate that our 
approach can provide significant speedup and memory reduction to PIC simulations for 
achieving comparable accuracy in the charge density.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Particle-in-cell (PIC) schemes have been a popular and effective method for the simulation of kinetic plasmas for a 
long period of time [5–7]. Compared to continuum kinetic codes, PIC schemes effectively reduce the dimension from six to 
three for kinetic simulations requiring three spatial dimensions and three velocity dimensions (3D3V). On the other hand, 
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compared to pure particle codes with direct summation, PIC reduces the computation of self-consistent forces from O(N2
p)

to O(Np + Nc) where Np is the total number of particles and Nc � Np is the number of mesh points. Even though the fast 
multipole method [8] reduces the complexity of pure particle schemes to O(Np), such an approach has other limitations, 
such as the need for overly restrictive small time steps. Other attractive features of PIC schemes include simplicity, ease of 
parallelization and robustness for a wide variety of physical scenarios [4].

The main drawback of PIC schemes as compared to deterministic continuum kinetic schemes is the numerical error 
associated with particle noise [6,9], which decreases slowly as one increases the number of particles. Specifically, the noise 
in PIC schemes decreases as 1/

√
Pc [6,4] where Pc = Np/Nc is the number of particles per cell.2 High fidelity large-scale 3D 

PIC simulations thus often require at least O(109) grid points and O(1012) particles to get the desired accuracy level [10]. 
These simulations require hours to complete even on large-scale state-of-the-art supercomputers available today. Thus, noise 
reduction approaches are of great interest to the PIC community to improve accuracy and also to speed up computations 
and reduce memory requirements.

There have been several efforts in this area in the past and a brief overview is given in section 3. Some of the strategies, 
such as the δ f technique [11–13], are applicable for certain classes of plasma physics problems and give great computa-
tional savings. Their utility, however, is limited to these specific classes of problems. Filtering is a common noise reduction 
technique which finds applications in many production-level PIC codes such as TRISTAN-MP [14,15], ORB5 [16], IMPACT-T 
[17] and Warp-X [18], to name a few. One of the primary reasons for this is its simplicity and ease of implementation in 
these frameworks. The stencil width and number of passes in case of digital filters and the cut-off wavenumber in case of 
Fourier domain filters is typically selected based on experience and knowledge about the physical problem at hand. Thus, 
these could result in scenarios where either too much signal is smoothed or the high-frequency noise is not removed suf-
ficiently. Even if we managed to choose the parameters in the filter so that they are optimal for a particular mesh size, 
number of particles per cell, point in time and the initial sampling technique, they may no longer be optimal once we 
change any of the above and require tuning once again.

Our objective in this work is to develop a noise reduction strategy, or filtering scheme for the charge density, that au-
tomatically adapts itself to the aforementioned parameters. As with other filtering techniques, we require it to be easily 
integrated into existing production-level PIC codes. Our starting point towards that goal is the recent work [4] which com-
bined sparse grids with the PIC scheme. In that article, the authors showed that owing to the large cell sizes involved in 
sparse grids compared to regular grids, the PIC scheme combined with sparse grids has many more particles per cell than 
its regular counterpart. This led to significant noise reduction and enormous speedups for certain classes of problems which 
have smooth or axis-aligned density profiles.

Now, let us give a brief overview of the present work. We revisit and reinterpret the noise reduction component of 
the scheme introduced in [4] from a filtering perspective, to construct a sparse grid-based noise reduction strategy for 
electrostatic PIC simulations. Unlike [4], where all the operations occur on sparse grids, in our approach the sparse grids 
come into play only for noise reduction of the charge density. Hence, for a user of PIC (who may not be familiar with 
sparse grids) it exactly resembles a filtering routine - i.e., it takes as input unfiltered charge density on the regular grid, 
and returns as output the filtered charge density on the same grid. Compared to existing filtering approaches, this sparse 
grid-based approach is superior for functions which are smooth or aligned with an axis. In simple terms, this can be un-
derstood as follows: with any filtering technique the reduction in noise comes with a price, which is an increase in the 
grid-based error. The unique aspect of our sparse grid filtering is that the resulting noise reduction can also be viewed 
from a Monte-Carlo perspective. Thanks to this property, we have maximal noise reduction, since the sparse grid approx-
imation involves cells with maximal size, which in the context of PIC, for a given total number of particles, translates 
to a maximal number of particles per cell. At the same time the increase in grid-based error for smooth or axis-aligned 
functions is minimal. However, the same cannot be said for all functions in general, and for these general cases the in-
crease in grid-based error associated with sparse grids may be high. In order to tackle that issue, we use the so-called 
truncated combination technique [1–3], which reduces the large grid-based error of standard sparse grid technique for non-
aligned and non-smooth functions. This is because the truncated combination technique uses a different choice of coarse 
grids with finer mesh sizes than those used in the standard sparse grid combination. The truncation parameter involved in 
the combination technique is crucial for minimizing the sum of grid-based error and particle noise. Hence, we propose a 
heuristic based on formal error analysis to calculate the optimal truncation parameter on the fly which minimizes the total 
error.

This paper is organized as follows. Section 2 introduces the PIC method in the context of electrostatic Vlasov-Poisson 
equations. Section 3 briefly reviews the existing noise reduction strategies in PIC and provides motivation and objectives 
for this article. Section 4 explains in detail the components and algorithm for a sparse grid-based adaptive noise reduction 
strategy. Numerical results for the 2D diocotron test case and 3D penning trap are presented in section 5 and section 6
presents conclusions and proposes future work.

2 In this paper, we define the number of particles per cell only with respect to the regular grid.
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2. Particle-in-cell method

In this work, without loss of generality, we consider the non-relativistic electrostatic Vlasov-Poisson system with a fixed 
magnetic field, and introduce the PIC method in that setting. The electrons are immersed in a uniform, immobile, neutral-
izing background ion population and the system is given by

∂ f

∂t
+ v · ∇x f + qe

me
(E + v × Bext) · ∇v f = 0, (1)

where E = Esc + Eext , and the self-consistent field due to space charge is given by

Esc = −∇φ, −�φ = ρ = ρe − ρi .

In the above equation f (x, v, t) is the electron phase-space distribution, qe and me are the electron charge and mass respec-
tively. The total electron charge in the system is given by Q e = qe

∫ ∫
f dxdv, the electron charge density by ρe(x) = qe

∫
f dv

and the constant ion density by ρi = Q e∫
dx

. Throughout this paper we use bold letters for vectors and non-bold ones for 
scalars.

The particle-in-cell method discretizes the phase space distribution f (x, v, t) in a Lagrangian way by means of macro-
particles (hereafter referred to as “particles” for simplicity). At time t = 0, the distribution f is sampled to get the particles 
and after that a typical computational cycle in PIC consists of the following steps:

1. Assign a shape function - e.g., cloud-in-cell [6] - to each particle p and deposit the electron charge onto an underlying 
mesh.

2. Use a grid-based Poisson solver to compute φ by solving −�φ = ρ and differentiate φ to get the electric field E = −∇φ

on the mesh.
3. Interpolate E from the grid points to particle locations xp using an interpolation function. This is typically known as 

field gathering.
4. By means of a time integrator advance the particle positions and velocities using

dvp

dt
= qe

me
(E + v × Bext) |x=xp ,

dxp

dt
= vp .

The sources of different errors in the PIC simulations and their orders of accuracy for typical choices are as follows. For 
simplicity, if we consider a uniform mesh with spacing h in all the directions then for the shape functions used in typical 
PIC schemes (B-splines), the grid-based error scales as O(h2) [19,20]. This is a result of approximating Dirac-δ functions in 
the configuration space by shape functions of compact support. The Poisson equation is typically solved by means of FFT 
solvers or by multigrid methods. In case of multigrid solvers the equation is discretized by second-order finite difference or 
finite element schemes. The field solves together with the interpolation (typically linear) accounts for an additional O(h2)

[21]. The particle noise is the result of approximating the expected value of the shape function by an arithmetic mean 
over a finite number of discrete particles. It scales as (Nphd)−1/2 [4], where d is the spatial dimension of the problem. The 
initial distribution is sampled using one of the standard sampling techniques such as the naive Monte-Carlo strategy [12], 
importance sampling [12] or by means of the quiet start [20,22,21]. The choice of initial sampling plays an important role 
in determining the constant associated with the particle noise. Finally, for time integration, typical choices are the second-
order leap-frog scheme [6] and Runge-Kutta schemes of order 2 and higher. If we consider the leap-frog scheme then the 
error in the time discretization scales as O(�t2). The mesh size h, time step �t and the number of particles Np in most 
PIC simulations are such that the dominant error comes from the particle noise. Hence, high fidelity simulations typically 
require a large number of particles to minimize it. The high noise associated with PIC simulations has motivated researchers 
to develop several noise reduction strategies, which we discuss next.

3. Noise reduction strategies in PIC

Noise reduction can be achieved in several ways in the context of PIC simulations, categorized as: (i) variance reduction 
techniques such as the δ f method [11–13] and quiet start [13]; (ii) phase space remapping [20,22,21]; (iii) filtering in 
physical domain [6,23,14,15,24], Fourier domain [6,16] and wavelet domain [25,17,26]. This list is not exhaustive and there 
are many other contributions in this area. In addition, recently a noise reduction strategy using kernel density estimation 
algorithm has been proposed in [27], where the authors adaptively select the shape functions in PIC which minimize the 
sum of bias squared and variance of the error in the density. Also, in [4] sparse grid techniques are used to achieve noise 
reduction in PIC. We discuss this method in detail in section 4.7, since this approach has the most in common with the 
present work. In this section, we focus on the filtering strategies.
3
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The goal of filtering in PIC simulations is to smooth high frequency oscillations usually associated with noise. Filtering 
can be done in any field quantity, although the most common one in electrostatic PIC is the charge density [23] as it is 
the origin of noise and the potential and electric field are smoother because of the integration inherent in solving Poisson’s 
equation. In case of filtering in the physical domain, one typically selects a filter of certain stencil width - e.g., binomial filter 
- and does a few passes on the field quantity. On the other hand, for filters in the Fourier domain, a maximum wavenumber 
is specified by the user and the filter eliminates all the wavenumbers higher than the specified cut-off wavenumber [6]. 
In almost all the filtering strategies, the number of passes/stencil width in the physical domain or the cut-off wavenumber 
in the Fourier domain has to be chosen a priori such that the total error, which is the sum of grid-based error (bias) and 
particle noise (variance), is minimized. However, in practice there are not many constructive strategies available to pick 
these parameters and in many cases the values are chosen based on a rule of thumb and previous experience [28]. Even if 
one manages to choose these parameters so that they are optimal for a particular point in time, mesh, number of particles 
per cell and sampling technique, they are unlikely to remain optimal as the simulation evolves. Indeed, due to non-linear 
space-charge effects, fine scale structures appear in the density and this changes the smoothness of the profile continuously 
with time. Hence, an ideal filter should be adaptive with respect to all aforementioned parameters to minimize the total 
error. Towards this goal, we propose a sparse grid-based adaptive noise reduction strategy in the following section.

4. Sparse grid-based noise reduction

4.1. Sparse grid combination technique

The sparse grid combination technique was first introduced in [29] as a way to approximate smooth functions on rect-
angular grids efficiently by using a specific linear combination of their approximations on different coarse grids. If we 
consider linear interpolation as an example, then for a regular grid of mesh size h we need O(h−d) grid points to get 
an accuracy of O(h2). The sparse grid combination technique on the other hand uses only O(h−1|log(h)|(d−1)) total grid 
points to get an accuracy of O(h2|log(h)|(d−1)) for smooth functions, which is only slightly deteriorated compared to the 
regular grids. More precisely, the requirement for realizing this accuracy is the existence of an error expansion of the form 
C1(hi)h2

i + C2(h j)h2
j + D1(hi, h j)h2

i h2
j in 2D (and similar expressions in higher dimensions), where C1, C2 and D1 are appro-

priate coefficient functions with a uniform upper bound independent of the mesh sizes [29,30,4]. Thus, we can clearly see 
the advantages of sparse grids in high dimensions, where they have found many applications [31]. The key idea is the can-
cellations that happen between the error expansions in the different coarse grids, which are called component grids in the 
sparse grid terminology. Also, the scalar values that multiply each component grid involved in the combination are called 
the combination coefficients. In Fig. 1 an illustration is shown, where we can see the different component grids and their 
combination coefficients involved in approximating a 28 × 28 regular grid. The literature on the sparse grid combination 
technique and sparse grids in general is vast and the readers can refer to [31,29,32–34] and the references therein for more 
details. We will now show how sparse grid combination can be used to achieve noise reduction in the context of PIC.

4.2. Sparse grid filter

Let us consider a domain of size [0, L]d , where d is the dimension (typically d = 2 or 33), and for simplicity a regular 
grid of mesh size h = L

2n in all the directions. In our noise reduction strategy, after step 1 in the PIC algorithm shown in 
section 2 we perform a sparse grid projection of the charge density as follows

�e = Gρ̃e =
(

nc∑
l=1

cl Pl Rl

)
ρ̃e. (2)

Here, ρ̃e and �e are the charge densities on the regular grid before and after the sparse grid transformation. Rl and Pl
are the transfer operators4 which transfer the density from the regular grid to the lth component grid in the sparse grid 
combination technique and vice versa, respectively. cl is the combination coefficient for the lth component grid which is a 
scalar value and nc is the number of component grids involved in the combination technique. We also denote the transfer 
operators and combination coefficients simply as R , P and c in places where the subscript l is not needed.

One requirement for the transfer operators Pl and Rl is to ensure global charge conservation. In our approach, we use 
the cloud-in-cell or linear interpolation function, which is given by

Wl(x − x̃) =
d∏

m=1

max

{
0,1 − |xm − x̃m|

hm

}
(3)

3 For d = 1, sparse grids are same as the regular grids, and our noise reduction will thus not be applicable for 1D1V PIC.
4 We call these operators as R and P simply because they resemble restriction and prolongation operators in multigrid methods. However, we would 

like to note that the analogy ends there and the requirements for the transfer operators in the current context and the multigrid methods are different.
4
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where x and x̃ are the locations of the grid points in the lth component grid and regular grid, respectively, and hm is the 
mesh size of the lth component grid along the mth coordinate axis. The operators Rl and Pl in terms of this function are 
given by

Rl(i, j) = hd

Vl
Wl
(
xi − x̃ j

)
, (4)

Pl( j, i) = Wl
(
xi − x̃ j

)
for i = 1, . . . , Nl j = 1, . . . , Nc (5)

where Vl is the volume of each cell in the lth component grid and Nc , Nl are the number of points in the regular grid and 
lth component grid respectively.

Upon considering the standard sparse grid combination technique in [29], one sees that the sparse grid projection or 
interpolation in equation (2) essentially removes high frequency components which are coupled between the axes. This is 
because the sparse grid combination corresponding to a regular grid of mesh size h does not have the fine resolution h
in all the directions. In this sense, the sparse grid combination acts as a multi-dimensional low pass filter and keeps only 
certain wavenumbers resolved by a regular grid of mesh size h. This is the filtering point of view for the noise reduction 
obtained from the sparse grids. It can also be understood from a Monte Carlo point of view as shown in [4] by means of 
increased particles per cell in the sparse grids compared to the regular grid for the same total number of particles. However, 
in the sparse PIC presented in [4] the particles deposit directly onto the component grids, unlike the strategy pursued here. 
These two approaches are related as stated in the following proposition, and hence the noise reduction obtained with the 
sparse grids can be understood from a Monte Carlo point of view or from a filtering perspective. In later sections, we will 
leverage this equivalence to explain the noise reduction with sparse grids depending on the context.

Proposition 1. For node-centered grids and linear interpolation shape functions, the direct charge density deposition onto the compo-
nent grids in the sparse PIC approach [4] is equivalent to first depositing the charge density onto the regular grid and then transferring 
it to the component grids by means of the operator R in equation (4).5 That is, the two approaches result in identical charge densities. 
In the case of cell-centered grids, an exact equivalence between the two approaches does not hold. There, the two-step approach can be 
viewed as direct charge deposition onto the component grids with a different shape function than the standard hat function, which is 
also second-order accurate.

Proof. The proof is given in appendix A. �
The advantage of the Monte Carlo point of view is that we can estimate the grid-based error and particle noise with ex-

plicit dependence on the number of particles and mesh size as we show in the section 4.4. From a pure filtering perspective, 
this may be very difficult or not possible.

Now, we are interested in knowing how much grid-based error and particle noise are increased and decreased, respec-
tively, by the sparse grid filter. To answer this, we observe that for interpolation the sparse grid combination technique is 
equivalent to the sparse grids based on hierarchical bases [32]. The latter is identified based on an optimization process [31]
which guarantees for smooth functions, the fewest degrees of freedom for maximal accuracy of O

(|log(h)|d−1h2
)

based on 
the L2 or L∞ norm. Thanks to this, in the context of PIC, the sparse grid transformation in equation (2) gives maximal 
noise reduction (because of the minimal number of grid points and hence maximum particles per cell) and at the same 
time the increase in grid-based error is minimal for smooth functions. Thus, compared to other filters, the one based on the 
standard sparse grid combination technique is optimal in the sense of minimizing the total error for functions which are 
either smooth or aligned with an axis.

4.3. Truncated combination technique to handle non-aligned and non-smooth functions

The optimality mentioned in the previous section for sparse grid filtering is no longer applicable in case of non-smooth 
functions or functions which are not aligned with either of the axes. Here the grid-based error is significantly larger than 
the regular grid because of large mixed derivatives [35], which leads the coefficient D1 in the error expansion given in 
section 4.1 being much larger than other coefficients. While the sparse grid scaling remains optimal, the coefficient in front 
of that scaling can be so large as to eliminate its benefits at practical grid resolutions. This is why in [4], the authors 
reported poor performance of sparse PIC for the diocotron instability test case as it falls into the non-aligned category 
when simulated with a Cartesian grid. There are a few ways to tackle this problem, as mentioned in [4,36]. Options include 
optimized coordinate systems which evolve with the charge density, and the use of spatially adaptive sparse grids. These 
strategies, which are perhaps more elegant from a mathematical point of view and more efficient, have the drawback of 
requiring significant changes to existing regular PIC code bases. Also, no detailed, robust algorithm is known at present.

Here, we pursue another direction using the truncated combination technique [1–3], which is much simpler and can be 
easily implemented in existing codes. The truncated combination technique was originally proposed as a modification to the 

5 Let us refer this as two-step approach for simplicity.
5
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Fig. 1. Schematic explaining the sparse grid combination technique and how the truncated combination can be used to minimize the total error. Here, τ = 1
corresponds to the standard sparse grid combination technique and τ = n corresponds to the regular grid. The +1 and −1 are the combination coefficients 
cl in equation (2) corresponding to the component grids.

standard sparse grid combination technique to tackle convergence issues in certain types of PDEs in financial applications 
caused by the presence of extremely anisotropic grids in the standard sparse grid technique.

In Fig. 1, we show the different combination strategies for a 2D problem with a regular mesh of size 28 × 28. The indices 
i and j on the row and column headers in Fig. 1 indicate the mesh sizes of the component grids involved in the combination 
technique such that the (i, j)th component grid has mesh sizes hi = L

2i and h j = L
2 j , where L is the length of the domain 

in each direction. The truncated combination technique [1–3] introduces a truncation parameter τ ,6 which is a positive 
integer that determines the component grids involved in the combination. Precisely, the component grids corresponding 
to a truncation parameter τ have indices (i, j) ≥ τ as shown in Fig. 1. Moreover, except for τ = n, there are two sets of 
component grids: one with i + j = n + τ and combination coefficient c = 1, and the other with i + j = n + τ − 1 and c = −1. 
If we consider a 2n × 2n regular grid, then the value of τ = 1 corresponds to the standard combination technique in [29]
and τ = n corresponds to the regular grid. By increasing τ , fewer component grids are used in the combination technique, 
but each with finer resolution than the previous τ . This alleviates the issue of non-aligned and non-smooth functions 
by controlling the error term associated with the mixed fourth derivatives. Thus, the truncated combination technique 
provides a unified framework to transition from standard sparse grid to regular grid in terms of approximation capability 
by increasing τ .

Let us consider a PIC simulation with Np total particles and a 2n ×2n regular grid with mesh size h = L
2n . The regular grid 

with τ = n will have the minimal grid-based error and maximal noise because it has the mesh size h in all the directions. 
The standard sparse grid technique with τ = 1, at the other extreme, has maximal grid-based error and minimal noise as 
it has the mesh size h in directions aligned with x or y axis but not in others. As we increase τ from 1 to n as shown in 
Fig. 1, we decrease the grid-based error because of the inclusion of finer mesh sizes in the component grids but at the same 
time increase the particle noise due to decreased particles per cell or, from the filtering perspective, the inclusion of higher 
wavenumbers in the filtering process of equation (2). Thus depending on the smoothness and the orientation of the function 
there is an optimal τ at which the total error, which is the sum of grid-based error and particle noise, is minimized. Hence, 
the truncated combination technique provides a natural way to minimize the total error within the framework of sparse 
grid-based noise reduction without much modification to the standard sparse grid combination technique. In the following 
we will present a formal error analysis and propose a heuristic approach to estimate the optimal τ .

4.4. Formal error analysis

In [4], a formal error analysis is presented for sparse PIC quantifying the grid-based error and particle noise. Proposition 1
states the exact equivalence between the direct charge deposition in [4] and our new filtering approach for the case of node-

6 For the time being we consider the same truncation parameter τ in all the directions for the clarity of the exposition. We refer the readers to Remark 1
for more general cases.
6
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centered grids. Thus, for PIC codes based on node-centered grids,7 the formal error analysis in [4] is directly applicable. In 
contrast, our codes are based on cell-centered grids (as is the default choice in many plasma PIC codes [37,18]). According 
to Proposition 1, the direct charge deposition in [4] and the current approach are not exactly equivalent for cell-centered 
grids because of the differences in the shape functions. Nevertheless, the order of accuracy is the same for both approaches 
and they differ only by constants. Hence, we will largely follow the steps in [4] and generalize it to include the truncated 
combination technique.

As shown in [4] and appendix B, approximating ρe in PIC simulations consists of two parts: namely, grid-based error 
and particle noise. In what follows we will quantify these two components to get an estimate of the total error.

4.4.1. Grid-based error
Let us recall the different notations for charge density which will be of use here. ρe is the exact electron charge density 

given by

ρe(x) = qe

∫
f (x,v)dv =

∫ ∫
f (ξ,v)δ(x − ξ)dξdv.

The density on the regular grid before the sparse grid transformation is ρ̃e and it is obtained from ρe by first approximating 
delta-functions in configuration space by shape functions of compact support (see equation (28) in appendix B) and then 
approximating the expected value of the shape function by an arithmetic mean over a finite number of discrete particles 
(see equation (38) in appendix B). The density on the regular grid after the sparse grid transformation in equation (2) is �e . 
We will denote the grid error component of the total error as ||ρe − �e||grid , where for simplicity we have denoted the L∞
norm || · ||L∞ by || · || (equivalently, we can also use the L2-norm). In our approach, the grid-based error comes from the 
approximation of delta-functions in configuration space by shape functions of compact support as well as from the transfer 
operators R and P .

Towards quantifying the grid-based error, for simplicity, let us consider a 2D PIC simulation in a periodic domain [0, L]2

and a regular mesh of size 2n × 2n . Let the mesh size of the regular grid be hn = L
2n and the mesh sizes of the component 

grids be hi = L
2i and h j = L

2 j for the (i, j)th component grid in Fig. 1. In our approach, we use the cloud-in-cell or linear 
interpolation operators for all the grid transfer operations. Hence, from Proposition 1 and the grid-based error derived 
in equation (36) of appendix B, we use an error expansion of the form C1(hi)h2

i + C2(h j)h2
j + D1(hi, h j)h2

i h2
j similar to 

[4,29,1,38], where C1, C2 and D1 are appropriate coefficient functions with a uniform upper bound. The summation over 
the component grids in equation (2) leads to pair-wise cancellations both in the standard sparse grid combination technique 
as well as in the truncated combination technique as shown in Fig. 1. After multiplying by the combination coefficients and 
summing across all the component grids, we get

(ρe − �e)grid = C1(hn)h
2
n + C2(hn)h

2
n

+ 4h2
n L2

22τ

⎡
⎢⎢⎣1

4

∑
i+ j=n+τ

i, j≥τ

D1(hi,h j) −
∑

i+ j=n+τ−1
i, j≥τ

D1(hi,h j)

⎤
⎥⎥⎦ , (6)

where we used the fact that hih j = hn L
2τ when i + j = n +τ and hih j = hn L

2(τ−1) when i + j = n +τ −1. Taking the norm of both 
sides of the above equation and noting that there are n − (τ − 1) component grids with i + j = n + τ and (n − 1) − (τ − 1)

component grids with i + j = n + τ − 1, we obtain

||ρe − �e||grid ≤ κ1h2
n + κ2h2

n + 4β1h2
n L2

22τ

[
n − (τ − 1)

4
+ {(n − 1) − (τ − 1)}

]
≤ h2

n

(
κ1 + κ2 + β1L22−2τ [5(n − τ ) + 1]

)
. (7)

Here, κ1, κ2 and β1 are constants corresponding to the upper bounds such that ||C1(hn)|| ≤ κ1, ||C2(hn)|| ≤ κ2 and 
||D1(hi, h j)|| ≤ β1, ∀hi, h j . The same expression for the error is also obtained in [1] for the truncated combination in 2D. 
Similarly one can derive the estimates in 3D and the grid-based error in that case is given by

||ρe − �e||grid ≤ h2
n

(
κ1 + κ2 + κ3 + (β1 + β2 + β3)L22−2τ [5(n − τ ) + 1]

+ γ L42−(4τ+1)
{

25(n − τ )2 − 5(n − τ ) + 2
})

, (8)

7 We highlight the fact that for the scheme we present in this article, only the centering scheme of the charge density matters. The other fields do not 
play a role in our noise reduction algorithm, and the analysis is therefore independent of their centerings.
7
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where the upper bounds for the coefficient functions in 3D are such that ||Cd(hn)|| ≤ κd , ||Dd(hi, h j)|| ≤ βd and 
||F (hi, h j, hk)|| ≤ γ for d = 1, 2, 3 and ∀hi, h j, hk . By plugging in τ = 1 and τ = n in (7) and (8) we recover the estimates for 
the standard sparse grid combination in [29] and for regular grids respectively.

4.4.2. Particle noise
Now, we will derive estimates for the particle noise component of the total error. The particle noise is the result of 

approximating the expected value of the shape function by an arithmetic mean over a finite number of discrete particles. 
As per the error analysis in [4], in 2D the particle noise in each component grid is O

(
1/
√

Nphih j
)

and as stated in the grid 
error estimates we have n − (τ − 1) component grids each with hih j = hn L

2τ and (n − 1) − (τ − 1) component grids with 
hih j = hn L

2(τ−1) . Thus we can write an estimate for the particle noise as

||ρe − �e||noise = O

⎛
⎜⎝σ

⎡
⎢⎣n − (τ − 1)√

N phn L
2τ

+ (n − 1) − (τ − 1)√
N phn L
2(τ−1)

⎤
⎥⎦
⎞
⎟⎠

= O

⎛
⎝σ

⎧⎨
⎩

20.5(τ−1)
[
(n − τ )(1 + √

2) + √
2
]

√
Nphn L

⎫⎬
⎭
⎞
⎠ , (9)

where σ is a particle noise constant. Following the same procedure, the noise estimate in 3D is given by

||ρe − �e||noise = O

⎛
⎜⎝σ

⎧⎪⎨
⎪⎩

2(τ−2)
[
(3 + √

2)(n − τ )2 + (5 + √
2)(n − τ ) + 4

]
√

Nphn L2

⎫⎪⎬
⎪⎭
⎞
⎟⎠ . (10)

Again, by plugging in τ = 1 and τ = n in equations (9), (10) we recover the estimates shown in [4] for the standard sparse 
grid technique and regular grids respectively. With the grid and particle error estimates in hand, we will show how these 
can be used in practice to adaptively select the optimal τ .

4.4.3. Heuristic approach for the quantitative estimation of the coefficients in the error analysis
In order to use the grid and particle error estimates derived in the previous section we need to have a quantitative 

estimate of the coefficients. To that end, we note that a rigorous derivation of coefficients for the current approach in 
the case of cell-centered grids depends on the ratio of the mesh sizes of the component grids to the regular grid and is 
more involved. Instead, in this section we approximate the grid and particle coefficients based on heuristic arguments and 
empirical observations and intend to improve these choices in the future iterations of our algorithm. Let us first consider 
the grid-based error. As explained in [4,36] and equations (36) and (37) in appendix B, the coefficient functions in the grid 
error estimates are proportional to the derivatives of the charge density ρe such that

C1 ∝ ∂2ρe

∂x2
, C2 ∝ ∂2ρe

∂ y2
, C3 ∝ ∂2ρe

∂z2
, D1 ∝ ∂4ρe

∂x2∂ y2

D2 ∝ ∂4ρe

∂ y2∂z2
, D3 ∝ ∂4ρe

∂z2∂x2
, F ∝ ∂6ρe

∂x2∂ y2∂z2
.

In PIC, we only have an approximation of ρe on the regular grid, which we call ρ̃e as defined in equation (38), and this 
also contains the particle noise. In order to have a realistic approximation of the derivatives of the charge density from 
the noisy regular PIC data ρ̃e , we perform a denoising by thresholding in the Fourier domain. Specifically, we first take the 
Fourier transform of the density on the regular grid ρ̂e =F

(
ρ̃e
)

and perform a hard thresholding such that

χε

(
ρ̂e
) :=

{
ρ̂e |ρ̂e| ≥ ε,

0 |ρ̂e| < ε,
(11)

where ρ̂e is a vector and the operator χε (·) acts on it component wise. Here, ε is the threshold for denoising and |ρ̂e |
denotes the magnitude of the Fourier transform ρ̂e . This type of denoising is common in signal processing as well as 
wavelet denoising [39] techniques.

The threshold parameter ε is a function of the number of particles per cell Pc , the initial sampling method and also 
the distribution f . It determines how much noise and signal is removed by the denoising process. Too low a value will not 
remove much noise and too high a value may remove a significant portion of the signal along with the noise. However, in 
contrast to denoising techniques in signal processing where after applying this threshold one performs an inverse transform 
to get the signal in the physical domain, we emphasize the fact that for our scheme we only use it for selecting the 
8
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truncation parameter τ (which performs the final filtering). Hence the threshold ε does not need to be optimal, and we 
only need to ensure that we do not pick up excessive noise.

At present, we use an ad-hoc strategy to select the value of ε as a certain percentage of the maximum value of |ρ̂e|, 
namely ε = α max

(|ρ̂e|
)
, where α denotes the percentage. To determine α in our algorithm, for a certain number of particles 

per cell (Pc)ref (e.g., 5) we run the PIC simulation for a few different values of α and pick the minimum value necessary 
for denoising. To reduce the run time we use the coarsest mesh possible for the problem in these simulations. Once we 
pick the value of α for a reference number of particles per cell (Pc)ref , we run simulations with other values of Pc by 
multiplying α by 

√
(Pc)ref /Pc , as we know the noise in PIC methods scales as 1/

√
Pc .

To give an idea of how one can execute this process, in our numerical experiments in section 5 we typically start 
with α = 0.01 (ε is one percent of the maximum value of |ρ̂e |) as we found it to be a good initial guess through many 
experiments. In order to examine whether the selected value of α is sufficient for denoising, we examine the theoretical 
error curves from the τ estimator as shown in the right columns of Figs. 3-5 and 9-10. From these figures we can see that 
when the grid based error is dominant (which is the case for low τ values) there is a specific shape to these curves which 
is dictated by the physical evolution of the density. If on the other hand the particle noise is dominant (high τ values), then 
these curves are almost flat as the noise is insensitive to the time evolution of the density. If the selected value of α is not 
large enough for denoising, then even the theoretical error curves for low τ cases are insensitive to the density evolution 
with visible anomalies. In such a case, we increase the value of α until we do not see this behavior any more. On the other 
hand, if the selected value of α is too high, then we decrease it until we see the anomalies, and select the value just before 
this behavior is observed. In addition to the theoretical error curves, we also use the time history of optimal τ as shown in 
Figs. 6 and 11 to help in the detection of anomalies and guide us in the process of whether to increase or decrease the initial 
value of α selected. Using this process we found that anomalies start to occur for the values of α = 0.005, 0.025, 0.004 for 
the 2D diocotron instability with Gaussian sampling, uniform sampling and 3D Penning trap respectively in section 5. We 
thus chose the values of α = 0.01, 0.03 and 0.005 for these three cases respectively to provide enough denoising.

Currently the selection of α is intrusive and performed manually, although it needs to be done only once for a test 
case. In future work, we will develop a more systematic way to pick the threshold directly from the density data, based 
on techniques similar to the ones used in wavelet denoising [39]. Machine learning techniques can also be used for this 
purpose, and this is another direction we will pursue.

After denoising the charge density, we compute the derivatives in the Fourier domain and perform inverse transforms. 
Next, in order to find the constants in front of these derivatives in appendix B we derive the grid-based error for regular 
PIC schemes. Since each component grid in the sparse grid combination technique is a regular grid with mesh sizes hi , h j

and hk , equations (36) and (37) can be used for determining the constants involved in the upper bounds. To that end, we 
note that the grid transfer operators R and P incur twice the grid-based error of similar magnitude given in equations (36)
and (37). Moreover, the charge density ρ̃e in the regular grid adds another 1/12 in front of the second derivative terms. 
Summing all these contributions we get an estimate for the coefficients in equations (7) and (8) as

κ1 = 1

4

∥∥∥∥∂2ρ̄e

∂x2

∥∥∥∥ , κ2 = 1

4

∥∥∥∥∂2ρ̄e

∂ y2

∥∥∥∥ , κ3 = 1

4

∥∥∥∥∂2ρ̄e

∂z2

∥∥∥∥ , β1 = 1

72

∥∥∥∥ ∂4ρ̄e

∂x2∂ y2

∥∥∥∥
β2 = 1

72

∥∥∥∥ ∂4ρ̄e

∂ y2∂z2

∥∥∥∥ , β3 = 1

72

∥∥∥∥ ∂4ρ̄e

∂z2∂x2

∥∥∥∥ , γ = 1

864

∥∥∥∥ ∂6ρ̄e

∂x2∂ y2∂z2

∥∥∥∥ , (12)

where ρ̄e is the denoised charge density defined in equation (28).
Finally, following the particle noise estimates in equations (52) and (53) as well as [4,17], for our algorithm we take

σ =
√

(2/3)d
∥∥Q eρ̃e

∥∥ (13)

in equations (9) and (10), where d is the dimension and ρ̃e is the charge density on the regular grid before denoising as 
defined in equation (38). Here, we use the density ρ̃e instead of the denoised density ρ̄e as it helps in adjusting the particle 
constant with respect to different sampling techniques.

Through numerical experiments we also found another choice for the coefficients in the grid-based error and particle 
noise as

κ1 =
∥∥∥k2

x ρ̂e

∥∥∥ , κ2 =
∥∥∥k2

yρ̂e

∥∥∥ , κ3 =
∥∥∥k2

z ρ̂e

∥∥∥ , β1 =
∥∥∥k2

xk2
yρ̂e

∥∥∥
β2 =

∥∥∥k2
yk2

z ρ̂e

∥∥∥ , β3 =
∥∥∥k2

xk2
z ρ̂e

∥∥∥ , γ =
∥∥∥k2

xk2
yk2

z ρ̂e

∥∥∥ ,σ =
√∥∥Q eρ̃e

∥∥ (14)

where kx, ky and kz are the wavenumbers in x, y and z respectively. We do not present detailed results, but for the numer-
ical experiments in section 5 as well as for other synthetic examples in the context of interpolation we found this choice 
yields similar optimal τ values as that of the constants in equations (12) and (13). It has an added advantage that we do 
not need to take inverse transform of the derivatives, which is three in 2D and seven in 3D. Thus it may be of interest 
from a practical point of view, and for the numerical experiments in section 5 we observed up to 7 times speedup in the τ
estimation part with this choice compared to the ones in equations (12) and (13).
9
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Algorithm 1 tauEstimator: an algorithm for estimating optimal τ .
1: Compute Fourier transform of the charge density ρ̂e = F

(
ρ̃e
)
.

2: Perform denoising by hard thresholding according to equation (11).
3: Compute the constants for the grid-based error with (12) and the particle error constant (13).
4: for τ = 1 to n − 3 for 2D and n − 2 for 3D do
5: Evaluate grid-based error and particle noise using equations (7), (9) for 2D and (8), (10) for 3D.
6: end for
7: Select the τ with minimum total error.

In Algorithm 1 we consolidate the steps in the optimal τ estimator algorithm. For the range of τ , we consider [1, n − 3]
for 2D and [1, n − 2] for 3D where 2n is the number of points in the regular grid in each dimension. We do not include the 
extreme values of τ ([n − 2, n] for 2D and n for 3D8) because we observed consistent false optima in the τ estimation due 
to these cases in our numerical experiments. These false optima can be explained by the fact that the high τ cases are less 
penalized by the inaccurate upper bounds of the triangle inequality than the low τ ones, because fewer components grids 
are involved in the combination. Currently, unless we take the specific properties of a given simulation into account, we do 
not know of a general strategy which can resolve this problem. Hence, we plan to improve this in our future work.

Remark 1. So far, for the sake of the clarity and simplicity of our presentation, we have used the same number of grid points 
in all the directions to explain the steps of the noise reduction strategy. Here, for completeness, we will briefly outline 
the procedure needed for the general case of different grid resolutions in each direction. To that end, we define a few 
convenient notations. We again consider the two-dimensional case for simplicity, with the extension to three dimensions 
left as a straightforward task for the reader. Let us define n = {n1,n2} as the extension of its scalar counterpart. Since we 
want the target level of the sparse grid approximation space [33] to be the same as the underlying regular grid, we also 
need to use different truncation parameters in each direction. Let us denote these by τ = {τ1,τ2}. Let nmax = max (n) and 
nmin = min (n). The parameter τ can now take the values 1 ≤ τ ≤ nmin , and for each value of τ we calculate the final 
truncation parameter τ (which is only used in the error analysis) according to [33]:

a = min (n − τ · 1) , (15)

τ = n − a · 1, (16)

where 1 = {1,1}. The component grids corresponding to parameter τ now will have i ≥ τ1, j ≥ τ2 and again there are two 
sets of component grids: one with i + j = nmax + τ , c = 1 and the other with i + j = nmax + τ − 1, c = −1. The grid and 
particle errors can then be derived in a similar fashion as in sections 4.4.1 and 4.4.2.

4.5. Implementation in a HPC PIC code base

Once the optimal τ is obtained from Algorithm 1 we need to perform sparse grid noise reduction. In Algorithm 2 we 
present a matrix-free implementation of the sparse grid filtering in equation (2). This implementation is more suitable for 
large-scale high performance PIC code bases like OPAL (which are mostly matrix-free) than the matrix version in equation 
(2). In these codes, the density in the regular grid is domain-decomposed between different processors and in Algorithm 2
each processor holds the entire component grid in the combination technique. For moderate values of τ , each component 
grid has very few degrees of freedom compared to the regular grid and this is not very expensive in terms of memory. 
However, for high τ , the component grids involved in the combination have a considerable number of degrees of freedom 
(especially in 3D) and hence both memory as well as the MPI_Allreduce step in Algorithm 2 could present a bottleneck. In 
our future work we will also split up the component grids between processors which would require a more complicated 
parallelization strategy as shown in [40].

If the parallelization of the code base uses MPI for inter-node parallelism and OpenMP, GPU or any other accelerator for 
intra-node parallelism then the for-loop over component grids in Algorithm 2 can also be done in parallel with the available 
intra-node shared memory parallelism. Algorithms 1 and 2 are performed in between steps 1 and 2 in the regular PIC procedure 
outlined in section 2. Ingredients such as the FFT, which are required for the tauEstimator algorithm, are already available in 
many large-scale PIC code bases and hence these two algorithms can be incorporated inside them very easily without any 
modification to the other parts.

Remark 2. In general the charge density �e after sparse grid transformation is not guaranteed to be positive everywhere. 
This is not unique to our approach and also happens in other noise reduction strategies such as high-order shape functions 
[21], compensating filters [6] and wavelet-based density estimation [41]. In our numerical results in section 5 we do not 
observe any problems caused by this. However, we could adopt the density redistribution procedure used in [21] to make 
the charge density positive everywhere after the sparse grids transformation. This will be studied in future versions of the 

8 In the current sparse grids setup τ = n − 1 is not possible for 3D.
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Algorithm 2 transferToSparse: An algorithm for sparse grid-based noise reduction with a given τ .
for l = 1 to nc do

Each processor deposits their regular grid partition of ρ̃e to the lth component grid using the transfer operator Rl in equation (4).
MPI_Allreduce to add contributions from all processors on the lth component grid.
Each processor interpolates from the lth component grid to their regular grid partition of ρ̃e using transfer operator Pl in equation (5).
Multiply by combination coefficient cl and accumulate.

end for

algorithm. Also, as shown in [28], the filtering procedures used in explicit PIC simulations improve energy conservation but 
at the loss of momentum conservation. In our future study we will investigate in detail the impact of the noise reduction 
strategy on energy and momentum conservation and report the results.

4.6. Computational complexity estimates of the noise reduction strategy

Here, we provide the asymptotic serial computational complexity estimates for the tauEstimator (Algorithm 1) and 
transferToSparse (Algorithm 2) parts of the noise reduction strategy. The dominant computational components of the tauEs-
timator are the FFT and inverse FFTs, each of which has a complexity of O (Nclog2(Nc)). In the case of the transferToSparse 
algorithm, we have nc component grids, and for each component grid we deposit the regular grid density onto the compo-
nent grid and then interpolate it back to the regular grid. The deposition and interpolation both are of complexity O(Nc), 
and since we do it for nc component grids it results in O(nc · Nc). Now the number of component grids in 2D and 3D are 
nc = O (log2(Nc) − τ ) and nc = O

(
{log2(Nc) − τ }2

)
respectively. Thus the complexity of the transferToSparse part of the 

noise reduction is O
(

Nc (log2(Nc) − τ )d−1
)

, where d is the dimension. Hence, summing up the contributions from both 

parts, the total complexity of the noise reduction algorithm per time step is O
(

Nc

{
log2(Nc) + (log2(Nc) − τ )d−1

})
. The 

cost of typical physical domain filters such as the binomial filter is O(Nc). Hence, the asymptotic cost of our approach is 
slightly more than the usual filters. Taking into account the adaptivity of our approach, this is only a small price to pay. In 
terms of additional memory requirements, for both the tauEstimator and transferToSparse parts, they are O (Nc) which is 
similar to other filters. In PIC schemes, memory requirements of particles usually dominate as the number of particles is far 
more than Nc . Additionally, each particle contains many attributes (e.g. position, velocity, charge etc.). Thus, the additional 
memory requirement caused by the noise reduction strategy is usually not significant.

4.7. Relation between sparse grid-based noise reduction strategy and sparse PIC schemes

In this section we compare and contrast the sparse PIC scheme introduced in [4] with the noise reduction strategy 
proposed in the current work. The distinctions may be enumerated as follows.

• As mentioned in the introduction, the sparse PIC scheme in [4] performs all the operations - e.g. charge deposition 
and Poisson solve - on the sparse grids and does not introduce regular grids at all (except for visualization purposes 
or post-processing). This absence of a regular grid can provide computational and memory savings. By contrast, the 
current approach is designed to be an add-on for standard PIC schemes. We use sparse grids only for noise reduction 
in the charge density, while all the operations such as charge deposition and the Poisson solve happen on the regular 
grid as in typical PIC codes.

• In [4], the noise reduction obtained from the sparse grids is viewed from a Monte-Carlo perspective. In the current work 
we construct the strategy based on a filtering perspective and use the Monte Carlo perspective for the error analysis to 
find the optimal τ . This is possible because of the equivalence between the two perspectives, as shown in Proposition 1.

• The truncated combination technique and the tauEstimator can also be used in the context of the sparse PIC scheme in 
[4] - although this fact is not noted in that work - at the expense of reintroducing regular grid complexity. However, in 
the regime where particle operations dominate, this may be a worthwhile trade-off.

• The adaptive noise reduction strategy can also be used offline as a post-processing tool to filter the charge density (or 
any other grid quantity) from regular PIC simulations.

To summarize, the sparse PIC scheme in [4] can be used as an alternative to regular PIC, whereas the sparse grid-based 
noise reduction strategy is an accessory to improve the performance of regular PIC.

5. Numerical results

In this section we will test the performance of the adaptive noise reduction strategy on two benchmark problems in 
plasma physics and beam dynamics; namely two-dimensional diocotron instability, and three-dimensional electron dynamics 
in a Penning trap with a neutralizing ion background. These test cases produce fine-scale structures during the nonlinear 
evolution and thus can be used to evaluate the ability of the adaptive τ method to capture them while still reducing noise. 
Also, they are very relevant to the large-scale accelerator simulations which we intend to perform in our future works.
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In all the simulations we consider a periodic box � = [0, L]d , where d is the dimension and L is the length in each 
dimension. The charge to mass ratio qe/me in all our simulations is −1. In measuring the error in field quantities we use 
the relative discrete L2-norm also known as the normalized root mean squared error given by

E(ψ) =
√√√√∑N points

i=1

(
ψ(xi) − ψref (xi)

)2
∑N points

i=1 (ψref (xi))
2

, (17)

where ψ is any field quantity, ψ ref is the reference field which is obtained from an ensemble average of high-resolution 
regular PIC simulations and xi are the locations of points in the domain at which we measure the error. This error is for a 
particular point in time and we measure the error at few instants in the whole simulation. In both numerical examples, we 
calculate the error for regular PIC, adaptive τ PIC and fixed τ PIC with the range of τ taken to be the same as the one used 
in the tauEstimator Algorithm 1. By means of these error curves we can see how well the adaptive τ algorithm performs in 
terms of picking the optimal τ and also how the errors compare to that of the regular PIC results with different number of 
particles per cell Pc . We always define the number of particles per cell Pc based on the regular grid. It is given by

Pc = Np

Nc
= Np

2nd
.

For the time integration we use the leap-frog method and for the Poisson equation we use the second order cell-
centered finite difference method as in [42,43] with single level and without any spatial adaptivity. For solving the linear 
system arising from the discretized Poisson equation we use the smoothed aggregation algebraic multigrid (SAAMG) from 
the second generation Trilinos MueLu library [44]. The stopping tolerance for the iterative solver is set as 10−10 multiplied 
by the infinity norm of the right hand side. More details on the solver can be found in [43]. The code is written on top 
of a C++ miniapp based on the particle accelerator library OPAL [37] and box structured adaptive mesh refinement library 
AMReX [45]. Even though FFT solver would be the most accurate and fastest option [46] in this context, the reason for 
the above choice of field solver is in our future work we want to extend the current approach to include adaptive mesh 
refinement. Also, the conclusions of the present study will not be much affected by this choice and will be applicable for 
FFT solver too.

All the computations are performed on the Merlin6 HPC cluster at the Paul Scherrer Institut, the details of which are as 
follows. Each Merlin6 node consists of 2 sockets and each socket in turn has Intel Xeon Gold 6152 processor with 22 cores 
at 2.1-3.7 GHz. There are 2 threads in each core, however in all the present computations we only use single thread. Each 
node contains 384 GB DDR4 memory in total.

5.1. 2D diocotron instability

5.1.1. Problem description and simulation setup
As a first example, we consider the 2D diocotron instability test case as already described in [4]. In this test case, we 

have electrons with a hollow density profile immersed in a neutralizing immobile and uniform ion background and confined 
by a uniform external axial magnetic field. The magnetic field is strong enough that the electron dynamics is dominated by 
advection in the self-consistent Esc × Bext velocity field [47–50]. The initial electron density profile is not monotonic in the 
radial direction, which translates to an Esc × Bext shear flow which is unstable to what is known as the Kelvin-Helmholtz 
shear layer instability [47,51,50] in fluid dynamics, and the diocotron instability in beam and plasma physics [12,52,47]. This 
instability deforms the initially axisymmetric electron density distribution, leading, in the nonlinear phase, to the formation 
of a discrete number of vortices, and eventually breakup [50,52]. This test case has importance both from a fundamental 
physics point of view [12,52,47] as well as in practical applications such as beam collimation [53].

The parameters for this test case are as follows and are very similar to the ones in [4]. We apply a uniform external 
magnetic field Bext = {0,0,5} along the z-axis in a domain of length L = 22. The external electric field Eext = 0 for this 
problem. The initial distribution is given by

f (t = 0) = C

2π
e−|v|2/2 exp

{
− (r − L/4)2

2(0.03L)2

}
,

r =
√

(x − L/2)2 + (y − L/2)2, (18)

and the constant C is chosen such that the total electron charge Q e = −400. We sample the phase space using Gaussian 
distribution in the velocity variables with mean 0 and standard deviation 1. For the configuration space, we use a uniform 
distribution for θ in [0, 2π ], and for r a Gaussian distribution with mean L/4 and standard deviation 0.03L. From (r, θ) we 
do the polar to Cartesian transformation to get (xp, yp) for the particles.

For denoising in equation (11), we take ε = α
√

(Pc)ref /Pc max(|ρ̂e|) as explained in section 4.4.3, where (Pc)ref = 5
and α = 0.01. This means that with 5 particles per cell, charge densities with Fourier amplitude less than 1 percent of the 
maximum amplitude will be set to 0 and for other Pc the threshold will be scaled accordingly. The time step of the time 
integrator is chosen as �t = 0.02 and the simulation is run till final time T = 17.5.
12
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Fig. 2. 2D diocotron instability: Evolution of the electron charge density with time for regular PIC, Pc = 5 (first row); τ = 1, Pc = 5 (second row); adaptive 
τ , Pc = 5 (third row); and regular PIC, Pc = 80 (fourth row). The mesh considered here is 10242. The minimum and maximum values of the charge 
densities for each figure are displayed in the color bars itself.

5.1.2. Qualitative comparison of charge density
Fig. 2 shows the evolution of the electron charge density with time for regular, τ = 1 and adaptive τ PIC for a 10242

mesh. For the first three rows Pc = 5 and for the last row Pc = 80. From the first and second rows we can see that while 
the regular PIC results are dominated by noise, τ = 1 results are dominated by grid error due to the smearing of fine scale 
structures. This is also noted in [4] in their sparse PIC studies. In contrast, the adaptive τ results in the third row strike a
13
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Fig. 3. 2D diocotron instability: Electron charge density error comparison between regular (Reg), fixed τ and adaptive τ PIC. The left column is the actual 
error calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as 
well as adaptive τ has the number of particles per cell Pc = 5.

balance between the grid-based error and noise and are in close agreement (in visual norm) with the regular PIC results 
with high Pc in the fourth row.

5.1.3. Quantitative comparison of charge density
In order to make a quantitative comparison, in the left columns of Figs. 3-5, the error in ρe calculated using (17) at 

8 different points in time is shown for three different meshes 2562, 5122, 10242 and number of particles per cell Pc =
14



Fig. 4. 2D diocotron instability: Electron charge density error comparison between regular (Reg), fixed τ and adaptive τ PIC. The left column is the actual 
error calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as 
well as adaptive τ has the number of particles per cell Pc = 10.

5, 10, 20. For regular PIC we also carried out simulations at higher Pc , namely 40, 80, 160 in order to compare the accuracy 
level with adaptive τ results. The reference in equation (17) is computed using the average of 8 independent regular PIC 
simulations each with a 10242 mesh and Pc = 320. In equation (17), the Npoints are taken as the cell-centered points in 
the mesh under consideration and the reference ρe is interpolated to these points for calculating error. In Fig. 5(e), for 
calculating the error with regular PIC at Pc = 320, 640 we divided the error for Pc = 160 by 

√
2 and 

√
4 respectively as 
S. Muralikrishnan, A.J. Cerfon, M. Frey et al. Journal of Computational Physics: X 11 (2021) 100094
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Fig. 5. 2D diocotron instability: Electron charge density error comparison between regular (Reg), fixed τ and adaptive τ PIC. The left column is the actual 
error calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as 
well as adaptive τ has the number of particles per cell Pc = 20. The errors for regular PIC with Pc = 320 and 640 are calculated from that of Pc = 160
based on the theoretical particle error scaling 1/

√
Pc. This is based on the observation that the errors for the regular PIC are in the noise dominated 

regime.
16
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we observed the errors are already in the noise dominated regime and follow the scaling 1/
√

Pc . On the right columns of 
Figs. 3-5 are the estimations of the error for different τ values from the τ estimator divided by the root mean squared 
value of the reference ρe . It is based on these curves that the optimal τ - i.e., the one with minimum error - is selected at 
each time step during the simulation.

From the left columns of Figs. 3-5, we can see that in general the adaptive τ performs well in terms of picking one of 
the τ values with the lowest error (if not the optimal τ at all points in time). The shapes of the error curves for individual 
τ values are also similar for the estimated and actual ones. It demonstrates the ability of our estimator to predict correct 
error dynamics for different τ cases. While we do not have to worry about the magnitude of the errors in the estimator, 
the ordering of the error curves between different τ values is of importance as it decides the optimal τ , and we want it 
to be close to the actual scenario on the left columns. To that extent, we make an observation that in the time interval 
t ∈ [7.5, 17.5] the difference in the magnitude of errors between different τ values in the estimator differs more from the 
actual scenario than in the time interval t ∈ [0, 7.5). More specifically, for low τ values (τ = 1, 2, 3) the estimator predicts a 
significantly higher error compared to the other τ values in that regime.

One of the reasons for this behavior is for low τ cases - e.g., τ = 1, 2 and 3 - the number of component grids in the 
combination technique is higher than that for the high τ cases. Since we use the triangle inequality to bound the errors, 
both the grid and particle errors tend to be more over-estimated for the low τ cases than those for the high τ ones. Another 
reason is, in the estimates for the grid error we use the derivatives based on the regular grid. While this is a sharper upper 
bound for high τ , the derivatives seen in reality by the low τ cases for functions with fine scale structures will be smaller 
because of the larger mesh sizes. Indeed, fine scale structures form in the time interval t ∈ [7.5, 17.5] and hence grid error 
dominated for the simulations with sparse grid noise reduction.

In spite of these differences, in all the cases even with the predicted sub-optimal τ the error values of the adaptive τ PIC 
are significantly lower than that of the regular PIC with same Pc . If we use some problem specific information, then it may 
be possible to reduce the over-estimations in the grid and particle errors by introducing a correction factor for different τ
values.

5.1.4. Evolution of τ with time
In Fig. 6, the time history of τ is shown for the meshes and Pc considered in Figs. 3-5. Here we can see that for the 

same Pc , when we decrease the mesh size - i.e., going from left to right in Fig. 6 - the τ values decrease. This is because 
we are moving from the grid error dominated regime to the particle error dominated regime. On the other hand, for the 
same mesh size and increasing Pc - i.e., moving from top to bottom in Fig. 6 - the τ values increase as we are moving from 
the particle error dominated regime to the grid error dominated regime. Also, for a particular mesh size and given Pc the 
later points in time have higher τ compared to the earlier ones. This is due to the formation of fine scale structures in the 
problem and resolving them require a higher τ .

5.1.5. Quantitative comparison of electric field
In Fig. 7, the error in the electric field E calculated using equation (17) is shown for the meshes9 and Pc considered. 

We can see that the adaptive τ errors at the best are similar to the regular PIC and in some cases it is higher than regular 
PIC error for the same Pc . We also notice that none of the fixed τ error levels are better than the regular PIC errors. The 
reason for this is as follows: the electric field is obtained by integrating the charge density, and integration is a smoothing 
operation which reduces the particle noise. Since in our adaptive τ noise reduction algorithm we increase the grid-based 
error to reduce the particle noise and minimize the total error in the density, this can result in either similar or even an 
increase in the electric field error as compared to the regular PIC if the integration itself is sufficient enough to reduce the 
noise. High-order shape functions are a promising option to address this limitation as depending on the distribution they 
may reduce the particle noise without increasing the grid-based error. We will investigate the combination of high-order 
shape functions with our algorithm in future work.

5.1.6. Adaptivity with initial sampling
Having studied the adaptivity of the algorithm with respect to mesh size, Pc and time, we also considered a different 

initial sampling technique, and evaluated the performance of our scheme. We do not show the results here in order to 
limit the already fairly large number of tables and figures in the article, but we briefly summarize our main observations. 
We used a uniform distribution in all the variables to sample f in equation (18). The range for the velocity variables was 
chosen as [−6, 6] while for the configuration space it was [0, L]. Note that unlike the Gaussian sampling described earlier, 
with this sampling each particle will have a different constant charge qe [12] to match the distribution. Still, the charge to 
mass ratio is the same for all the particles. Similar to [20], we ignored particles with weights less than 1.0 × 10−9. For this 
particular example, uniform sampling is not a particularly good idea as it results in sampling particles which have very small 
computational weights. Hence, for the same total number of particles we found that this sampling has higher noise levels 
than the Gaussian sampling. Uniform sampling can however be useful in scenarios where we do not know of an importance 
sampling technique to sample the distribution at hand. Due to higher noise levels, we needed a higher value of α = 0.03

9 For brevity we do not show results for a 5122 mesh, as it does not contain much new and valuable information.
17
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Fig. 6. 2D diocotron instability: Time history of τ for different mesh sizes and number of particles per cell Pc .

Table 1
2D diocotron instability. Adaptive τ PIC: Total 
run time in seconds on 64 cores for different 
mesh sizes and number of particles per cell.

Mesh Pc

5 10 20

2562 43.7 47.5 55.4
5122 91.9 110.1 145.8
10242 435 501.5 653.8

for the calculation of the denoising threshold. Except for the coarsest mesh size 2562, the adaptive τ algorithm performed 
well in this sampling - i.e., the scheme picked a nearly optimal τ for most cases. The optimal τ values, as expected, are 
lower than that for the Gaussian sampling, owing to higher noise levels.

5.1.7. Run time performance
Finally, we perform a preliminary run time performance study to see the effectiveness of the current approach in com-

parison to the regular PIC. To that extent, we note that we did not perform any optimization to both the regular PIC as 
well as the adaptive τ PIC routines. Optimization of different components involved in the algorithm as well as a thorough 
parallel performance study is left for future work. In Table 1 the total run time in seconds is shown for the adaptive τ PIC 
on 64 cores for the mesh sizes and Pc considered before. All the timings reported are the average of three runs performed. 
In Table 2, we compare the adaptive τ PIC timings with the timings for the regular PIC with the Pc value required to reach 
a comparable accuracy in charge density as that of the adaptive τ results at final time T = 17.5. The approximate Pc values 
within parentheses are obtained from Figs. 3-5 based on visual examination. Even in this preliminary performance study, 
we can see that the adaptive τ strategy can provide significant speedups close to an order of magnitude compared to the 
18
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Fig. 7. 2D diocotron instability: Electric field error comparison between regular (Reg), fixed τ and adaptive τ PIC.

regular PIC for similar accuracy in charge density. In terms of memory storage, the benefits are even more pronounced. Us-
ing the number of particles Np as a measure of the dominant memory cost (for PIC methods this is usually the case) we see 
≈ 2 − 16 times memory reduction with adaptive τ PIC compared to regular PIC. In Table 3, we present timings for the com-
ponents of the noise reduction only, expressed as percentage of the total time given in Table 1. Even though the percentage 
of time taken by the transferToSparse part is small, the tauEstimator represents a significant fraction of the total time. One 
of the reasons for this is that for the FFT parts of the tauEstimator algorithm (Algorithm 1) we use the OPAL library. Since 
our other data structures are based on the AMReX library, we have to copy between them. Since the parallel decomposition 
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Table 2
2D diocotron instability: Columns 2 − 4 are the total run time in seconds taken by the regular PIC 
on 64 cores for different mesh sizes and number of particles per cell (within parentheses) to reach a 
comparable accuracy (based on visual norm from the left columns of Figs. 3-5) in charge density that of 
the adaptive τ results in Table 1 at time T = 17.5. Columns 5 − 7 are the ratio of time taken by regular 
PIC to the values in columns 2 − 4 of Table 1 for adaptive τ PIC.

Mesh Regular PIC Reg/adaptive τ

2562 50.9 (20) 50.9 (20) 104.4 (80) 1.2 1.1 1.9
5122 201.7 (40) 364.2 (80) 708.6 (160) 2.2 3.3 4.9
10242 1544.5 (80) 2911.6 (160) 5857.3 (320) 3.5 5.8 9.0

Table 3
2D diocotron instability. Adaptive τ PIC: Percentage of total time (which is shown in Table 1) taken by 
the tauEstimator and transferToSparse parts of the noise reduction strategy for different mesh sizes and 
number of particles per cell.

Mesh tauEstimator transferToSparse

Pc Pc

5 10 20 5 10 20

2562 10.1 10.7 11.4 5.9 5.7 4.9
5122 21 20.2 18.6 5.4 4.5 3.6
10242 40.1 36.1 30.2 2.7 2.3 1.8

is different for these two libraries, it can result in excessive communication, especially for large numbers of grid points and 
for high core counts. We are currently resolving this problem in the ongoing implementation of our noise reduction strategy 
in OPAL, using only OPAL’s native data structures and thereby avoiding the copy and excessive communication.

5.2. 3D Penning trap

5.2.1. Problem description and simulation setup
In this section we will consider a 3D Penning trap problem as the test case. Penning traps are storage devices for charged 

particles, which uses a quadrupole electric field to confine the particles axially and a homogeneous axial magnetic field to 
confine the particles in the radial direction [54,55]. The evolution of the density in this problem (see Fig. 8) is very similar 
to that observed in cyclotrons [56,57]. Thus this test case is very relevant to our ultimate goal of high precision large-scale 
simulation of cyclotrons. The fine scale structures developed in this problem pose challenges for the sparse grids similar to 
the diocotron case in the previous section.

The parameters for this test case are as follows. The length of the periodic box is L = 20. The external magnetic field is 
given by Bext = {0,0,5} and the quadrupole external electric field by

Eext =
{
−15

L

(
x − L

2

)
,−15

L

(
y − L

2

)
,

30

L

(
z − L

2

)}
.

For the initial conditions, we sample the phase space using a Gaussian distribution in all the variables. The mean and 
standard deviation for all the velocity variables is 0 and 1 respectively. While the mean for all the configuration space 
variables is L/2 the standard deviations are 0.15L, 0.05L and 0.2L for x, y and z respectively. The total electron charge is 
Q e = −1562.5, and the charge of each particle is qe = Q e

N p
.

The denoising parameters are taken as (Pc)ref = 1 and α = 0.005 for this problem with the above mentioned sampling. 
The time step is chosen as �t = 0.05 and the simulations are run till final time T = 15.

5.2.2. Qualitative comparison of charge density
Fig. 8 shows the evolution of the electron charge density with time for regular, τ = 1 and adaptive τ PIC. The mesh used 

is 2563 and Pc = 1 for the first three rows and 20 for the last row. As we had seen in Fig. 2 for the diocotron test case, the 
adaptive τ results, in the third row are better than both the regular PIC and τ = 1 results and are comparable to the results 
of the regular PIC with higher Pc in the last row.

5.2.3. Quantitative comparison of charge density and time history of τ
In a way analogous to Figs. 3-5 for the diocotron instability, in Figs. 9-10 we show the errors calculated using equation 

(17) and the estimations from the τ estimator for meshes 643, 1283, 2563 and Pc = 1, 5. The reference in equation (17) is 
the average of 5 independent computations of regular PIC with 2563 mesh and Pc = 40. For the Npoints in equation (17), 
we select approximately 4096 random points throughout the domain and interpolate both the reference density as well as 
the density under consideration at these points to measure the error. The errors are measured at 7 different points in time 
in the simulation.
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Fig. 8. 3D Penning trap: Evolution of the electron charge density with time for regular PIC, Pc = 1 (first row); τ = 1, Pc = 1 (second row); adaptive τ , 
Pc = 1 (third row); and regular PIC, Pc = 20 (fourth row). The mesh considered here is 2563. The minimum and maximum values of the charge densities 
for each figure are displayed in the color bars itself.

In general, as before, the adaptive τ predictions are close to optimal and most of the conclusions from the diocotron test 
case are applicable in this case too. Fig. 11 shows the time history of τ for the meshes and Pc considered and the high 
values of τ indicate that the total error is dominated by the grid-based error in these cases.

5.2.4. Run time performance
In terms of run time performance comparisons, we ran the 643, 1283 mesh cases on 64 cores and the 2563 test cases on 

512 cores for both the regular and adaptive τ PIC. For 643 mesh, at the last point in time we can see that the regular PIC 
is more accurate than the adaptive τ or any other fixed τ PIC.
21



S. Muralikrishnan, A.J. Cerfon, M. Frey et al. Journal of Computational Physics: X 11 (2021) 100094
Fig. 9. 3D Penning trap: Electron charge density error comparison between regular (Reg), fixed τ and adaptive τ PIC. The left column is the actual error 
calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as well as 
adaptive τ has the number of particles per cell Pc = 1.

For 1283 and 2563 meshes, from Table 4 we can see a maximum speedup of 2.8 with adaptive τ PIC over the regular 
PIC for the finest mesh size. Again considering the number of particles as a measure for the memory cost adaptive τ PIC 
is 2 − 15 times cheaper than the regular PIC. In order to see more computational benefits with the adaptive τ PIC for this 
problem we need to perform runs with finer meshes and more particles per cell. These 3D large-scale simulations are part 
of our future work and the results will be reported elsewhere.
22



S. Muralikrishnan, A.J. Cerfon, M. Frey et al. Journal of Computational Physics: X 11 (2021) 100094
Fig. 10. 3D Penning trap: Electron charge density error comparison between regular (Reg), fixed τ and adaptive τ PIC. The left column is the actual error 
calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as well as 
adaptive τ has the number of particles per cell Pc = 5.

In Table 5, we show the percentage of the total time taken by the components of the noise reduction algorithm. Similar to 
the diocotron instability example, we can see that the dominant portion comes from the tauEstimator, for the same reasons 
as in the two-dimensional example. In addition, transferToSparse also exhibits an increase in percentage compared to the 
previous example. This is due to the bottleneck with MPI_Allreduce for high τ values in 3D as described in section 4.5. In 
future work, we will adopt an improved parallelization strategy as in [40], which can mitigate this problem. Furthermore, 
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Fig. 11. 3D Penning trap: Time history of τ for different mesh sizes and number of particles per cell Pc .

Table 4
3D Penning Trap: Total run time in seconds on 64 cores for 1283 mesh and 512 cores for 2563 mesh 
in case of the regular and adaptive τ PIC. The values within the parentheses represent the different 
number of particles per cell required to reach a comparable accuracy (based on visual norm from the 
left columns of Figs. 9-10) in the charge density for both the schemes at final time T = 15. Columns 
6 − 7 are the ratio of time taken by the regular PIC to that for adaptive τ PIC.

Adaptive τ Regular Reg/adaptive τ

1283 360.4 (1) 475.4 (5) 274.8 (5) 443.7 (10) 0.8 0.9
2563 825.5 (1) 1196.4 (5) 2352.8 (15) 3080.8 (20) 2.8 2.6

Table 5
3D Penning Trap: Percentage of total time (which is shown in columns 2 − 3 of Table 4) taken 
by the tauEstimator and transferToSparse parts of the noise reduction strategy for different 
mesh sizes and number of particles per cell.

Mesh tauEstimator transferToSparse

Pc Pc

1 5 1 5

1283 55.4 39.9 4.6 3.3
2563 41.8 29.5 15.3 9.3

the optimal τ does not need to be calculated for each time step. If the time-step is small, the charge density will not change 
much in a single time-step. The optimal τ , being only dependent on ρe , is therefore also unlikely to change much. One could 
thus get speed-up by only recomputing τ every 5th or 10th time-step, for instance, while still accurately estimating the 
optimal τ . This is borne out in Figs. 6 and 11, where τ stays fixed for many consecutive time-steps. We will also investigate 
this aspect in detail in future work.

6. Conclusions

We have proposed a sparse grid-based adaptive noise reduction strategy for particle-in-cell (PIC) simulations. Unlike the 
typical physical or Fourier domain filters used in PIC methods, the strategy adapts to mesh size, number of particles per 
cell, smoothness of the charge density and the initial sampling technique. In order to construct the strategy we use the key 
idea of increased particles per cell in sparse grids compared to the regular grid for the same total number of particles as 
proposed in [4]. The current work extends that concept in several directions. Specifically, we present a filtering perspective 
for the sparse grid-based noise reduction which helps to incorporate it with ease in existing high performance large-scale 
PIC code bases and also opens the door for sparse grid based filtering approaches. We tackle the problem of large grid-based 
error of sparse grid for non-aligned and non-smooth functions by means of the truncated combination technique [1–3]. We 
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show in the context of PIC simulations that the truncated combination technique provides a natural framework to minimize 
the sum of grid-based error and particle noise. This allows us to propose a heuristic based on formal error analysis to select 
the optimal truncation parameter on the fly that minimizes the total error in the charge density.

We show the performance and applicability of our strategy on two benchmark problems; namely the 2D diocotron 
instability and electron dynamics in a 3D Penning trap. In both test cases the adaptive noise reduction strategy picks 
a truncation parameter which is close to optimal for all times. To achieve comparable accuracy for the charge density 
we obtain significant speedups and memory savings close to an order of magnitude with the noise reduction technique 
compared to regular PIC in the 2D diocotron test case. For the 3D Penning trap test case a maximum speedup of 2.8 and 
15 times memory reduction is obtained for the finest mesh size tested. Further speedups and memory reduction in the 3D 
test case require us to test the strategy for even finer resolutions and that is part of future work.

Our strategy can be very easily integrated into existing high performance large-scale PIC code bases and ongoing work 
is to integrate it into the open source particle accelerator library OPAL [37]. In terms of future work, we plan on investi-
gating the applicability and performance of the noise reduction strategy on large-scale high intensity particle accelerator 
simulations such as the IsoDAR project [58,59] with a particular focus on understanding the dynamics of halo particles 
and efficient collimation strategies. Filtering strategies have much more impact on the electromagnetic PIC simulations as 
reported in [24]. Hence we would like to extend the current approach for Vlasov-Maxwell equations and investigate the 
performance in that context. Use of machine learning approaches to tune denoising threshold in our strategy is also of 
interest. Currently, we are unable to use the full range of truncation parameter τ due to the false optima obtained when 
the extreme values are included. We will work on strategies in the τ estimation to resolve this problem. Finally, we also 
intend to compare the current strategy with other filtering approaches and denoising techniques.
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Appendix A. Proof of Proposition 1 relating the direct charge density deposition onto the component grids and the 
two-step approach

Proof. Even though sparse grids make sense only for dimensions 2 and higher we can still understand the essence of the 
proof in 1D. Also, since the shape functions and transfer operators in 2D and 3D are obtained by the tensor product of 1D 
linear interpolation functions the proof extends naturally to those cases.

Consider a periodic 1D domain [0, L] and two grids with mesh sizes h f and hl . The grid with mesh size hl is coarser 
than the one with h f and assume hl is an integer multiple of h f . Let us first consider the node-centered grids where all the 
coarse grid points are also grid points in the fine grid as shown in Fig. 12(a).

The particles deposit onto the fine grid with mesh size h f and the charge density ρ̃e is given by

ρ̃e(x̃ j) = Q e

Nph f

N p∑
p=1

W f (x̃ j − xp), (19)

where W f (ζ ) = max
{

0,1 − |ζ |
h f

}
is the cloud-in-cell shape function and xp and x̃ j are the locations of the particles and 

the grid points in the fine grid respectively. Now, we transfer the density ρ̃e to the coarse grid by means of the transfer 
operator R in equation (4) which gives
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Fig. 12. Schematic showing the node-centered and cell-centered grids and the corresponding shape functions. The nodes are marked with black circles and 
the cell-centers with red squares. The domain is periodic. The shape functions Wl corresponding to the coarse grid are linear between the nodes in the fine 
grid in case of node-centered grids. For cell-centered grids Wl has discontinuity in derivative between some of the cell-centers in the fine grid whereas 
between nodes of the fine grid it is always linear.

�e(xk) = h f

hl

Nc∑
j=1

ρ̃e(x̃ j)Wl(xk − x̃ j), (20)

where Wl(ζ ) = max
{

0,1 − |ζ |
hl

}
, xk are the locations of the grid points in the coarse grid and Nc is the total number of 

cells in the fine grid. Substituting for ρ̃e from equation (19) and switching the order of sums we get

�e(xk) = Q e

Nphl

N p∑
p=1

Nc∑
j=1

Wl(xk − x̃ j)W f (x̃ j − xp). (21)

Now, for a given particle, W f (x̃ j − xp) is non-zero for exactly two values of j: the floor of xp/h f and the ceiling of that 
same quantity. Let us call these values J and J + 1 and assume the grid points are ordered such that x J is to the left of 
x J+1. We have

Nc∑
j=1

Wl(xk − x̃ j)W f (x̃ j − xp) = Wl(xk − x̃ J )W f (x̃ J − xp)

+ Wl(xk − x̃ J+1)W f (x̃ J+1 − xp). (22)

Now we note that because of the way the two grids are related (mesh sizes are integer multiples, coincident grid 
points), we are guaranteed that Wl(xk − x̃) is linear on the interval x̃ ∈ [x̃ J , ̃x J+1]. This is because the places where Wl has 
a discontinuity in its derivative are guaranteed to be fine grid points as shown in Fig. 12(a). So, linear interpolation is exact 
for Wl on the interval [x̃ J , ̃x J+1]. Since xp is in this interval, we have

Wl(xk − xp) = Wl(xk − x̃ J )

[
x̃ J+1 − xp

x̃ J+1 − x̃ J

]
+ Wl(xk − x̃ J+1)

[
1 − x̃ J+1 − xp

x̃ J+1 − x̃ J

]
.

Now we notice that[
x̃ J+1 − xp

x̃ J+1 − x̃ J

]
=
[

x̃ J + h f − xp

h f

]
= 1 + x̃ J − xp

h f
= 1 − |x̃ J − xp|

h f
= W f (x̃ J − xp),

and a nearly identical reasoning gives[
1 − x̃ J+1 − xp

x̃ J+1 − x̃ J

]
= W f (x̃ J+1 − xp).

Combining these with equation (22) we get

Nc∑
j=1

Wl(xk − x̃ j)W f (x̃ j − xp) = Wl(xk − xp). (23)

Substituting this into equation (21) we get the density on the coarse grid as

�e(xk) = Q e

Nphl

N p∑
Wl(xk − xp). (24)
p=1

26
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Comparing equation (24) with equation (19) we see this is exactly the expression we would obtain if the particles were to 
deposit directly onto the coarse grid with mesh size hl .

Now we will consider the cell-centered grids. In this case the coarse grid points are also not the grid points in the fine 
grid and Wl will have a discontinuity in the derivative for some of the intervals [x̃ j , ̃x j+1] as shown in Fig. 12(b) depending 
on the ratio hl/h f . Hence an exact equivalence between the two approaches does not hold. However, we will now show 
that

Wl(xk − x) =
Nc∑
j=1

Wl(xk − x̃ j)W f (x̃ j − x)

can be considered as a shape function by itself. To that end, we will show that it satisfies the three conditions for any shape 
function as given in [9]. These are listed as follows

1. Wl(ζ ) =Wl(−ζ ),
2. 1

hl

∫
Wl(ζ )dζ = 1,

3.
∑
k
Wl(xk − x) = 1.

The first condition is manifestly true as W f which is the standard hat function is even. For the second condition we 
observe that

1

hl

∫
Wl(ζ )dζ = h f

hl

Nc∑
j=1

Wl(xk − x̃ j),

as W f is a shape function and by definition integrates to h f . Now, h f
∑Nc

j=1 Wl(xk − x̃ j) is the midpoint rule applied for 
the integration 

∫
Wl(xk − x̃) over the fine grid. From Fig. 12(b) it is clear that Wl is linear on each integration cell and the 

midpoint rule is exact. Thus,

h f

hl

Nc∑
j=1

Wl(xk − x̃ j) = 1

hl

∫
Wl(xk − x̃)dx̃ = 1,

where the last step comes from the fact that Wl which is also a standard hat function integrates to hl by definition. Finally, 
the third condition is related to global charge conservation and we note that since Wl and W f are standard hat functions 
they satisfy the partition of unity and hence Wl also satisfies it when we carry out the summation.

Now, using conditions 1 and 2 and noting that Wl is bounded in [0, L] we can carry out the same set of steps shown 
in appendix B for a standard hat function. We can then see the grid-based error for Wl is of O(

∣∣∂2
x ρe
∣∣h2

l ) and the particle 
noise is O(

√|Q eρe|/Nphl) as in equations (35) and (51) but with the constants depending on the ratio of hl to h f . �
Appendix B. Grid-based and particle errors in the charge density deposition for regular PIC schemes

In this section, we follow the analysis in [4] and derive in details the grid-based error and noise estimates for the charge 
density deposition in regular PIC schemes explicitly revealing the constants. For simplicity, let us consider a 1D PIC scheme 
and extensions to 2D and 3D are relatively straightforward. In the following, we consider a particular point in time and 
hence suppress the dependence of the different quantities with respect to time.

Let f (x, v) be the electron phase-space distribution under consideration and let us define f̄ as

f̄ = f∫ ∫
f dxdv

.

Since, f̄ is non-negative and its phase-space integral is unity it can be interpreted as probability density. The exact charge 
density ρe(x) is given by

ρe(x) = qe

∫ ∫
f (ξ, v)δ(x − ξ)dξdv, (25)

= qe

(∫ ∫
f dxdv

)∫ ∫
f̄ (ξ, v)δ(x − ξ)dξdv, (26)

= Q e

∫ ∫
f̄ (ξ, v)δ(x − ξ)dξdv, (27)

where Q e = qe
∫ ∫

f dxdv is the total electron charge in the system and δ(x − ξ) is the Dirac-delta function.
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In PIC, we approximate δ(x − ξ) with the shape function S(x − ξ) which for our discussion here consider it to be the 
cloud-in-cell or linear interpolation function. The approximate charge density ρ̄e with the shape function S(x − ξ) is given 
by

ρ̄e(x) = Q e

∫ ∫
f̄ (ξ, v)S(x − ξ)dξdv, (28)

= Q eE f̄ (ξ,v) [S(x − ξ)] , (29)

where E is the expected value over the probability density f̄ .

B.1. Grid-based error estimate

This is the error due to approximating δ(x − ξ) with the shape function S(x − ξ)

eg = |ρe − ρ̄e| . (30)

Towards estimating this error, let us expand f̄ (ξ, v) in equation (28) in terms of Taylor’s series about x,

ρ̄e = Q e

∫ ∫ (
f̄ (x, v) + (ξ − x)∂x f̄ (x, v)

+ (ξ − x)2

2
∂2

x f̄ (x, v) + · · ·
)

S(x − ξ)dξdv, (31)

= Q e

∫
f̄ dv︸ ︷︷ ︸

ρe

∫
S(x − ξ)dξ︸ ︷︷ ︸

1

+Q e

∫
∂x f̄ dv

∫
(ξ − x)S(x − ξ)dξ

+ Q e

∫
∂2

x f̄ dv

∫
(ξ − x)2

2
S(x − ξ)dξ + · · · , (32)

where we have used the fact that the integral of the shape function S(x − ξ) is unity. In the above equations we have 
used the short hand notations ∂x = ∂(.)

∂x and ∂2
x = ∂2(.)

∂x2 . Taking outside the partial derivatives with respect to x in the 
∫

dv
integrals we get

ρ̄e = ρe + ∂xρe

∫
(ξ − x)S(x − ξ)dξ + ∂2

x ρe

∫
(ξ − x)2

2
S(x − ξ)dξ + · · · . (33)

The cloud-in-cell shape function is given by

S(ζ ) = 1

hx
max

{
0,1 − |ζ |

hx

}
. (34)

Performing a change of variables with ζ = ξ − x in equation (33) and noting that S(ζ ) has a compact support and is zero 
outside |ζ | ≤ hx all the integrals has to be carried only in −hx ≤ ζ ≤ hx .

Also, S(ζ ) is an even function and hence 
∫ hx
−hx

ζ S(ζ )dζ which is the second term in equation (33) is 0. However, the 
integrand in the third term of the equation (33) is an even function and it evaluates to

∫
(ξ − x)2

2
S(x − ξ)dξ = 1

hx

hx∫
0

ζ 2
(

1 − ζ

hx

)
dζ = h2

x

12
.

Thus equation (30) becomes

eg(x) ≤ h2
x

12

∣∣∣∂2
x ρe(x)

∣∣∣+ · · · ,

eg = O
(

h2
x

12

∣∣∣∂2
x ρe(x)

∣∣∣) . (35)

Since, the cloud-in-cell shape functions in 2D and 3D are obtained by the tensor product of 1D shape functions the 
analysis extends easily to these cases. Carrying out similar steps we obtain the grid-based error for 2D and 3D as
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eg = O
(

1

12

{∣∣∣∣∂2ρe

∂x2

∣∣∣∣h2
x +

∣∣∣∣∂2ρe

∂ y2

∣∣∣∣h2
y

}
+ 1

144

∣∣∣∣ ∂4ρe

∂x2∂ y2

∣∣∣∣h2
xh2

y

)
in 2D, (36)

eg = O
(

1

12

{∣∣∣∣∂2ρe

∂x2

∣∣∣∣h2
x +

∣∣∣∣∂2ρe

∂ y2

∣∣∣∣h2
y +

∣∣∣∣∂2ρe

∂z2

∣∣∣∣h2
z

}

+ 1

144

{∣∣∣∣ ∂4ρe

∂x2∂ y2

∣∣∣∣h2
xh2

y +
∣∣∣∣ ∂4ρe

∂ y2∂z2

∣∣∣∣h2
yh2

z +
∣∣∣∣ ∂4ρe

∂z2∂x2

∣∣∣∣h2
z h2

x

}

+ 1

1728

∣∣∣∣ ∂6ρe

∂x2∂ y2∂z2

∣∣∣∣h2
xh2

yh2
z

)
in 3D. (37)

Note in the above equations the reason for including the only higher order terms proportional to the mixed derivatives is 
because these terms will contribute to the dominant error for the sparse grid combination. Hence, the constants in front of 
these terms are of interest for estimating the coefficients of the grid-based error in section 4.4.3.

B.2. Noise estimate

This is the error which occurs when we approximate the expected value of the shape function by means of an arithmetic 
mean over the number of discrete particles. Thus equation (29) becomes

ρ̄e(x) ≈ ρ̃e(x) = Q e

Np

∑
p

S(x − xp). (38)

The error incurred by this approximation η(x) is a random variable with mean 0 and variance given by

V ar f̄ [η(x)] =E f̄

[(
ρ̄e − ρ̃e

)2]
, (39)

= ρ̄2
e − 2ρ̄eE f̄ [ρ̃e] +E f̄ [ρ̃2

e ], (40)

=E f̄ [ρ̃2
e ] − ρ̄2

e . (41)

Here, in equation (41) we used the fact that E f̄ [ρ̃e] =E f̄ [ρ̄e] = ρ̄e . Let us compute E f̄

[
ρ̃2

e

]

E f̄

[
ρ̃2

e

]
= E f̄

⎡
⎣ Q 2

e

Np
2

(∑
p

S(x − xp)

)2
⎤
⎦ . (42)

Similar to [4] we assume that the initial particle states have been chosen by independent sampling from f̄ (t = 0) and 
also they remain approximately independent for Np  1. Then E f̄

[
S(x − xp)S(x − xq)

]= 0 if p �= q and all the cross terms 
vanish giving

E f̄

[
ρ̃2

e

]
= Q 2

e

Np
2

∑
p

E f̄

[(
S(x − xp)

)2]
, (43)

= Q 2
e

Np
E f̄

[(
S(x − xp)

)2]
, (44)

where, we have used the fact that each particle has same E f̄

[(
S(x − xp)

)2]
. Now,

Q 2
e

Np
E f̄

[(
S(x − xp)

)2]= Q 2
e

Np

∫ ∫
f̄ (xp, v)

(
S(x − xp)

)2
dxpdv, (45)

= Q 2
e

Np

∫ ∫ (
f̄ (x, v) + (xp − x)∂x f̄ (x, v)

+ (xp − x)2

2
∂2

x f̄ (x, v) + · · ·
)(

S(x − xp)
)2

dxpdv, (46)

and similar to the previous exercise for grid-based error the term associated with (xp − x)∂x f̄ (x, v) vanishes and the third 
term evaluates to O(hx). Hence evaluating the leading order term gives
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Q 2
e

Np

∫ ∫
f̄ (x, v)

(
S(x − xp)

)2
dxpdv = Q e

Np

∫
Q e f̄ dv︸ ︷︷ ︸
ρe

∫ (
S(x − xp)

)2
dxp, (47)

= Q eρe

Np

2

h2
x

hx∫
0

(
1 − ζ

hx

)2

dζ, (48)

= 2

3

Q eρe

Nphx
. (49)

Plugging the above term in equation (44) gives

E f̄

[
ρ̃2

e

]
= 2

3

Q eρe

Nphx
+O(hx) + · · · . (50)

Omitting the ρ̄2
e term in equation (41) as it is small compared to equation (50) and substituting the above expression gives

V ar f̄ [η(x)] ≈ 2

3

Q eρe

Nphx
.

Defining the particle noise error en as the standard deviation of the random variable η we get

en(x) = O
(√

2

3

|Q eρe(x)|
Nphx

)
. (51)

Similarly, carrying out the same set of steps in 2D and 3D we get the estimates for the particle noise as

en = O
(√

4

9

|Q eρe|
Nphxhy

)
in 2D, (52)

en = O
(√

8

27

|Q eρe|
Nphxhyhz

)
in 3D. (53)
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