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Motivation

SAXS (small angle X-ray scattering) imaging to obtain full scale models
« The analysis approach is complemented by additional methods such as

« Gaining fundamental insights on the structure of advanced composite materials is challenging, but essential for their role in respect to future energy challenges

« This project explores the possibility to combine high resolution imaging with coherent X-rays (Ptychographic X-ray Tomography - PXCT) together with AU
on multiple length scales (nano- to millimetre) MM e
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X-ray fluorescence performed simultaneously to SAXS imaging 100nm  ppy,

Methods

Materials and electrochemical performance

Ptychography X-ray Tomography
« PXCT measures far-field diffraction patterns from a sample
that is moved across a spatially confined coherent beam in a

way that illumination areas overlap. This is carried out for
multiple sample orientations

« An iterative phase retrieval algorithm together with a
tomography reconstruction is able to reconstruct the electron
density (ED) distribution in 3D

Polymer electrolyte membrane fuel cells (PEMFCs) generate electricity by electrochemical reaction
that take place in a complex porous material (catalyst layer) with 3 components

Catalyst layer sprayed on Nafion24! | -
Three components: ;m,..s.:.o | i . .o, i)
1.) Support: Carbon (Vulcan XC72R) I e ‘; '
2.) Binder: lonomer (Nafion)
3.) Active sites: Pt nanoparticle (~3-4nm)
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« Samples were measured under cryo-conditions with OMNY!!
at 6.2keV; 25-40um sample diameter; 3D half-period
resolution of 24-34nm estimated by Fourier shell correlation

2D SAXS & XRF imaging

« Scanning SAXS measurement at 11.2keV were performed
with a local resolution of 10um, scanning 1x1mm? for all 3
catalysts at two sample-detector distances (2m & 7m)

« X-ray fluorescence was collected simultaneously to
complement the scattering data at each position

M. Dierolf et. al., Nature 467 436 (2010)

iR-corrected potential / V

Samples with three different lonomer/Carbon (I/C) ratios:

Pt / wt% lonom. wt% Carbon wt% SLD [10°A] 0.4b . ' - . .
0 500 1000 1500 2000 2500 3000
|/C 02 168 138 674 391 current density / mA /cngeo
I/C 0.54 13.6 30.5 52.9 34.8
I/C 0.95 11.1 43.2 45.7 31.5
[1] http://www.jaist.ac.jp/ms/labs/nagao-www/wp-content/uploads/2018/07/20180704labguide2018.pdf Flow: 0.2 L/min H, and O,; 100%RH; OCV vs 0.3V; 80°C 5cm? cell
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« Pore size distribution is segmented for all samples from PXCT
by threshold segmentation (ED < 0.1 A'3)

« Radius of gyration, assuming spherical shape, matches well

Pore volume fraction (PVF)

Compare and discuss results

XRF maps

« Amplitude histogram for both elements show the expected
Increase in S with increasing ionomer concentration.

« Pt peaks do not overlap, contrary to expectation, however
sample self-absorption correction is still missing which may
solve this

Pore size distribution

with the smallest pore size accumulation of PXCT distributions . |
o . m— Summary

Results
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2D tomography slices
(xz, bottom & xy, right)
for ED reconstructions
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« SAXS: Full g-range modelling of data, morphological
model for micropores and additionally feed models
with DFT results from Ar gas adsorption results
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« XRF: Correct Pt & S amplitudes by sample self-
absorption

« PXCT: Gradient based segmentation for pores,

— support and ionomer
’; « Modelling: Use SAXS, XRF & PXCT results to

generate 3D models based on elemental distribution, 3D model
pore volume fraction and pore size distribution
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* PVF for full PXCT is quite different from SAXS results
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« SAXS picks up pores from 1...100nm (g-resolution) and agrees |
with results for small pores < 120nm PVF (PXCT) quite good ...

 PVF from all pores shows strong increase for I/0 0.2 (good
performing) & I/O 0.54 (best performance), missing feature for *|

probability

I/C 0.95 (worst performance) catalyst layer st

_eveeer « SAXS & PXCT provide data on different length scales, but with a well resolved overlap
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mos | « SAXS & XRF maps show homogeneous layers on macroscopic. length scales (um to

| mm)

| « Element distribution as expected from chemical composition

f f « Pore volume fraction indicates that large pore network may be responsible for

.- bl ) performance decrease of I/C 0.95 (mass diffusion limitations); PXCT ED reconstruction
also show dense electron density
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