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Néel skyrmions are generally realized in asymmetric multilayers made of heavy metals (HMs) and ultra-
thin ferromagnets possessing strong interfacial Dzyaloshinskii-Moriya interactions (iDMIs). Depending on the
relative strengths of iDMIs at the interfaces, various types of Néel skyrmions have been suggested, which
are typified with characteristically different topological properties and current-driven dynamics. This suggests
the importance of a precise quantification of their spin chiralities. In this paper, we explore the possibility
of realizing Néel skyrmions in magnetic multilayers without the direct usage of standard HMs. Specifically,
through depositing a thin layer of ferrimagnetic (FIM) CoTb layer on top of an antiferromagnetic (AFM)
quantum material of composition Mn3Sn, the AFM exchange interaction at the asymmetric interface provides
an equivalent iDMI for stabilizing FIM Néel skyrmions. Secondly, through using advanced four-dimensional
Lorentz scanning transmission electron microscopy (4D LSTEM), in combination with x-ray magnetic circular
dichroism photoemission electron microscopy (XMCD-PEEM), we can directly determine the spin chirality of
FIM Néel skyrmions. The present findings not only broaden the phase space for chiral interfacial magnetism but
also provide a possibility for future applications of heavy-metal-free skyrmionic devices.

DOI: 10.1103/PhysRevMaterials.5.084406

I. INTRODUCTION

Magnetic skyrmions are noncollinear topological spin tex-
tures that have been extensively studied in bulk magnets
[1–3] and magnetic multilayers [4,5]. For potential spintronic
applications, interfacially asymmetric multilayers of stack-
ing order heavy metal1/ultrathin ferromagnet/heavy metal2
(HM1/FM/HM2), where HM2 can be either a different ma-
terial or implying a different interface characteristic due
to growth, are particularly promising for hosting room-
temperature Néel skyrmions [6–19]. In these multilayers,
standard HM layers (such as Pt, Ta, W, Ir, and Pd) or
topological insulators (TIs) with strong spin-orbit couplings
(SOCs) are generally required for mediating the interfacial
Dzyaloshinskii-Moriya interaction (iDMI) that subsequently
determines the spin chirality of Néel-type spin textures
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[20–28]. In this regard, it is important to explore alternative
Néel-skyrmion-hosting multilayers without directly involving
the standard HM layers. Investigations of Néel-type chiral
spin textures stabilized on top of quantum materials with
a relatively weak SOC, such as topological antiferromagnet
Mn3Sn in this paper, could broaden the material choice of
Néel skyrmions and greatly contribute to the current under-
standing of chiral interfacial magnetism [29,30]. Note that
Bloch-type skyrmions have been observed in noncentrosym-
metric bulk magnets such as MnSi and FeGe, in which spins
rotate spirally, which is different than the cycloidal rotation of
spins in Néel-type skyrmions [31].

Another challenging topic is the direct imaging of the spin
chirality of Néel skyrmions at room temperature. One of the
most frequently used high-resolution techniques is Lorentz
transmission electron microscopy (LTEM) [3,13,32,33]. It is
worth mentioning that Néel skyrmions stabilized by iDMIs
exhibit a uniform spin chirality [34,35], while Bloch-type
magnetic bubbles stabilized by dipole interactions exhibit ran-
dom spin topologies over the entire films [36,37]. It has been
demonstrated that Néel skyrmions and Bloch-type bubbles
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show distinctively different contrasts at tilted conditions in
LTEM images [38]. In perpendicularly magnetized multilay-
ers, long-range dipolar interactions would preferentially form
Bloch-type spin textures, while iDMIs would stabilize the
Néel-type spin textures. Meanwhile, through detecting the
tilt-dependent magnetic contrast, the LTEM technique can
conclusively distinguish Néel from Bloch skyrmions [13,39–
41]. However, the in-plane components (spin chirality) of
Néel skyrmions exhibit subtle contributions to the LTEM
images, and their effects cannot be convincingly extracted
[13,32,33,39–41].

We will show here that the spin chirality of Néel skyrmions
can be determined by using an advanced four-dimensional
Lorentz scanning transmission electron microscopy (4D
LSTEM), a determination which is not accessible in conven-
tional LTEM. Our 4D LSTEM instrument is equipped with a
high-dynamic-range electron microscopy pixel array detector
(EMPAD) [40,42], which enables quantitative spin-texture
imaging in embedded magnetic multilayers with a spatial
resolution of a few nanometers toward atomic resolution. It is
also capable of adding various external stimuli in the LSTEM
setup, such as current, voltage, and magnetic field (along the
beam direction) in a wide temperature range. It should be
mentioned here that the chiral nature of ferrimagnetic (FIM)
Néel skyrmions is, however, not directly revealed due to the
technical limitations of different electron microscopes [22,43–
46]. Additionally, a table for comparing different imaging
techniques is given in Part 1 of the Supplemental Material
[47]. Combined with x-ray magnetic circular dichroism pho-
toemission electron microscopy (XMCD-PEEM) imaging, we
can further identify the antiparallel spin configurations of the
sublattices of the FIM Néel skyrmion.

In this paper, we use one of the representative quantum ma-
terials, the noncollinear topological antiferromagnetic (AFM)
Mn3Sn to replace the frequently utilized HM layers and to ex-
perimentally demonstrate the stabilization of Néel skyrmions
at room temperature. Mn3Sn exhibits a noncollinear triangu-
lar AFM spin configuration with a vanishing net magnetic
moment [48,49], as shown in Fig. 1(a). Recently, a large
anomalous Hall effect (AHE), a large anomalous Nernst ef-
fect, a large magnetic-optical effect, a magnetic spin Hall
effect, and magnetic Weyl fermions have been observed in
this noncollinear antiferromagnet [50–53]. These intriguing
observations thus signify Mn3Sn as one of the represen-
tative quantum materials. Further, theoretical investigations
have predicted a very weak SOC in the intrinsic noncollinear
AFM Mn3Sn and their chiral magnetism [54–56]. Adjacent
to magnetic layers (FIM CoTb in our case), interfacial chiral
magnetism can be expected to be established at the surface of
Mn3Sn through interlayer exchange coupling.

Interestingly, recent theoretical calculations have predicted
that the triangular spin arrangement of the Mn sites possesses
an iDMI of nonrelativistic origin [57]. Thus, the naturally
existing iDMI in Mn3Sn could be harvested for stabilizing
chiral spin structures in Mn3Sn/FM bilayers. The feasibility of
this proposal has been theoretically suggested through study-
ing the interface between L12-type Mn3Ir and Co (111), in
which a substantial iDMI strength has been suggested through
ab initio calculations [58]. Note that L12-type Mn3Ir and
Mn3Sn are both noncollinear AFMs with the same triangular

(a)

(c) (d)

(b)

FIG. 1. Magnetic properties of the noncollinear antiferromag-
netic (AFM) Mn3Sn. (a) The triangular AFM spin lattices of
Mn3Sn. (b) The perpendicular magnetic hysteresis loop. (c) The
room-temperature anomalous Hall effect (AHE) observed in Mn3Sn
films grown on Al2O3 and SiO2 substrates following the same
procedure. (d) The AHE loops measured in the CoTb/Mn3Sn and
CoTb/Ti/Mn3Sn multilayers at room temperature.

AFM spin arrangements [59]. Therefore, the iDMI with the
same origin may also exist in the FIM/Mn3Sn bilayer. This
theoretical prediction partly motivates this paper.

II. MATERIALS AND METHODS

Mn3Sn thin films, possessing hexagonal Ni3Sn-type struc-
ture with space group P63/mmc, were fabricated on the Al2O3

single crystalline and thermally oxidized silicon substrates by
the AJA (Orion 8) ultrahigh vacuum magnetron sputtering
system. Meanwhile, [Mn3Sn(3)/Co75Tb25(6)/Si3N4(2.9)]20

and [Si3N4(2.9)/Co75Tb25(6)/Mn3Sn(3)]20 (thickness in
nanometers) magnetic multilayers were also deposited. The
base pressure of the growth chamber was 2.0 × 10–8 Torr, and
the Ar working pressure was maintained at 3.0 mTorr during
film deposition. The deposition rate of Mn3Sn was 0.6 Å/s.
The 6-nm-thick CoTb layers with bulk perpendicular mag-
netic anisotropy (PMA) were prepared in a cosputtering mode,
with their relative concentrations being adjusted by changing
the relative growth powers. Magnetic multilayers were also
deposited on the 100-nm- and 15-nm-thick Si3N4 membranes
for magnetic imaging using soft x-ray microscopy (XM-1)
and LTEM, respectively. The same multilayers were also
grown on thermally oxidized silicon substrates for magnetic
characterization and XMCD-PEEM imaging. The electronic
transport properties of the samples were measured by using
a physical property measurement system (PPMS, Quantum
Design). The magnetic properties of the Mn3Sn films and
multilayers were studied by using a superconductor quantum
interference device (SQUID) magnetometer (MPMS, Quan-
tum Design). The magnetic imaging was conducted at the Co
L3 edge (778.5 eV) by using full-field magnetic transmission

084406-2



IMAGING THE SPIN CHIRALITY OF FERRIMAGNETIC … PHYSICAL REVIEW MATERIALS 5, 084406 (2021)

x-ray microscopy (MTXM) performed at the Advanced Light
Source (ALS). The x-ray absorption spectroscopy (XAS) and
XMCD measurements were conducted at the Co and Mn
L2,3 and the Tb M4,5 edges, respectively. The XMCD-PEEM
experiments were performed at Paul Scherrer Institute (PSI)
and ALBA Synchrotron Light Source.

III. RESULTS AND DISCUSSION

Figure 1(b) shows the room-temperature hysteresis loops
(M − Hz) measured with a perpendicular magnetic field (Hz)
for Mn3Sn films grown on top of [11̄02]-oriented Al2O3 sub-
strate. A saturation magnetization Ms = 1.2 × 104 A/m is
estimated, which is expected due to the noncollinear AFM or-
der in Mn3Sn. The Mn atoms form a slightly distorted kagome
lattice, and the associated geometrical frustration manifests
itself as an inverse triangular spin structure, which gives rise
to weak magnetic moments [60,61]. The resulting small net
magnetization thus allows the field-control of noncollinear
antiferromagnetism in Mn3Sn and, more importantly, its elec-
trical detection by the AHE [49]. Like the occurrence of
the giant AHE in the Mn3Sn single crystal, a giant AHE is
observed and shown in Fig. 1(c). Note that these samples were
grown simultaneously on Al2O3 and SiO2 substrates. The
occurrence of the giant AHE in both samples thus implies the
presence of topological noncollinear spin configuration. Note
that the amplitude of the AHE in Mn3Sn/SiO2 is smaller than
that of Mn3Sn/Al2O3, indicating a smaller portion of Mn3Sn
grains exhibit a triangular spin configuration. A 6-nm-thick
Co75Tb25 layer is subsequently deposited on top of Mn3Sn.
The presence of PMA is confirmed by the AHE measurement,
which only probes the magnetization orientation of Co (MCo),
because of the weak coupling between the conduction electron
spins and magnetic moments of Tb (MTb) [62]. The magneti-
zation of Tb (parallel with external field) is opposite with that
of Co (antiparallel with external field), due to the AFM cou-
pling between the Co and Tb sublattices [62]. After inserting
a thin layer of Ti (1 nm) between Mn3Sn and Co75Tb25, it is
evident that the shape of the AHE loop is strongly modulated,
as shown in Fig. 1(d). Together with the large coercive field
and saturation field, the modulated AHE loops suggest the
existence of an interlayer AFM exchange coupling between
Mn3Sn and Co75Tb25 films.

The opposite stacking order [Mn3Sn/Co75Tb25/Si3N4]20

and [Si3N4/Co75Tb25/Mn3Sn]20 is expected to provide a
flipped sign for the iDMI and hence an opposite spin chirality,
as schematically shown in Fig. 2(a). The layer-resolved film
growth of multilayers and layer thickness can be determined
from a cross-sectional STEM image, as shown in Fig. 2(b).
Layered structures are further verified by the elemental map-
ping from the electron energy loss spectroscopy (EELS) for
both films, as shown in Part 2 of the Supplemental Material
[47]. Note that the O K edge overlaps with the Sn M edge,
adding a small offset to the intensity of the Sn profile in
EELS because of the inclusion of oxygen from the surface
oxidation during TEM specimen preparation and should not
be considered an intermixing between the Sn-containing and
other layers. A M − Hz loop measured with the perpendic-
ular magnetic field (Hz) is shown in Fig. 2(c), the shape of
which is similar to typical Néel-skyrmion-hosting multilayers

FIG. 2. Structures and magnetic properties of the interfacially
asymmetric multilayers. (a) Schematic illustration of the asym-
metric multilayers with an opposite stacking order. The numbers
are the thickness of each layer in nanometers. (b) Cross-sectional
scanning transmission electron microscopy (STEM) imaging of
[Mn3Sn/Co75Tb25/Si3N4]20 multilayer. The scale bar is 40 nm.
(c) and (d) Out-of-plane and in-plane magnetic hysteresis loops
for [Mn3Sn/Co75Tb25/Si3N4]20 multilayer. (e) The x-ray magnetic
image at Co edge. (f) Comparison between the experimentally
determined sizes of skyrmion (square dot), and results from micro-
magnetic simulations (line).

such as [Pt/CoFeB/MgO]15 and [Pt/Co/Ir]15, implying the
possible formation of Néel skyrmions in our systems [7,8].
The (small) net saturation magnetization Ms = MTb − MCo =
1.9 × 105 A/m can be attributed to the partially compensated
magnetism between the Tb and Co sublattices that gives rise
to the formation of FIM Néel skyrmions [12]. Shown in
Fig. 2(d) is the hysteresis loop measured in the sample plane
(Hx), from which the anisotropy field Hk ≈ 6000 Oe can be
estimated.

Magnetic imaging in the [Mn3Sn/Co75Tb25/Si3N4]20

multilayer was performed using soft x-ray transmission
microscopy (XM-1) with a spatial resolution down to
20 nm at the Co L3 edge (778.5 eV). Following the in-
crease of μ0Hz, disordered labyrinthine domains gradually
shrink into isolated bubblelike spin textures, which occurs
from the competition between the exchange interaction, mag-
netic anisotropy, dipole-dipole interaction, and the (effective)
iDMI, as confirmed by our micromagnetic simulations. A
detailed examination of the magnetic domain configurations
as a function of μ0Hz is presented in Fig. S3 in Part 3 of
the Supplemental Material [47]. Figure 2(e) shows a selected
image acquired at μ0Hz = 141 mT, in which sparsely dis-
tributed bubblelike spin textures can be found. Through using
a 360 ° domain wall (DW) model [43], the diameter of these
bubbles is determined to be in the range of 90–200 nm, which
is larger than the resolution of the x-ray transmission micro-
scope (20 nm). Note that XM-1 probes only the out-of-plane
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Lorentz transmission electron microscopy (LTEM) images acquired at different magnetic fields and tilt angles. LTEM images for
magnetic multilayer [Mn3Sn/Co75Tb25/Si3N4]20 at (a) 0 mT and −20 ° tilt, (b) 0 mT and 0 ° tilt, (c) 0 mT and 20 ° tilt, and (d) 104 mT and
20 ° tilt. LTEM images for the inverted multilayer acquired at (e) 0 mT and −20 ° tilt, (f) 0 mT and 0 ° tilt, (g) 0 mT and 20 ° tilt, and (h)
104 mT and 20 ° tilt. The scale bar is 1 μm.

magnetization component (mz/Co) of the Co element because
of the normal incidence of the soft x ray to specimens.
The missing information on the orientation of the in-plane
magnetization component (mx,y/Co and mx,y/Tb) is, however,
extremely vital for quantifying the spin chirality of FIM Néel
skyrmions, as shown below.

The size evolution of these bubblelike spin textures as a
function of μ0Hz is further summarized in Fig. 2(f). Following
the increase of μ0Hz, the diameter of bubbles monotonically
decreases. Based on the material-specific parameters, micro-
magnetic simulations were carried out using two coupled
Landau-Lifshitz-Gilbert equations [63,64]. The Co75Tb25 fer-
rimagnet with two sublattices composed of Co and Tb was
considered. Note that a similar value of effective exchange
A = 15 pJ/m for similar FIMs is reported in earlier works
[62,65–67]. We analyzed a 500 × 500 nm2 sample with a
thickness of 6 nm. A detailed description can be found in
Part 4 of the Supplemental Material [47]. Using an effective
iDMI parameter Di = 1.5 ± 0.1 mJ/m2, the micromagnetic
simulation largely reproduces the experimental data. This con-
sistency has also been verified by multilayer simulations (20
repetitions) and thus suggests a semiquantitative estimation of
a finite iDMI in the present multilayer.

Through detecting the phase shift of the electron beam
induced by the lateral magnetic induction field (Bx,y) in mag-
netic samples, LTEM has been frequently used to map out the
profile of different types of spin textures [3,32]. In standard
Lorentz mode with a normal incidence of electron beam, there
is, however, no visible magnetic contrast for Néel-type spin

textures, due to the absence of lateral magnetic induction.
Tilting samples away from the normal incidence introduces
magnetic contrasts, mainly originating from the lateral pro-
jection of the out-of-plane components of the magnetization
(mz) [13,32,33]. Such a tilt-dependent magnetic contrast has
been widely used to distinguish Néel from Bloch DWs and
skyrmions [13,39–41]. At zero field, overfocused LTEM
images were acquired for the [Mn3Sn/Co75Tb25/Si3N4]20

multilayer, under a tilting angle from plane normal of −20 °,
0 °, and 20 °, as shown in Figs. 3(a)–3(c). In standard Lorentz
mode, the external field was applied along the electron beam
direction. Sparsely distributed bubblelike spin textures at 104
mT with a tilting angle 20 ° are also shown in Fig. 3(d).
Shown in Figs. 3(e)–3(h) are the corresponding LTEM images
acquired in the inverted stack [Si3N4/Co75Tb25/Mn3Sn]20.
At the zero-tilting angle, a diminishing magnetic contrast is
evident in both samples. Through reversing the tilting angle
from −20 ° to 20 °, a reversal of magnetic contrast can also be
seen. The reversal of bubblelike magnetic contrast at 104 mT,
which is obtained at opposite tilting angles (−20 ° and 20 °),
is also demonstrated in Part 5 of the Supplemental Material
[47]. These results are consistent with the reported LTEM
images of Néel-type spin textures. However, the in-plane com-
ponents of the Néel-type spin textures (mx,y) have a subtle
contribution to the LTEM images, and their effects cannot
be extracted due to the challenges for quantifying the images
[32,33]. Therefore, the spin chirality of these Néel skyrmions
cannot be directly determined from the standard LTEM
images [13,32,33,39–41].
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(a)

(b)

(c)

FIG. 4. Identifying the spin chirality of Néel skyrmions with four-dimensional Lorentz scanning transmission electron microscopy (4D
LSTEM). (a) The schematic illustration of the 4D LSTEM setup. (b) and (c) Magnetic flux distributions for the right- and left-handed Néel
skyrmions are shown in panels (R1) and (L1), while the horizontal component (Bx) of the simulated magnetic flux distribution at 20 ° tilt for
the right- and left-handed Néel skyrmions are shown in panels (R2) and (L2), respectively. Experimentally determined magnetic fluxs of Néel
skyrmions in [Mn3Sn/Co75Tb25/Si3N4]20 and [Si3N4/Co75Tb25/Mn3Sn]20 multilayers along the horizontal (x) direction are shown in panels
(R4) and (L4). Panels (R5) and (L5) are the enlarged images of the selected skyrmions (red circles) in panels (R4) and (L4). Panels (R3) and
(L3) are the simulated (R2) and (L2) and experimental (R5) and (L5) line profiles of magnetic flux magnitude (Bx) of the right- and left-handed
Néel skyrmion along the direction marked with black and red arrows, respectively. Panels (R6) and (L6) are the experimental line profiles of
the Bx of a few undistorted skyrmions in panels (R4) and (L4), respectively. All the images are plotted under the same x and y axes in (a). The
scale bars in (b) and (c) are 0.5 μm.

Differential phase contrast (DPC) imaging in LSTEM
mode using a focused electron probe can directly measure the
deflection angle of the electron beam (βL = eλ

h Bx,yt ) induced
by the Lorentz force of the lateral magnetic field (Bx,y) in the
sample with the possibility of reaching atomic resolution [68].
Here, e is the unitary electronic charge, λ is the wavelength
of the electron beam, h is the Planck constant, and t is the
thickness of the magnetic film. It provides the capabilities
for quantitatively imaging the spin structures at a sub-5-nm
spatial resolution, which are usually inaccessible from LTEM.
The resolution of LTEM degrades to tens of nanometers due
to the delocalization from the large defocus value required
for gaining sufficient magnetic contrast [39], especially for
compensated FIMs with a small saturation magnetization.

This is not a problem for LSTEM, which is operated in
focus. High sensitivity to magnetic field from LSTEM relies
on more illumination doses and therefore a high dynamic
range detector. Figure 4(a) shows schematically our LSTEM
setup equipped with a high-dynamic-range EMPAD. A 4D

dataset is obtained by acquiring the full diffraction pattern
at each scanning point. Compared with conventional DPC
imaging, the 4D LSTEM setup can determine the deflection
angle of the electron beam more accurately from the diffrac-
tion patterns via a more advanced analysis such as an edge
detection algorithm [40]. These analyses can largely eliminate
the artifacts from crystalline grains that are unavoidable in the
sputtered polycrystalline or amorphous films [42]. Here, we
show that 4D LSTEM can be utilized to directly visualize the
spin chirality of the Néel skyrmions.

Employing a 360 ° DW model [43] and following the es-
tablished theory of Lorentz electron microscopy [69], we can
simulate the magnetic induction field from Néel skyrmions
with an opposite spin chirality. Panels (R2) and (L2) in
Figs. 4(b) and 4(c) show simulated magnetic induction fields
along the horizontal direction (Bx) for a right-handed (R1)
and a left-handed (L1) spin chirality of Néel skyrmions. The
black curves in panels (R3) and (L3) show an asymmetric
feature along the simulated diagonal direction (Bx) for the
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right- and the left-handed spin chiralities, respectively. As il-
lustrated from the separate contributions of the in-plane (mx,y)
and out-of-plane (mz) magnetization components in Fig. S5 in
Part 6 of the Supplemental Material [47], the reversal of the
asymmetric intensity comes from the reversed spin orientation
of the in-plane components (mx,y). This can thus be used to
directly identify the spin chiralities of Néel skyrmions. Subtle
asymmetric features can also be seen in the vertical com-

ponent (By) and the magnitude (|B| =
√

B2
x + B2

y ), as shown

in Fig. S6 in Part 7 of the Supplemental Material [47]. Our
quantitatively calculated magnetic induction fields thus sug-
gest that 4D LSTEM can be used for mapping out the spin
chirality of Néel skyrmions.

Panels (R4) and (L4) show the experimentally acquired
magnetic flux (Bx) images using 4D LSTEM. The selected
right- and left-handed Néel skyrmions [red circles in pan-
els (R4) and (L4)] are shown in the panels (R5) and (L5),
which were acquired from the [Mn3Sn/Co75Tb25/Si3N4]20

and [Si3N4/Co75Tb25/Mn3Sn]20 multilayers with flipped sur-
faces, respectively. The red curves in panels (R3) and (L3)
show their line profiles along the diagonal directions of
experimental magnetic flux Bx. The asymmetric features qual-
itatively agree with the simulated results, as shown in panels
(R3) and (L3). A small residual offset in the zero point of
the magnetic field may exist from LSTEM measurements be-
cause the zero-field point was calibrated by zeroing the beam
deflection angle from sample regions far from skyrmions and
without apparent magnetic contrast. The possible long-range
field from skyrmions can induce a small shift in the magnetic
field. The overall shape of the vertical direction (By) and
magnitude (|B|) of the magnetic induction field images also
qualitatively agree with the simulations, as shown in Part 8
of the Supplemental Material [47]. Thus, the spin chirality
of Néel skyrmions, being the right- or left-handed in these
two inverted multilayers, was confirmed. Note that the right-
and left-handed spin chiralities correspond to positive and
negative signs of the iDMI parameters, respectively, which
is expected for the inverted stacking orders [70]. We also
find that local sample bending or crystalline grains may in-
troduce artifacts into the magnetic flux images, which were
carefully avoided during our experiments. Furthermore, the
signal-to-noise ratio of the magnetic field images scales with
the exposure dose, requiring a high dynamic range detector
like the EMPAD for identifying the spin chirality of Néel
skyrmions [42,71].

We also note that the shape or size of magnetic flux distri-
bution from Néel skyrmions can be affected by many factors,
such as local defects pinning or residual magnetic field from
neighboring Néel skyrmions. In our experiments, we chose
Néel skyrmions without apparent distortions. Line profiles
of magnetic field from both Bx and By components of more
undistorted Néel skyrmions are further shown in panels (R6)
and (L6) in Figs. 4 and S8 in Part 9 of the Supplemental
Material [47], respectively. It is worth mentioning that the
small in-plane external magnetic field (<50 mT) is much
smaller than those of the effective field of the iDMI and should
have negligible effects on the identification of the chirality
in the films. Note that the 4D LSTEM experiment was also
performed in [Si3N4/Co75Tb25]20 multilayers, in which the

(a) (c)

(b) (d)

FIG. 5. Chirality determination of ferrimagnetic (FIM) Néel
skyrmions using x-ray magnetic circular dichroism photoemission
electron microscopy (XMCD-PEEM). (a) and (b) The XMCD
spectra measured at Co L3 edge and Tb M5 edge in the
[Mn3Sn/Co75Tb25/Si3N4]20 multilayer at μ0Hz = +2 Tesla, respec-
tively. Insets in (a) and (b) are the corresponding XMCD-PEEM
images acquired at zero magnetic field. Scale bar is 1 μm. (c)
XMCD-PEEM image with an enhanced contrast at the Tb M5 edge
by averaging 500 images. The white arrow indicates the incident
direction of the x ray. Scale bar is 1 μm. (d) Laterally averaged
linescans of the magnetic contrast from the position marked lo-
cations in (c). Dash lines indicate the XMCD brightness level of
the corresponding out-of-plane domains, while additional dips/peaks
between them correspond to in-plane magnetic moment of the chiral
domain walls (DWs). Inset is the schematic of the chiral spin texture.
The blue color represents Tb, while dark yellow corresponds to Co
sublattices.

presence of Bloch-type spin textures was identified, as illus-
trated in Part 10 of the Supplemental Material [47]. We also
notice that Bloch-type bubbles with random spin topology
were recently reported in the very thick CoTb film without
an interfacial asymmetry [72]. These results further suggest
the important role of noncollinear AFM Mn3Sn in introducing
interfacial chiral magnetism.

The incorporation of the FIM Co75Tb25 layer with
two AFM-coupled Tb and Co sublattices results in the
formation of FIM Néel skyrmions. The 4D LSTEM mea-
surement is, however, only sensitive to the net magnetiza-
tion (|MTb − MCo|). To confirm the presence of FIM Néel
skyrmions and their associated (opposite) spin chiralities in
an element-specific measurement, we also performed XMCD
spectroscopy and XMCD-PEEM experiments, as shown in
Fig. 5. Measuring Co L2,3 and Tb M4,5 absorption edges
with XMCD spectra at μ0Hz = 2 T, opposite signs are evi-
dent, corresponding to the antiparallel magnetization of Co
and Tb atoms. Note that the vanishing XMCD signal at Mn
L2,3 absorption edge can be observed, which excludes the

084406-6



IMAGING THE SPIN CHIRALITY OF FERRIMAGNETIC … PHYSICAL REVIEW MATERIALS 5, 084406 (2021)

proximity-induced magnetism in Mn3Sn, as shown in Fig.
S10 in Part 11 of the Supplemental Material [47]. Insets of
Figs. 5(a) and 5(b) show XMCD-PEEM images of an identical
area acquired at the Co L3 and Tb M5 edges at zero magnetic
field, respectively. The reversed magnetic contrasts between
these two images further confirm the AFM coupling between
the Tb and Co sublattices.

In the XCMD-PEEM investigations, the samples are il-
luminated with the x-ray beam at a small grazing angle
(typically 16◦) with respect to the film plane. Hence, the
magnetic contrast of the in-plane magnetization component
(mx,y) is ∼3.5 times stronger than that of the out-of-plane
components (mz) [24]. Specifically, the change of magnetic
contrast correlates with the relative orientation between the
in-plane magnetization and the x-ray incidence direction. The
contrast is bright when the in-plane magnetization is antiparal-
lel with the x-ray incidence direction, whereas a dark contrast
is present when they are in a parallel configuration. Thus,
together with its high spatial resolution (possibly down to
25 nm), XMCD-PEEM can be independently employed for
confirming the spin chirality of Néel-type spin textures.

Figure 5(c) displays a high-resolution XMCD-PEEM
image of the multidomain states at zero field for the
[Mn3Sn/Co75Tb25/Si3N4]20 multilayer acquired at the Tb
M5 edge. Along the x-ray illumination direction, an al-
ternating contrast change from brighter to darker can be
observed, which corresponds to the down-to-up (↓↙←↖↑)
DW and up-to-down (↑↗→↘↓) DW, respectively. These
features can be more clearly seen from the linescans shown
in Fig. 5(d), which confirms that the spin chirality in the
[Mn3Sn/Co75Tb25/Si3N4]20 multilayer is right handed. Ex-
perimental efforts are also made to directly image the spin
chirality of Co at the L3 edge, which is, however, unsuccessful
due to a relatively smaller magnetization and hence a weaker
XMCD-PEEM contrast. As a result of AFM coupling between
the Tb and Co sublattices, the Co sublattice possesses the
same spin chirality as the Tb sublattice, as schematically il-
lustrated in the inset of Fig. 5(d).

IV. CONCLUSIONS

In summary, using the noncollinear AFM Mn3Sn as
a seeding layer and the accompanied interfacial AFM
exchange coupling through interfacing with a thin FIM
CoTb layer, we have stabilized FIM Néel skyrmions in
[Mn3Sn/Co75Tb25/Si3N4]20 and [Si3N4/Co75Tb25/Mn3Sn]20

multilayers, respectively. The opposite (right/left handed) spin
chirality due to the flipped interfaces and hence the opposite
(positive/negative) sign of the iDMI can be directly identified
by using the 4D LSTEM in combination with imaging simula-
tions. The 4D LSTEM results, together with the FIM nature of
the Néel skyrmions in our multilayers, are further confirmed
using XMCD-PEEM. Our results suggest that the exchange
coupling between a noncollinear AFM and a thin FIM could
similarly host an iDMI of strength 1.5 ± 0.1 mJ/m2 that can
be harvested to stabilize room-temperature Néel skyrmions.
Meanwhile, it is interesting to note that a negative sign of
the iDMI parameter has been measured in IrMn/CoFeB/MgO
trilayers [19,73,74], as compared with the positive sign of
the iDMI in the Mn3Sn/Co75Tb25/Si3N4 multilayer. Thus, a

precise understanding of the rich interfacial chiral magnetism
in similar AFM-based quantum materials, however, requires
further theoretical investigations, ideally from first-principles
and ab initio calculations [75]. We also summarized differ-
ent skyrmion hosting materials in a table in Part 12 of the
Supplemental Material [47], which could be beneficial for
future material optimization. Compared with the other ma-
terials, the choice of FIM CoTb with a bulk PMA could
stimulate more applications of quantum materials in chiral
magnetism. Furthermore, one could envision harvesting the
accompanied magnetic spin Hall effects from the topolog-
ical Mn3Sn to study the current-driven dynamics of FIM
Néel skyrmions [52,59,76], which may simultaneously re-
veal interesting physics such as the reduced skyrmion Hall
effect. Meanwhile, one could explore the interlayer exchange
between the skyrmion hosting multilayers and Mn3Sn, for sta-
bilizing AFM skyrmions. It is expected that this paper could
trigger more investigations for gaining a comprehensive un-
derstanding of chiral interfacial magnetism and, meanwhile,
could set a valuable step for bridging AFM spintronics and
skyrmionics in the future [77,78].
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