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A B S T R A C T   

Composite Indicators (CIs, a.k.a. indices) are increasingly used as they can simplify interpretation of results by 
condensing the information of a plurality of underlying indicators in a single measure. This paper demonstrates 
that the strength of the correlations between the indicators is directly linked with their capacity to transfer 
information to the CI. A measure of information transfer from each indicator is proposed along with two weight- 
optimization methods, which allow the weights to be adjusted to achieve either a targeted or maximized in-
formation transfer. The tools presented in this paper are applied to a case study for resilience assessment of 
energy systems, demonstrating how they can support the tailored development of CIs. These findings enable 
analysts bridging the statistical properties of the index with the weighting preferences from the stakeholders. 
They can thus choose a weighting scheme and possibly modify the index while achieving a more consistent (by 
correlation) index.   

1. Introduction 

Composite Indicators (CIs), also called indices,2 are widely used 
synthetic measures for ranking and benchmarking alternatives across 
complex concepts (Saisana and Tarantola 2002; Nardo et al., 2008). A 
recent review by Greco et al. (2019) identifies an almost exponential 
growth of CIs over the past 20 years, highlighting their popularity in all 
domains that require aggregation of information for decision-making. A 
CI is the result of a mathematical combination of individual indicators 
that together act as a proxy of the phenomena being measured (Maz-
ziotta and Pareto 2013). By combining a plurality of variables, CIs are 
able to assess and evaluate the performance of alternatives across 
multidimensional concepts, which are not directly measurable or clearly 
defined. A broad range of studies can be found in the literature that 

address topics such as ecological and environmental quality (Reichert 
et al., 2015; Reale et al., 2017; Oţoiu and Grădinaru 2018), sustain-
ability (Rowley et al., 2012; Cinelli et al., 2014; Eurostat 2015; 
Hirschberg and Burgherr 2015), human development (UNDP 2016; 
Biggeri and Mauro 2018), competitiveness (World Economic Forum 
2017) and quality of governance (World Bank 2020). Thereby, they 
represent flexible tools for supporting decision-making when more than 
one criterion is being considered (Greco et al., 2016). 

The purpose of constructing a CI is, among other things, to condense 
and summarise the information contained in a number of underlying 
indicators, in a way that accurately reflects the underlying concept. 
There are two key notions here: first, condensing information; and 
second, accurately representing the underlying concept. These two ideas 
will be revisited repeatedly in this work. 
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The rankings provided by a CI represent an invaluable tool for 
conveying complex and sometimes elusive phenomena to a larger 
audience (Freudenberg 2003), because it is easier to interpret a single 
figure than finding a common trend amongst a multitude of indicators 
(Singh et al., 2009; Paruolo et al., 2013). Furthermore, developers are 
often keen to stress that composite measures are complementary to the 
underlying indicators, and serve as a structured access point to a com-
plex set of data (Becker et al., 2018). However, developing a CI is far 
from trivial, involving a number of steps where the developer is obliged 
to make compromises and subjective choices (Booysen 2002; Mazziotta 
and Pareto 2013; Cinelli et al., 2020). Hence, the complementary nature 
of a CI is largely contingent on its underlying construction scheme. 

An important, but often overlooked, aspect in the construction of CIs 
is the correlation structure between the underlying indicators and its 
effect on the overall score (i.e., the CI). Ideally, there should be positive 
correlations between the indicators as this indicates that individual 
variables are linked to an overarching concept (Meyers et al., 2013). 
Negative (or weak) statistical relationships can have implications for the 
meaningfulness of the CI, as some of these might represent features 
different from the overarching target concept being measured (Furr 
2011). It must however be noted that according to the area of applica-
tion and scope of the analysis, there can be indicators that are not 
necessarily positively correlated, and their inclusion might be driven by 
stakeholders’ choices. It is anyhow important to assess the statistical 
properties of CIs to judge their scoring and aid its interpretation (Nardo 
et al., 2008). An example of this can be found in the Sustainable Society 
Index – where aggregation was avoided due to negative correlations 
between sub-dimensions (Saisana and Philippas 2012). 

Complex systems modelling and analysis is driven by indicators that 
in the majority of the cases are interwoven and interdependent (Allen 
et al., 2017). Information theory has been proposed as a prime solution 
to study and quantify such dependencies between indicators (Proko-
penko et al., 2009). Dependencies mean that the information provided 
by one indicator can be partially or fully inferred from another one. 
According to the structure of the system under consideration, each in-
dicator carries a certain level of information about its functioning and 
behaviour. Consequently, several measures have been advanced to study 
how much new information each indicator can add to characterize the 
system, such as the marginal utility of information (Allen et al., 2017). 
This type of measure can be characterized as carrying a variable weight 
or relevance in the description of the system, since the higher the utility 
of the information carried by one indicator, the higher its influence. 

Even if there is a wide body of literature that demonstrates the need 
to account for dependencies and overlaps between indicators (Csiszár 
and Shields 2004; Prokopenko et al., 2009; Allen et al., 2017; Mao et al., 
2019; Davoudabadi et al., 2020), CIs are often developed with limited 
attention to such interrelationships (Cinelli et al., 2020). In turn, this can 
have a nontrivial influence on subsequent stages of construction, such as 
the weighting (and aggregation) of indicators (Paruolo et al., 2013; 
Becker et al., 2017; Davoudabadi et al., 2020), as discussed below. 

Recalling the objectives of constructing a CI, one key point is that the 
index should accurately reflect the underlying concept. This requires 
that each indicator contributes in a way that agrees with the decision 
maker(s)’ views on its importance to the concept. In CI aggregation, 
weights are assigned to reflect the trade-offs3 between the indicators, 
based on stakeholders’ or decision-makers’ preferences (Mazziotta and 

Pareto 2017; Greco et al., 2019). Consequently, it is usually assumed 
that the weight assigned can be directly interpreted as a measure of an 
indicator’s importance, independent from the dataset under analysis 
(Munda and Nardo 2005). However, this assumption is rarely justified. 
In fact, in order to better understand the actual trade-offs (i.e., the in-
fluence that each indicator has on the CI) of each indicator on the CI, 
Paruolo et al. (2013) propose a methodology based on nonlinear 
regression. It compares the assigned weights with an ex post measure of 
importance – in this case Karl Pearson’s correlation ratio (also known as 
the first order sensitivity index), which is a coefficient of nonlinear asso-
ciation. It is found that the structure of the dataset and correlations 
between the indicators often have a decisive effect on each indicator’s 
influence in the index. In fact, their influence rarely coincides with the 
assigned weights. 

In a more recent study, Becker et al. (2017) build on this research by 
extending the nonlinear regression approaches to include decomposing 
the correlation ratio to examine the “correlated” and “uncorrelated” 
contributions of each indicator, drawing on global sensitivity analysis 
literature (Xu and Gertner 2008; Da Veiga et al., 2009). Furthermore, the 
authors introduce a weight-optimization algorithm, which optimises (i. 
e., reallocates) the weights with the aim of achieving the indicators’ 
pre-specified values of trade-offs. The authors thus propose an approach 
to adjust the value of each indicator’s weight in relation to their desired 
trade-offs. However, adjusting indicator trade-offs is not the only 
issue/objective of CI aggregation. As previously stated, the other key 
aim of a CI is that it should be a good summary of its underlying in-
dicators. One way to interpret this goal is that it should maximize the 
amount of information transferred from the underlying indicators to the 
CI. 

The two issues above (adjusting indicators’ influence on the index 
and maximizing information transfer from the indicators) are rarely 
considered in CI development and when they are, researchers and 
practitioners tend to focus on either one or the other in isolation. 
Moreover, work focusing on adjusting indicator influence misses a key 
point - that they are effectively balancing the information transferred by 
each indicator. In addition, as recently discussed in a review on CI 
construction, the weighting of indicators based on the statistical struc-
ture of the data has been widely criticized mostly because weights are 
assigned with these methods on the performance matrix and not using 
the preferences from the stakeholders (i.e., stakeholder-based weight-
ing) (Greco et al., 2019). The available literature on CI development 
seems to neglect that the statistical properties of the dataset can be used 
to understand the actual contribution that each indicator is going to 
have on the index, independently from the weights assigned by the 
stakeholders. Identification of weights of indicators by means of statis-
tical analysis of the data can be labelled as data-driven and it can be used 
to complement or even substitute the stakeholder-based weighting, 
whenever the latter is not available or it cannot be conducted with the 
relevant decision makers (Kojadinovic 2004). 

Even if some approaches for combining stakeholder-based and data- 
driven methods to define the weights of the indicators have been pro-
posed (Zardari et al., 2015; Davoudabadi et al., 2020), there is not yet a 
framework to guide the use of both types of methods in weighting CI 
indicators. Our research fills this gap by showing that stakeholder-based 
and data-driven weighting methods can be successfully combined to 
achieve a well-informed set of weights for the indicators of the CI. More 
specifically, our contribution consists in demonstrating how the desired 
weight of each indicator can be achieved by means of the statistical 
properties in the performance matrix. This work brings together the two 
objectives of CI construction, (I) reaching the desired indicator 
trade-offs and (II) maximizing information transfer, under a single 
framework built on information theory. It shows that the two objectives 
are (depending on the correlation structure) usually contradictory in the 
context of weighting. CIs developed with the aim of reaching the desired 
indicators’ trade-offs may come at the cost of poor information transfer, 
while the CIs built via an information transfer maximization approach 

3 Algorithms used in CIs are frequently weighted sums and the weights of 
their indicators have the meaning of trade-offs (Munda 2008b, a). These indi-
cate the level of compensation between the indicators. In other works, they 
define the improvement required in the performance on one indicator to 
compensate for the worsening in performance of another indicator. For 
example, if the weight of indicator 1 is half the weight of indicator 2, it means 
that the improvement of two units on indicator 1 are needed to compensate the 
worsening of one unit on indicator 2. 
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can potentially have a very unbalanced contribution from the underly-
ing indicators. Hence, there is a pragmatic need for developing a deeper 
understanding on how statistical dependencies between indicators in the 
dataset affect the indicators’ influence and information transfer in CIs 
and thus their outcomes. 

The first objective (i.e., adjusting information transfer) is important 
as it relates to the essence of shaping a CI that reflects the desired trade- 
offs between the indicators. In fact, even if the DM desires equal trade- 
offs between the indicators, the correlation structure might not allow to 
reach it with equal weights. As an example, if the DM chooses that the 
weight of indicator 1 is the same as the weight of indicator 2, it 
conceptually means that the improvement of one unit on indicator 1 is 
needed to compensate the worsening of one unit on indicator 2. The 
conventional approach in CI construction is that the analyst then assigns 
equal weights to the indicators. However, our statistical tools that study 
the (nonlinear) dependence between each indicator and the index show 
that due to the correlations in the dataset, in order to achieve the same 
weights (i.e., equal trade-offs) the actual values of the weights for these 
indicators should for example be twice as high for indicator 1 when 
compared to indicator 2. This confirms the need for considering both the 
requirements from the DM (e.g., the desired trade-offs) and the statis-
tical properties of the performance matrix. 

The second objective (i.e., maximizing information transfer) is 
important as it accounts for a situation where the DM requests as much 
information transfer as possible, irrespective of a pre-defined value for 
the trade-offs on the indicators. In this situation, the trade-offs between 
the indicators are defined solely according to the maximization of in-
formation transfer. 

This paper provides a number of contributions to address these is-
sues. In section 2, the concept of information transfer from indicators to 
the CI is formalised, by showing that the correlation ratio has a theo-
retical link with the concept of mutual information (a measure from 
information theory) under certain conditions. This formally demon-
strates that the correlation ratio can be used as a tool to achieve both the 
objective of adjusting indicators’ influence (e.g., balancing information 
contributions) and maximizing information transfer, by using an opti-
mization approach with different objective functions. In section 3, the 
relationship between information transfer and the underlying correla-
tion structure of CIs is explored with an analytical example, and it is 
shown that information transfer tends to a limit as more indicators are 
added to the framework. Then, in section 4, the tools proposed in this 
paper are applied to one version of the Electricity Supply Resilience 
Index (ESRI) developed at the Singapore-ETH Centre (Gasser et al., 
2020), which was called Resilience Index for Analysis and Optimization 
(RIfAO). Discussion and conclusions complete the paper in section 5. 

2. The concept of information transfer 

This section proposes the use of the correlation ratio as a measure of 
the information transferred from each indicator to the CI. Its rationale is 
driven by the fact that the statistical relationships between the in-
dicators in the dataset have an effect on how influential each indicator is 
in the overall system (Allen et al., 2017), which in this case is repre-
sented by the index. 

The correlation ratio has been used in previous studies for adjusting 
the weights of CIs (Paruolo et al., 2013; Becker et al., 2017). Here, this 
idea is extended by linking it to the more intuitive concept of informa-
tion transfer (or shared/mutual information), and by introducing two 
different objectives in weight adjustment: one based on balancing in-
formation transfer, and the other based on maximizing it. 

Consider a CI y calculated as the additive weighted average (or 
weighted sum) – which is one of the most widely used methods for 
developing CIs (OECD 2008; Eisenfuhr et al., 2010; Bandura 2011; 
Langhans et al., 2014) – of n normalized variables xi: 

yj =
∑n

i=1
wixji, j = 1, 2,…,m (1)  

where xji is the normalized score of alternative j (e.g., country) based on 
its raw value Xji in the ith variable Xi, i = 1, 2,…, n, and wi is the weight 

(i.e., trade-off) assigned to the ith variable, such that 
∑n

i=1
wi = 1 and 

wi ≥ 0. 
Fig. 1 illustrates this aggregation procedure. Now, after the aggre-

gation, the objective is to understand the relationships between each 
indicator xi and the aggregated CI y, and to see how it can be improved 
in terms of the two objectives mentioned above. In this work, the pro-
posal is to measure the amount of information that is shared between the 
individual indicators and the CI, or the information transferred from each 
indicator to the CI (see again Fig. 1). Although equation (1) looks simple, 
correlations between indicators mean that the information transferred 
between y and xi is not trivial to understand, and any of the three in-
formation transfer scenarios shown in Fig. 1 can occur, even with equal 
weighting. 

The information transfer measure can be used as the basis for both 
the previously mentioned objectives of CI aggregation: (I) adjusting the 
influence of each indicator in relation to its assigned weight, and (II) 
maximizing the information transferred from the set of indicators to the 
CI. Information transfer is a more natural framework for assessing CIs 
than speaking directly in terms of correlations because CIs are effec-
tively an information compaction problem: representing many in-
dicators with one aggregated variable. In any case, this work will 
demonstrate that the two concepts are very similar and sometimes 
coincident. Building upon this logic, the concept of information transfer 
will, in this paper, be defined as: “the (co-)dependence between the CI and 
each of its underlying indicators”. This could also be looked at as the in-
formation “shared” between the CI and each indicator, however since 
the CI is a product created by aggregating indicators, the term “transfer” 
will be used. 

In the following sections, a measure of information transfer will be 
described, and two optimization problems, which satisfy the above- 
mentioned objectives, will be formulated. 

2.1. Sensitivity index (Si) as a measure of information transfer 

One measure of information transfer is Mutual Information (I), 
which is an information theory measure that can be defined via entropy 
(Shannon 1948). Entropy is the foundational concept of information 
theory, which uses probability distributions to quantify the amount of 
information contained in a random variable (Cover and Thomas 2005). 
It can be used to measure the capacity of each variable to be used to 
predict the behaviour of the system in the next destination state, as well 
as to define the statistical complexity of a system (Prokopenko et al., 
2009). With respect to the latter use, it is defined as Shannon’s entropy 
and it defines the minimum amount of information required to statisti-
cally characterize the system. I can be understood as the amount of in-
formation that is shared between two random variables. The I between 
two continuous random variables I (y,xi), such as the CI y and one of its 
underlying indicators xi, can be defined by: 

I(y, xi) =

∫∫

f (y, xi)log
f (y, xi)

f (y)f (xi)
dydx (2)  

where f(y) and f(xi) are the marginal probability distributions and 
f(y, xi) is the joint probability distribution. Clearly, I allows us to directly 
measure a fundamental issue in composite indicators - how much in-
formation is passed from each indicator xi to the CI y. 

An intuitive way to think of information transfer in composite in-
dicators is to consider: given the ranks of y, how well can one infer the 
ranks of the underlying indicators – in other words, how well is each 
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indicator represented in the final index ranking? If the mutual infor-
mation between y and xi is high, the ranks of xi are very similar to those 
of y, therefore it can be considered as “well-represented”. In the opposite 
case (low mutual information), the two ranks will differ markedly. 
Clearly, this is an important issue because a CI aims to summarise the 
information in its underlying indicators. 

Although I is widely recognized within data analysis to possess ideal 
properties for measuring stochastic dependence – accounting for both 
linear and nonlinear dependencies – it has some drawbacks (Smith 
2015). First, its interpretation is not straightforward. Unlike the 
well-known Pearson correlation coefficient (ρ), which has an absolute 
value in the range of 0 (complete linear independence) and 1 (complete 
linear dependence), the range of I is more open ended and can take on 
any value between 0 (complete independence) and infinity (complete 
dependence). Second, I is difficult to calculate from empirical data as it 
is based on probabilities and requires knowledge of the underlying 
marginal and joint distributions. 

One way to alleviate these issues is to use a regression approach, 
which is simpler to estimate since the joint and marginal distributions do 
not need to be known (Kullback 1959). In fact, under restricted condi-
tions it is possible to derive a direct link between I and coefficient of 
linear determination R2 (Kullback 1959). When the joint probability 
distribution of both {xi, y} are normal, the expression for I in equation 
(2) reduces to: 

I(y, xi) = −
1
2

ln
(
1 − R2

i

)
(3)  

where Ri is the correlation between y and xi. Thus, in the case of the 
multivariate Gaussian probability distribution, I between xi and y can be 
fully represented by the coefficient of linear determination R2

i . This is 
true because the dependence between two marginal distributions of a 
multivariate Gaussian distribution is by definition linear, hence the 
linear regression model is sufficient to capture the overall dependence 
(Dionisio et al., 2004). 

In the nonlinear case, R2
i may still be used to approximate I, but 

becomes less accurate as associations start becoming nonlinear (Song 
et al., 2012; Smith 2015). To approximate I for more nonlinear cases, the 

proposal here is to use the correlation ratio, Si, originally denoted η2
i 

(Pearson 1905). This is a coefficient of nonlinear association which can 
be estimated by a nonlinear regression model; see e.g., Paruolo et al. 
(2013) or Becker et al. (2017). Although this cannot be analytically 
linked to I, it is a direct nonlinear extension of R2

i . In this respect, it 
should logically provide a good nonlinear approximation of I. Indeed, I 
has been shown to be directly related to the correlation ratio through 
Csiszár f-divergences (Da Veiga 2015). 

The correlation ratio, also known as the first order sensitivity index, is 
a statistical measure of global ‘variance-based’ sensitivity (Saltelli et al., 
2008). It is defined as: 

Si ≡ η2
i ∶ =

Vxi (Ex∼i (y|xi))

V(y)
(4)  

where V(y) is the unconditional variance of y, obtained when all factors 
xi are allowed to vary and Vxi is the variance of xi as a function of the 
expected value Ex∼i (y|xi) for y given xi. The expected value is the mean of 
y when only xi is fixed, emphasised by the term x∼i, which is the vector 
containing all the variables (x1,…, xn) except variable xi. Thus, Ex∼i (y|xi)

is conditional on xi and is, for that reason, also referred to as the main 
effect of xi. 

Notice that this definition, the ratio of the variance explained by xi to 
the unconditional variance, is precisely a nonlinear generalisation of the 
well-known coefficient of determination R2

i , such that Si equals R2
i when 

the regression fit is linear (Wooldridge 2010). In fact, much like R2
i , Si 

can be interpreted as the expected reduction of variance in the CI scores 
if a given indicator could be fixed (Saisana and Saltelli 2011; Paruolo 
et al., 2013). Si is also bounded within the range of 0–1, determining the 
degree of dependence between the CI and its underlying indicators. For 
instance, a value of 1 indicates complete dependence and a value of 
0 implies complete independence. In information terms, a value of 1 
means that all of the information contained in an indicator xi has been 
transferred to the CI y, whereas a value of 0 implies that none of its 
information has been transferred. Si is therefore a useful proxy of mutual 
information in more general nonlinear cases. 

To estimate Si, a regression approach is used. Since the main effect 
Ex∼i (y|xi) is a univariate function of xi, it can be obtained by a nonlinear 

Fig. 1. Illustration of indicator aggregation and resulting information transfer, including examples of moderate/partial transfer, no information transfer, and full 
information transfer. 
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regression of y against xi. In this study, a penalized cubic spline 
regression approach is used along the lines of Becker et al. (2017). To 
then obtain the first order sensitivity index Si, the variance of the 
resulting curve is taken and standardised by the unconditional variance 
of y. Indeed, a comparative study by Song et al. (2012) showed that I can 
safely be replaced by a nonlinear regression model (based on splines), as 
it matches I for detecting nonlinear relationships. 

The concept of entropy used in this study is an extension of the one 
presented in the work from Hwang and Yoon (1981). While these au-
thors directly estimated the weights using the entropy method, in our 
study we make use of the results of the entropy method as input for the 
optimization models presented below. In fact, we defined the results of 
the entropy method as influence, or Si, whose difference with respect to 
the initial weights (i.e., equal weights in our study) needs to be mini-
mized using the optimization models. 

2.2. Adjusting the weights to optimize information transfer 

Given the information transfer measure proposed in the previous 
section, how can a CI be modified to either (I) adjust the relative in-
formation contribution of each indicator according to the desired trade- 
offs by the DM, or (II) maximize the overall information transfer? As 
hinted in the introduction, these objectives are often contradictory. 
Moreover, it is assumed that the input data for the indicators (i.e., 
normalized set) cannot be altered, and the aggregation method (e.g., 
arithmetic or geometric mean) is kept constant. In this case, the ad-
justments can be made by altering the weights. However, it is far from 
obvious which weight values will lead to the best properties in terms of 
objectives (I) and (II). The solution is found by framing the issue as a 
computational optimization problem. The first step is to build an 
“objective function”, which, for any given weight values, calculates a 
score representing either (I) how “adjusted” the mean information 
transferred is, or (II) how much information is overall transferred to the 
composite index, by calculating correlation ratio (Si) values for each 
indicator. The best set of weights are then found by an iterative opti-
mization search algorithm, in this case the Nelder-Mead simplex search 
method (Lagarias et al., 1998; McKinnon 1998), which tries to find the 
highest value of the objective function. The two objective functions for 
(I) and (II) are described in detail in the following sections. 

2.2.1. Objective I – Adjusting information transfer 
Adjusting the relative information transfer (i.e., the influence) from 

the indicators to the CI in relation to their assigned weight is achieved in 
two steps – see details in Becker et al. (2017). First, to render the cor-
relation ratios comparable to the weights, a normalization step is 
needed: 

S̃i = Si

/
∑n

i=1
Si (5)  

where S̃i is the normalized correlation ratio of xi, and 
∑n

i=1
S̃i = 1. This 

allows the normalized correlation ratios to be directly compared to their 
target, the weights wi (since the wi also sum to 1). 

Second, the problem of adjusting the contribution of the indicators 
can be formulated by defining an objective function as the sum of 
squared differences between the S̃i at a given set of weights and the 

target S̃
*
i , accordingly: 

wopt = argminw

∑n

i=1

(

S̃
*
i − S̃i(w)

)2

(6)  

where w = {wi}
n
i=1 and wopt ≥ 0. Here it is assumed that the initially 

assigned weights represent the relative information transfer that is 

desired from each indicator, i.e., S̃
*
i = wi. Hence, the optimization 

problem in equation (6) tries to find a set of weights that minimises the 
discrepancy between the normalized correlation ratios (S̃i) and the 
initially assigned weights (wi). From the perspective of information 
transfer, this equates to adjust the relative information transfer of each 
indicator in relation to the assigned weights by the DM. 

2.2.2. Objective II – Maximizing information transfer 
Mathematically, this problem is formulated by defining an objective 

function as the difference between a vector of all ones, 1→ (i.e., the 
maximum information transfer, Si = 1) and the Si obtained at a given set 
of weights, accordingly: 

wopt = argminw

∑n

i=1

(
1→i − Si(w)

)

(7)  

where the weights must sum to one w = {wi}
n
i=1, and are constrained to 

be positive wopt ≥ 0. By minimising this objective function, the weights 
wopt that maximize the total sum of information transferred from the 
indicators to the index can be found. 

3. Relation between information transfer and average 
correlation 

This section gives an analytical exploration of CI aggregation. It 
discusses how correlations between a set of indicators, xi,…, n, influence 
the information that is transferred from those indicators to the CI y. 
Here, R2

i (or “linear Si”) captures the linear dependence between xi and 
y, as shown in equation (3). Consider the definition of R2

i : 

R2
i = corr2(y, xi) =

cov2(y, xi)

var(y)var(xi)
(8) 

Now, assume a set of n variables with correlation matrix 
∑

. For this 
set of variables, the weighted mean is explored, such that y = Xw, where 
X is the m × n sample matrix, w is the n × 1 vector of weights, and y is 
the vector of output values. By letting ei be a n × 1 vector where all el-
ements are zero except the ith element, which is set to one, this linear 
combination gives (Johnson and Wichern 2007): 

R2
i =

(w′ ∑ ei)
2

(w′
∑

w)(e′
∑

e)
(9) 

Using the expression in equation (9) to obtain R2
i , Fig. 2 shows its 

convergence as the number of indicators (n) changes from 2 to 100, for 
correlation matrices with average correlation coefficients (ρ) ranging 
from 0 to 1 with an interval of 0.1. It can be seen that R2(y, xi) converges 
to ρ for large n, with faster convergence the closer ρ is to 1. This 
convergence is also mathematically derived in Appendix A in the Elec-
tronic Supplementary Information (ESI), where it is shown that, for in-
dicators with equal weights and equal variance, R2

i tends to the average 
correlation coefficient (between indicators) as n tends to infinity. 

From this analysis, it can be concluded that the strength of the cor-
relations between the indicators is directly linked with their capacity to 
transfer information to the CI. A linear combination of poorly correlated 
indicators will, on average, have a weaker dependence (i.e., information 
transfer) between the indicators and the CI than a linear combination of 
highly correlated indicators. Although here information transfer has 
been framed via R2

i , the fact that Si is a nonlinear generalisation of R2
i 

allows these conclusions to be extended to the nonlinear case. Thus, the 
average correlation coefficient ρ of a given correlation matrix can pro-
vide a useful rule of thumb on how the information transfer capacity of a 
CI will be affected, when considering adding/subtracting indicators to a 
framework. This relationship will be further examined in the following 
section by applying the proposed measure to a case study. 
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4. Case study: Electricity Supply Resilience Index 

The management of complex socio-technical systems that are also 
embedded in environmental ones requires a dedicate array of tools to 
lead (i) the conception of their structure, (ii) the identification of their 
key variables and functions, (iii) the development of their underlying 
model, and (iv) the assessment of their integrated performance, as well 
as the effect of uncertainty in the input variables on the model output. 
One of the premier concepts proposed to conduct integrated assessment 
and management of systems is the one of resilience. It empowers ana-
lysts to consider technical, biophysical and socio-economic factors under 
one framework to support the understanding of the systems (Roostaie 
et al., 2019). A main example of complex socio-technical systems that 
requires a dedicated evaluation from a resilience perspective is the one 
of energy. The pervasive nature of this type of systems is such that it 
encompasses multiple others, including the biophysical ones at multiple 
scales (Fernandes Torres et al., 2019). In fact, energy systems have direct 
and indirect implications on the environmental systems, including 
water, land and air. Given the importance of this topic, the tools pre-
sented in Section 2 are tested with one CI developed to assess energy 
systems resilience. More specifically, they are used with one CI out of the 
38 that constitute the Electricity Supply Resilience Index (ESRI), a CI 
developed within the Future Resilient Systems (FRS) program, at the 
Singapore-ETH Centre (SEC). It is based on 12 indicators evaluating 
countries’ security of electricity supply from a resilience perspective 
(Gasser et al., 2020). The targets of the evaluation are 140 countries that 
represent a wide spectrum of nations from all around the world. ESRI 
uses data compiled from the International Energy Agency (IEA), the 
International Renewable ENergy Agency (IRENA), Paul Scherrer In-
stitute’s (PSI) ENergy-related Severe Accidents Database (ENSAD), the 
World Bank, the Swiss Reinsurance Company (Swiss Re) and the U.S. 
Energy Information Administration (EIA). The underlying data has been 
treated for outperformers, identified with the Interquartile range (IQR) 
method. Values are considered as outperformers if they lay outside 1.5 

times the IQR from the first and third quartiles (Q1 and Q3 respectively). 
These were trimmed to the nearest value that is not an outperformer.4 

After trimming, missing values have been replaced by the average in-
dicator values using an unconditional mean imputation,5 as one of the 
common methods to deal with missing data (Nardo et al., 2008). The 
final scoring and ranking of ESRI is obtained by 38 different combina-
tions of normalization methods and aggregation functions (Gasser et al., 
2020). Normalization methods are used to render the raw data compa-
rable and suitable for aggregation. In the cited study, eight of these 
approaches were selected. Ordinal, linear and non-linear normalizations 
were chosen to account for the variability of approaches that can be 
selected by the analysts. In CI development, once the indicators are 
normalized, they have to be aggregated to provide a final score and 
ranking. Gasser et al. (2020) considered six aggregation functions, in 
order to include different preferences of the decision maker in the form 
of compensation between the indicators. 

The research in Gasser et al. (2020) is an extensive exploration of 
how different combinations of normalization methods and aggregation 
functions can affect the final score and ranking of the countries. How-
ever, the correlation analysis is limited to the assessment of the positive 
and negative trends between the indicators, as well as the coherence of 
the set of indicators (i.e., reliability of the scale). As shown in this paper 
in Section 2, correlation analysis can be used to do much more, including 
the exploration of the correlations between the indicators by assessing 
the information transferred from each indicator to the CI and study the 
effect that different weighting schemes have on each of them. Conse-
quently, the tools proposed in Section 2 are used in this case study to 
extend the understanding of the effect of the data structure on the 
weighting stage in the CI. It must be noted that the CI resulting from the 
proposed weighting scheme is not more nor less valid compared to the 
ESRI proposed in Gasser et al. (2020). Given that CIs cannot be validated 
with objective measures as they model a concept that is not directly 

Fig. 2. R2as a function of the number of indicators n with different values of average correlation coefficient ρ. The lines represent the different correlation scenarios, 
ranging from 0 to 1 with an interval of 0.1. 

4 Note that the trimming is based on the actual data for the chosen 140 
countries, not the theoretical min and max values. Across the 12 indicators, 88 
values were identified as outperformers and trimmed to the nearest value 
within the IQR range.  

5 Across the 12 indicators, 65 instances of missing values were identified and 
replaced. It must be noted that the use of the indicator mean can result in a 
decrease of the correlations. 
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measurable, the value of the research resides in refining the learning 
about the implications of different data structure on the influence that 
indicators have in CIs. 

In this paper, the tools presented in Section 2 are applied to one CI, 
developed with the combination of one normalization method (i.e., min- 
max normalization) and one aggregation function (i.e., additive weighted 
sum) to develop ESRI. The reason for this choice is that these are among 
the most commonly used approaches in their respective discipline 
(Carrino 2017; El Gibari et al., 2019; Greco et al., 2019), so the results 
are of interest to a large audience of analysts and decision makers. The 
index used in this paper and obtained with this combination of 
normalization method and aggregation function is called Resilience 
Index for Analysis and Optimization (RIfAO). The software called 
Composite Indicator Analysis and Optimization (CIAO) (Lindén et al., 
2021), developed by some of the authors of this paper too, was used to 
perform the statistical analysis. Appendix B in the ESI provides more 
details on the framework and the indicators that constitute RIfAO, while 
Appendix C in the ESI includes the raw and normalized dataset used to 
construct RIfAO. It must be pointed out that no final scores of RIfAO are 
actually presented and discussed, since the objective of this case study is 
not to focus on the rankings obtained with this index, but rather to apply 
the optimization algorithms according to the objectives (I) and (II) 
presented in section 2.2 to achieve the desired information transfer from 
each indicator to the CI. Furthermore, Appendix D in the ESI presents the 
results of the same analysis by using the raw dataset, i.e., the dataset 
without trimming the outperformers, which shows that similar trends 
have been found as with the application of CIAO tool with the RIfAO 
dataset with the trimmed outperformers. 

The methodology used to develop RIfAO, conduct the statistical 
analysis with the tools from Section 2, and elaborate the resulting rec-
ommendations for weighting scenario choice and index revision is 
shown in Fig. 3. Step 1 refers to the normalization of the dataset with the 
min-max normalization. In step 2, the correlations are analysed by 
means of Pearson correlation coefficient ρ to study the interrelations 
between the indicators. The normalized indicators are then aggregated 
with the additive weighted sum in step 3. Step 4 studies the information 
transferred (Si) at equal weights and discusses the average correlation 
measured with respect to the step-wise addition of indicators. Lastly, 
step 5 provides recommendations for the choice of a weighting scheme 
according to a set of conditions that the DM might be interested to set for 
the index development. This leads to three scenarios (i.e., scenario A, B, 
C) which represent different combinations of three main features of the 
problem: (i) the variability of the information transferred (Si) from each 
indicator to the index; (ii) the possible removal of one or more indicators 
from the index; and (iii) the possible loss of mean information transfer 
(Smean

i ). Each scenario is described in detail in section 4.2 and 4.3. 
Step 1 in RIfAO development leads to the normalization of the 

dataset. For indicators with a positive polarity - meaning that the higher 
the value the better for the evaluation - the chosen normalization 
method is given by the formula [Xji − min(Xi)]/[max(Xi) − min(Xi)]. 
Indicators with a negative polarity - meaning that the lower the value 
the better for the evaluation - are transformed via [1 − [Xji − min(Xi)]/

[max(Xi) − min(Xi)]], where Xji is the raw country value in the ith in-
dicator Xi, i = 1,2, …, n. This procedure results in a linear trans-
formation of the data, ranging from 0 (min) to 1 (max), and is performed 
on all indicators to render them comparable. Table 1 gives an overview 
of each of the 12 indicators that are included in the RIfAO framework, 
and Fig. 4 shows the Pearson correlation coefficients (ρ) between them 
(step 2 in Fig. 3). For conciseness, the indicators are labelled according 
to their ID number (e.g., IND 1), as defined in Table 1, in all graphs and 
figures. 

By examining the correlation structure of RIfAO, it can be noticed 
that there is a large variation in the correlation strength between the 
indicators, with values ranging from − 0.44 to 0.94. Although many 
indicators show a positive correlation between them – the highest (ρ =

0.94) being between IND3 (Control of corruption) and IND10 (Govern-
ment effectiveness) – there are also a number of negative trends visible. 
IND6 (Electricity import dependence) showcases negative correlations 
with all the other indicators. This finding shows that IND6 is mostly 
capturing a trend which is opposite to the other indicators in the dataset. 
Also, a few non-significant correlations6 can be seen. Four out of the 
eleven negative correlations displayed by IND6 are non-significant. IND7 
(Equivalent availability factor), except for a high positive correlation 
with IND2 (Severe accident risks), presents non-significant correlations, 
all close to 0. This finding confirms how IND7 is mostly disconnected 
from the trends of the other indicators in the dataset. These last two 
indicators proved to be of high interest in the subsequent stages of the 
analysis, especially when discussing the possible re-structuring of 
RIfAO. 

4.1. Information transfer at equal weights 

As far as weighting is concerned, equal weights are assigned to each 
indicator, with the modelling assumption that the trade-offs between 
each one included in the conceptual framework should be equal. This 
section explores information transfer in RIfAO at equal weights and it is 
performed in two steps. First, the RIfAO indicators are aggregated with 
equal weights (step 3 in Fig. 3) and an ex-post assessment of information 
transfer is performed by estimating the correlation ratios, via regression 
analysis, between the indicators and the index (step 4 in Fig. 3). The 
resulting regression fits are shown in Fig. 5, where both a linear (R2

i ) and 
nonlinear (Si) regression model are fitted to the data. Second, the 
resulting correlation ratios (Si) are then normalized and assessed in 
comparison to the vector of equal weights. This comparison is shown in 
Table 2. 

From observing the resulting regression fits and the estimated R2
i and 

Si values in Fig. 5, it can be noted that the indicators showing a linear 
trend towards the index (e.g., IND3 – Control of corruption or IND4 – 
Political stability) also have a low discrepancy between their R2

i and Si 

measure. In these cases, linear estimates are sufficient to capture their 
dependence. However, there are also indicators that display nonlinear 
tendencies towards the index (e.g., IND1 – SAIDI or IND2 – Severe acci-
dent risks). In these cases, the linear regression model underestimates 
their dependence (see e.g., IND2 which has an R2

i of 0.48 but an Si of 
0.66). This highlights the importance of also considering nonlinearities 
between the indicators and the CI when estimating dependence. 

What is further evident from Fig. 5 is that not all indicators are 
transferring an equal amount of information, hence they do not have the 
same influence on the index, even though they are assigned equal 
weights. Thus, they are not equally influential in representing countries 
across the concept measured by RIfAO. The normalized correlation ra-
tios (S̃i) in Table 2 further showcase this discrepancy (see “Deviation 
ratio” column), with values ranging from 64% overrepresentation 
(IND10) to − 77% underrepresentation (IND7). By re-examining the 
correlation matrix in Fig. 4, a connection between correlation strength 
and information transfer is evident: the information in the highly 
correlated indicators (e.g., IND3,8,10,12) tends to be overrepresented, 
whereas the opposite holds true for the poorly, non- or negatively 
correlated indicators (e.g., IND5,6,7,11). These findings are especially 
relevant in relation to the previously defined link between correlation 
and information transfer under restricted conditions (see Section 3). 
Indeed, even when distributions are not strictly linear, an indicator’s 
correlation with the other aggregated indicators provides a strong 
indication of its capacity to transfer information to the CI. 

Based on this statistical analysis, it is possible to assign the indicators 
to three groups (Table 2): 

6 Defined according to significance level p = 0.05. 
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• Group 1: IND3,8,10,12 high correlations and Si, and also high positive 
deviation ratios. This characterises indicators that are 
overrepresented.  

• Group 2: IND5,6,7,11 : low correlations and Si, and also the highest 
negative, as well as absolute, deviation ratios. This characterises 
indicators that are underrepresented.  

• Group 3: IND1,2,4,9: intermediate correlations and deviation ratios, 
leading to moderate over- or under-representation. 

The analytical analysis presented in Section 3 was adapted to RIfAO 
to study the effect of each indicator on the average correlations of the 
index (step 4 in Fig. 3). The results are presented in Fig. 6, showing how 
the average R2

i , Si and Pearson correlation (ρ) perform when indicators 
are added incrementally one-by-one to develop RIfAO. The measures 
show a common trend. Nonetheless, it can be seen how notable diver-
gence emerges between Si and Pearson correlation (ρ) when IND6 and 
IND7 are added. This analysis also shows that there is a significant “drop- 
off” in information transfer when IND6 and IND7 are added to the 
framework, which confirms that low correlated indicators result in low 
information transfer. In addition to the findings in Section 3, these re-
sults show that the average correlation can provide a useful, albeit not 
perfect, rule of thumb with respect to how much information (on 
average) is transferred from a set of indicators to the CI – even for a 
smaller sample size and when distributions are not strictly linear. 

4.2. Information transfer at optimized weights 

The variance-based analysis of RIfAO shows that the information 
transfer from the indicators to the CI is not equal, even though equal 
weights are applied, and strongly driven by the correlation structure. In 
addition, the information transfer from each indicator to the CI is not 
maximized. This section explores two avenues of weighting that a 
decision-maker might be interested in case he/she wants to achieve a 
balanced information transfer or a maximized one, while the framework 
of indicators has to remain the same. They are contextualized as two 
different scenarios, Scenario A and Scenario B, with different conditions 
that a DM might require to be met (step 5 in Fig. 3). 

Scenario A considers a DM who:  

1. Does not want to have a widely unbalanced Si for each indicator;  
2. Does not want to revise the indicators in the index;  
3. Can accept a possible loss of Smean

i . 

This scenario results in RifAO with 12 indicators, where the main 
objective is to equally balance the information transfer from each indi-
cator (Balance opt.). 

Scenario B considers a DM who:  

1. Accepts a possible wide Si variability for each indicator;  
2. Does not want to revise the indicators in the index;  
3. Aims to have as much as Smean

i as possible. 

This scenario results in RifAO with 12 indicators, where the main 
objective is to maximize the total information transferred from each 
indicator (Maximize opt.). 

The scenarios are modelled by optimizing the weights in line with 
the objective functions (equations (6) and (7), respectively) defined in 
Section 2. The next sections describe the results of each scenario. 

4.2.1. Scenario A – Equally balancing the information transfer from each 
indicator (Balance opt.) 

Scenario A results in the most unbalanced set of weights, as shown in 
Fig. 7. Most notably, the negatively correlated indicator (IND6 - Elec-
tricity import dependence) receives the highest weight (35%) and also the 
non-correlated indicator (IND7 - Equivalent availability factor) receives a 
substantial share of the weight (10%). Furthermore, five indicators 
(IND2 - Severe accident risk, IND3 - Control of corruption, IND8 - GDP per 
capita, IND10 - Government effectiveness and IND12 - Ease of doing business) 
receive zero weight and two more (IND1 - SAIDI and IND9 - Insurance 
penetration) obtain a weight close to zero (i.e., 0.01). Even though only 
five indicators receive a weight greater than 0.01, as shown by the 
correlation ratios in Fig. 8, the information contained within the zero- 
weighted indicators is still captured by the CI simply through correla-
tion. Judging from previous observations, it can be assumed that these 
indicators (excluding IND2) are sufficiently represented by the inclusion 
of IND4, with which they are all highly positively correlated (see Fig. 4). 

The error bars in Fig. 8, representing the 5–95% percentiles, show 
that the resulting weighting vector from the Balance opt. objective would 
achieve the most well-balanced information transfer from each indica-
tor, ranging from Smin

i = 0.14 to Smax
i = 0.25. However, the average 

contribution is relatively low (Smean
i = 0.19). The correlation ratios in 

Fig. 8 show that only two indicators (IND6 and IND7) measure an 
increased information transfer, compared to the case of equal weights. 
Hence, this weighting scheme does practically not improve the total 
information transfer but rather reduces the information transfer from 

Fig. 3. The methodology used to develop RIfAO and the resulting recommendation for weighting scenario choice and index revision (w.r.t. = with respect to).  
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the highly correlated indicators, to target a balanced contribution. In 
other words, the Balance opt. weighting scheme focuses mostly on the 
indicators which are underrepresented (IND5,6,7,11, see Group 2 in 
Table 2), at the cost of reduced mean information transfer (Smean

i ). 

4.2.2. Scenario B - Maximize the total information transferred from each 
indicator (Maximize opt.) 

This scenario results in a slightly less unbalanced set of weights than 
in scenario A (see Fig. 7). In this setting, the weights are mostly assigned 
to the highly correlated indicators (e.g., IND4 - Political stability (12%), 
IND8 - GDP per capita (19%) and IND10 - Government effectiveness 
(16%)) whereas the two non- or negatively correlated indicators (IND6 
and IND7) receive zero weight. Interestingly, the correlation ratios in 
Fig. 8 reveal that the information in these two indicators is, albeit only 
slightly for IND7, still represented by the CI through correlation. Most 
notably, IND6 shows an increased information transfer compared to the 
equal weights and Balance opt. weighting scenario, even though it is 
receiving zero weight. 

In line with its objective, most indicators show an increased infor-
mation transfer to the CI when the Maximize opt. weighting scheme is 
applied. Only three indicators (IND1, IND7 and IND11) show a decline in 
relation to the equal weighting scenario. When comparing the average 

correlation ratios, Fig. 8 shows that this weighting vector does achieve 
the highest total information transfer (Smean

i = 0.54). However, the large 
error bars (even higher than for the equal weights case) suggest that it is 
unevenly distributed amongst the indicators, ranging from Smin

i = 0.04 
to Smax

i = 0.93. It can thus be concluded that the pursuit of maximizing 
total information transfer comes at the expense of certain poorly 
correlated indicators (especially IND7), which are barely represented by 
the CI. 

4.3. Revising the CI based on the information transfer analysis 

For both optimized (i.e., Balance and Maximize opt.) weighting 
schemes in RIfAO with 12 indicators, the poorly correlated indicators 
(especially IND6 and IND7) revealed to be problematic from a perspec-
tive of information transfer. When the Balance opt. weighting scheme is 
employed, these indicators receive a substantial share of the weights. 
The result is a balanced information transfer from the indicators to the 
CI, but with a low total information transfer. When the Maximize opt. 
weighting scheme is deployed, these indicators receive low or zero 
weights. This results in a high total information transfer, but with a large 
discrepancy between the individual indicators. A third scenario (Sce-
nario C, step 5 in Fig. 3) has thus been developed, where the DM:  

1. Wants to keep the Si variability in a narrow range;  
2. Is willing to revise the indicators included in the index;  
3. Does not want to have an excessive (compared to equal weights and 

maximize weighting schemes) loss of Smean
i . 

This is mainly performed for exploratory reasons. The previous 
analysis shows that these indicators are not transferring much infor-
mation to the index and their inclusion does not allow achieving a 
balanced information transfer from each indicator. Hence, we explore if 
we can achieve this by omitting them from the CI. A key drawback/ 
consequence of omitting low correlated indicators is that these can 
contain a high information content of that indicator dimension. This 
information would then be “lost”. However, what we have shown is that 
this information is not really represented by the index in the first place, 
so removing them will have a low effect on the index scores and 
resulting rankings. 

This problem framing leads to what is called RIfAO 10, an index with 
10 indicators where IND6 and IND7 are removed from the CI (see above 
discussion) and the balance optimization is used (i.e., RIfAO with 10 
indicators with Balance opt.). The resulting weights and information 
transfer measures are shown in Fig. 9 and Fig. 10, respectively. 

Similarly to the case of RIfAO with 12 indicators, Fig. 9 shows that 
the Balance opt. still results in an unbalanced set of weights, even though 
IND6 and IND7 are removed. The same five highly correlated indicators 
(IND2 - Severe accident risk, IND3 - Control of corruption, IND8 - GDP per 
capita, IND10 - Government effectiveness and IND12 - Ease of doing business) 
receive zero weight. However, the distribution of the remaining weights 
is not the same as for RIfAO with 12 indicators. In the absence of IND6 
and IND7, IND11 now receive the most substantial share of the weights; 
followed by IND5, IND9, IND4 and IND1 (in decreasing order). Again, it is 
important to note that the information in the zero-weighted indicators 
would still be captured by the CI simply through correlation by the in-
clusion of IND4 and IND9. This is shown by the resulting correlation 
ratios in Fig. 10. 

The key difference compared to the previous case of RIfAO 12, 
however, is the magnitude of information transfer achieved at Balance 
opt. weights. Contrary to the case of 12 indicators, it is now possible to 
achieve a rather well-balanced information transfer, ranging 
from Smin

i = 0.41 and Smax
i = 0.52 (see Fig. 10), without reducing the 

total information transfer to the same extent (Smean
i = 0.46 compared to 

Smean
i = 0.19 in the case of 12 indicators). For comparative purposes, 

Fig. 10 also includes the Smean
i for the Maximize opt., for RIfAO with 10 

Table 1 
Descriptive statistics (prior to normalization) for the 12 indicators used to 
develop RIfAO. Min and Max values refer to the studied countries indicator 
scores, but not necessarily the whole value range that a country can take.  

ID – Indicator Unit Polarity Mean SD Min Max 

IND 1 – System 
Average 
Interruption 
Duration 
Index (SAIDI) 

Hours per 
year and 
customer 

– 6.8 7.5 0 21.4 

IND 2 – Severe 
accident risks 

Fatalities/ 
GWeyr 

– 1.7 2.1 0 7 

IND 3 – Control 
of corruption 

Percentile 
ranka 

+ 49.1 29.6 0.5 100 

IND 4 – 
Political 
stability and 
absence of 
violence/ 
terrorism 

Percentile 
rank 

+ 45.4 28.1 0 99.1 

IND 5 – 
Electricity 
mix diversity 

Normalized 
Shannon 
index 

+ 0.4 0.2 0 0.8 

IND 6 – 
Electricity 
import 
dependence 

Ratio (cons/ 
prod) 

– 0.9 0.1 0.6 1.2 

IND 7 – 
Equivalent 
availability 
factor 

% + 70.3 14.2 37.3 85.2 

IND 8 – GDP per 
capita 

2010 USD 
per capita 

+ 14582 16348 332 50107 

IND 9 – 
Insurance 
penetration 

premiums 
paid in % of 
GDP 

+ 1.6 0.9 0.1 3.9 

IND 10 – 
Government 
effectiveness 

Percentile 
rank 

+ 53.3 29 0.5 100 

IND 11 – 
Average 
outage time 

Hours – 1.7 1 0 4 

IND 12 – Ease of 
doing 
business 

Distance to 
frontier 

+ 62.7 13.1 32.8 86.4  

a Percentile rank is the proportion of scores in its frequency distribution that 
are equal to or lower than it. For example, if country A has a percentile rank of 
88%, it means that 88% of the other countries have a score below the one of 
country A. 
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Fig. 4. Pearson correlation coefficients (ρ) (significance level = 0.05) between the 12 indicators of the RIfAO. Colours and ellipses represent strength and direction of 
the correlation. Numbers in grey background represents non-significant correlations. Asterisks represent significance levels, accordingly: * = 0.05, ** = 0.01, *** 
= 0.001. 

Fig. 5. Regression fits of RIfAO (y-axis), obtained with equal weights, against each indicator (x-axis), using two different regression approaches: linear (cyan) and 
splines (red). Above each plot is the estimated dependence, both linear (R2

i ) and nonlinear (Si), between each of the 12 indicators and RIfAO. 
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indicators. It can be seen that the discrepancy between the two Smean
i is 

considerably reduced with respect to the case of the CI based on 12 
indicators. Most importantly, the wide variability in the Smean

i shows that 
there is still a considerable imbalance of information transfer from each 
indicator in this RIfAO with Maximize opt, though the mean value is 
higher than in RIfAO 12, and the lower bound increases from about 0.1 
to 0.2, whereas the upper bound remains at about 0.9. Maintaining the 
Si variability in a narrow range was a binding condition to be met for 

Scenario C, and for this reason, only the Balance opt. is considered as a 
viable option, in the case of RIfAO with 10 indicators. 

5. Discussion 

Information transfer and correlations are intricately related in the 
construction of CIs. In this paper, it was confirmed that correlations lead 
the indicators to transfer information differently and hence have a 
different influence/impact on the CI as compared to the assigned weight. 
In order to deal with this discrepancy between desired influence of in-
dicators (i.e., weights) and their actual influence driven by correlations, 
we provide tools that allow a deep-dive into this complex interrela-
tionship and study the information transfer in relation to both weights 
and correlations. The main contributions of this research consist in:  

1. Proposing a measure of information transfer based on correlations 
between the indicators along with two weight-optimization 
methods. The analyst can now adjust the weights to achieve either 
a targeted or maximized information transfer from a set of indicators.  

2. Showing that while targeting indicator contributions is important, it 
is also relevant to consider the overall information conveyed by the 
index, thereby introducing the second optimization objective 
(maximizing information transfer).  

3. Showing how the number of indicators, and the average correlation, 
can inform the analyst about the overall information transfer. More 
specifically, we demonstrate the convergence of information transfer 
towards the average correlation coefficient. The resulting analysis 
indicates that the strength of the correlations between the indicators 
is directly linked with their capacity to transfer information to the CI. 
In fact, correlations can be a good rule of thumb of how information 
transfer from a set of indicators will behave in the aggregation of a 
CI.  

4. Applying these tools to a case study on electricity supply resilience 
assessment. 

Regarding the case study, we apply the proposed tools to one version 

Table 2 
A comparison of the normalized correlation ratios S̃i, obtained by nonlinear 
regression, and the assigned weights wi (in this case equal). The deviation refers 
to the difference between the two and for the description of the groups, see the 
text.  

Indicator S̃i  wi  Deviation Deviation 
ratio (%) 

Group 

IND 1 – SAIDIa 0.103 0.083 − 0.020 − 24% 3 
IND 2 – Severe accident 

risks 
0.108 0.083 − 0.025 − 30% 3 

IND 3 – Control of 
corruption 

0.120 0.083 − 0.037 − 44% 1 

IND 4 – Political 
stability 

0.088 0.083 − 0.005 − 6% 3 

IND 5 – Electricity mix 
diversity 

0.043 0.083 − 0.040 − 48% 2 

IND 6 – Electricity 
import dependence 

0.024 0.083 − 0.059 − 71% 2 

IND 7 – Equivalent 
availability factor 

0.019 0.083 − 0.064 − 77% 2 

IND 8 – GDP per capita 0.132 0.083 − 0.049 − 59% 1 
IND 9 – Insurance 

penetration 
0.074 0.083 − 0.009 − 11% 3 

IND 10 – Government 
effectiveness 

0.137 0.083 − 0.054 − 64% 1 

IND 11 – Average 
outage time 

0.035 0.083 − 0.048 − 58% 2 

IND 12 – Ease of doing 
business 

0.117 0.083 − 0.034 − 40% 1  

a System Average Interruption Duration Index. 

Fig. 6. Average Si, R2
i and Pearson correlation (ρ) with respect to ordinal addition of indicators.  
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of the Electricity Supply Resilience Index (ESRI) developed at the 
Singapore-ETH Centre, which was called Resilience Index for Analysis 
and Optimization (RIfAO). The resulting analysis shows that correla-
tions between RIfAO’s underlying indicators have a direct influence on 
the index, preventing the equal weights assigned to correspond to an 
equal information transfer from each indicator. Different weighting 
schemes and index revision scenarios are also proposed according to 
specific requests that the DM might have with respect to possible loss 
and balance of information transfer, as well as indicators’ inclusion in 
the index. When the weighting scheme used to distribute influence 
equally between indicators (i.e., Balance opt.) is employed, highly 
correlated indicators are poorly weighted, and less correlated indicators 
receive a substantial share of the weights. The outcome is a balanced, 
but low information transfer from the indicators to the CI. When the 

weighting scheme proposed to maximize the information transfer from 
the indicators (i.e., Maximize opt.) is applied, it is instead the less 
correlated indicators that are poorly weighted in favour of the more 
highly correlated indicators. The result is a high total information 
transfer, but with a large discrepancy between the individual indicators. 
However, when the two poorly correlated indicators are removed from 
RIfAO, the results indicate a less evident trade-off between the two 
weighting schemes, with comparable average information transfer 
though well-balanced with the Balance opt. scenario compared to the 
Maximize opt. scenario. Thus, if there is a large inconsistency (variation) 
in correlation strength between the indicators, it is probable that there 
will be an unbalanced information transfer from each indicator even 
though equal weights are applied. This phenomenon is not possible to 
counterbalance by adjusting the weights without compromising the 

Fig. 7. The weights obtained from the two optimization problems, Balance (grey) and Maximize (blue), compared to the vector of equal weights (dark grey).  

Fig. 8. The resulting correlation ratios (Si), obtained at each weighting scenario: Equal (dark grey), Balance (light grey) and Maximize (blue). To the right, the mean 
values for each weighting scenario are presented along with error bars, indicating the 5th and 95th percentiles. 
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information transferred to the CI, and its overall capacity to convey a 
representation of its underlying components, the indicators. 

Our research also contributes to an ongoing debate on the inclusion 
of positively and/or negatively correlated indicators in CIs. On the one 
hand, there are authors like Marttunen et al. (2019) who advocate for 
the inclusion of not or negatively correlated indicators as they can be 
more informative for a decision since they bring unique perspectives on 
the aspects under evaluation. On the other hand, there are other authors 
like Munda et al. (2020) who warn about the risk of including indicators 
with low or negative correlations as their information might not be 
represented in the CI. Our research advocates for a balanced reasoning 
between these perspectives as follows. 

When correlation exists between indicators, it means that informa-
tion is shared between the two indicators. To take extreme cases, if 
(nonlinear) correlation is zero, that means that there is no shared in-
formation, and the two indicators are bringing completely unique in-

formation contributions. If correlation is one, the indicators are collinear 
and encode effectively the same information. Clearly, the second case is 
not useful because it implies double counting.7 However, the first case 
comes with some pros and cons. On the one hand, as pointed out by 
Marttunen et al. (2019), zero correlation between indicators means that 
there is no overlap, and that can be seen as a good. But this comes at a 

Fig. 9. The weights obtained from the Balance opt. compared to equal weights (dotted line), for RIfAO with 10 indicators.  

Fig. 10. (Grey) The resulting correlation ratios (Si) obtained at Balance opt. weights, for RIfAO aggregated with 10 indicators. To the right, the mean value presented 
along with error bars, indicating the 5th and 95th percentiles. (Blue) The mean Si for the Maximize opt., for RIfAO with 10 indicators. 

7 This reasoning applies to a decision-making problem with a flat structure 
for the indicators. It would nonetheless be possible to keep the same indicator 
in two different dimensions if there would a hierarchy of indicators where the 
same indicator is present in more than one dimension. In this case, it would be 
possible keep the same indicator twice and use for example value functions to 
transform/normalize the data, so that e.g., value X of indicator A in dimension 1 
means a 0.2, while the same value X of indicator 1 in dimension 2 means a 0.4, 
assuming the transformation is between 0 and 1 with an increasing order of 
preference. 
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cost, as we show in Fig. 2, since if one combines several indicators with 
zero correlation this will result in a CI that contains relatively little in-
formation from any one of the indicators. Therefore, in our opinion, if a 
concept can be summarised by some very few indicators with low cor-
relations, this can still be acceptable as it is still possible to have a 
moderate information transfer. However, as Fig. 2 shows, above 10 in-
dicators with an average correlation coefficient of zero, R2is less than 
0.1 between indicators and index, which contrasts with the fundamental 
objective of CI development itself, being the condensation of informa-
tion of many indicators into one. Consequently, we recommend that 
when only looking at the correlations, if they are low, only a few in-
dicators should be aggregated together, but if they are high, more in-
dicators can be aggregated. However, the whole development of the CI 
should in the ideal case be embedded in a stakeholder consultation 
process, i.e., decisions on indicators will not just be driven by correla-
tions but influenced by the priorities of the stakeholders. Additionally, 
potential interactions between the indicators might also be included in 
the development of the CI, which are not necessarily equal to 
correlations. 

The authors also think that it is relevant to separate two different 
concepts: “Information transfer” and “Information content”. It is true 
that a low correlated indicator can imply a high information content of 
that indicator dimension. However, what we show is that because of its 
low correlation with the other indicators, it will not transfer much of 
that information to the index, i.e., the index will not contain much of the 
information of that indicator dimension. Hence, a low correlated indi-
cator will have a low information transfer to the index but can still, by 
itself, have a high information content of that specific indicator 
dimension. 

This research also comes with a number of limitations that are pre-
sented below, together with options for future research to tackle them. 
This study has not considered the effects of changing aggregation 
methods and input data, which can be considered as one of the inherent 
uncertainties in composite indicators. In order to understand the effects 
of changing input data and aggregation method, one would have to 
perform an uncertainty analysis, e.g., a Monte Carlo sampling, along the 
lines of Saisana et al. (2005). What we propose in this research is not to 
investigate the uncertainties in weights, but more to calibrate them to a 
desired objective (i.e., target or maximize information transfer). Any 
uncertainty analysis is thus an avenue for future research. The same 
reasoning applies to the assessment of the effect that each source of 
uncertainty can have on the index variance. A possible option is this 
respect would be fuzzy MCDA methods (Kaya et al., 2019). 

The application of the CIAO tool to the case study is based on the 
fully compensatory additive weighted sum, which means that its results 
are meaningful only for this type of aggregation function. However, the 
CIAO tool can be used with aggregation functions that have lower 
compensation levels than the additive weighted sum, such as the geo-
metric and harmonic ones. Like the additive weighted sum, also the 
geometric and harmonic weighted sums are already included in the 
CIAO tool, and they can surely be a very interesting opportunity for 
future testing of our tool. There are however aggregation functions 
which would not be suitable for the CIAO tool, like extreme “aggrega-
tion” operators, such as the minimum and maximum operators. The 
reason is that since only one indicator would determine the final score 
(the worst with the minimum and the best with the maximum opera-
tors), there would be no optimization of weights to be performed as only 
one indicator would be defining the overall performance. 

This research has not accounted for a DM who is willing to accept a 
compromise between the two objectives proposed for the weight opti-
mization. This is because the goal of our research is to offer the users the 
CIAO tool to exactly achieve the desired target behind each optimization 
objective. In case the DM would like a compromise between these two 
objectives, the option of applying a multi-objective model could be 
explored. 

Finally, the Simeasure proposed in this research has been developed 

for a decision-making challenge with a flat structure of the indicators, 
meaning that there is only one level between the constructed concept 
and the variables used to measure it with the CI. It can however be noted 
that, for a hierarchical index with multiple pillars and based on an ad-
ditive weighted average, it would be also possible to calculate the 
effective weight of each indicator in the index by multiplying the indi-
cator weight by its pillar weight, or by optimizing one level at a time. 

The statistical analysis presented in this paper surely adds a layer of 
complexity for the well-informed development of composite indicators. 
The weighting of the indicators in fact results as a combination of data- 
driven (i.e., statistical) and stakeholder-based (i.e., value choices of the 
DM) input, which might be difficult to communicate, especially if the 
index is developed for advocacy purposes. Nonetheless, these types of 
advanced statistical analyses can be used to assess and enhance the 
robustness of the models that are developed, ultimately leading to more 
sound decision-making. This is in line with the recent call for such type 
of research as presented, for example, by Moallemi et al. (2020) and 
Saltelli et al. (2019). 

6. Conclusions 

The tools introduced in this study allow developers of CIs to explore 
in detail the effect of weighting choices, in an easily interpretable 
framework based on the concept of information transfer. For the first 
time, this work has shown that trying to balance the contributions of 
indicators may often come at the expense of reducing the overall in-
formation transferred from each indicator to the index. Most likely, 
developers will wish to find a compromise point between balancing and 
maximizing information transfer, and the optimization algorithms here 
give the means to assign selected weights in the perspective of these two 
competing criteria. As demonstrated with the RIfAO case study, this can 
sometimes be achieved by re-structuring the index. 

This research also relates to an existing discussion on the use of su-
pervised (DM-driven) and unsupervised (machine-driven) methods for 
studying and defining the complexities and interdependencies of a 
certain decision problem. When the complexity is such that the required 
knowledge cannot be easily given or the decision maker is not knowl-
edgeable enough, the unsupervised method can be useful in at least 
providing an initial mapping of the decision problem (Kojadinovic 
2008). Consequently, unsupervised methods are not to be seen as 
competitors to the methods that employ active interaction with the 
decision makers to define these dependencies and the resulting weights. 
Rather, they should be viewed as aiding tools to navigate the difficulties 
embedded in shaping the understanding of complex systems evaluated 
by means of multiple criteria. 

Furthermore, it is important to note that the users of the tools pro-
posed in this research are envisioned to be analysts with a mathematical 
background in statistical analysis and development of CI. A key 
distinctive feature of this type of users is their desire of providing a 
bridge between two scientific communities, on the one side data analysis 
without stakeholders’ involvement, and on the other side decision aid-
ing based on inclusion of stakeholders’ preferences. The users can in fact 
use the tools provided by this research to achieve the desired contri-
butions of the underlying indicators in the CI. 

The tools proposed here are intended to provide “goalposts”, be-
tween which developers can pick a desired target, and are not meant to 
supersede the conceptual relevance of the indicators, communication 
issues, and methodological choices in other stages of the CI construction, 
which are other highly relevant factors. More specifically, the DM can 
define the conditions for the index development with respect to (i) the 
possible loss of mean information transfer, (ii) the possible variability 
range of the information transferred from each indicator to the index 
and (iii) the willingness to discuss the possible removal of one or more 
indicators from the index. Once these conditions are defined, the 
weighting scheme can be obtained with the proposed tools and their 
results discussed among the stakeholders to decide how to proceed in the 
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development of the index. 
Finally, the current findings should not be simply generalized and 

applied, but the wider applicability of the proposed tools requires 
further testing with different datasets, with a varying number of in-
dicators and alternatives, and with further normalization and aggrega-
tion functions. The difference of this research with respect to other 
sensitivity analyses is that the proposed framework does not aim to 
study the variability of the results according to the choices involved in 
its construction, such as the selection of the indicators, the normaliza-
tion methods or the aggregation algorithms (Saltelli et al., 2019; Dou-
glas-Smith et al., 2020; Zhang et al., 2020). It instead focuses on the 
effect of the correlation structure on the influence that each indicator 
has in the CI. When foreseeing a link with the other uses of sensitivity 
analyses, the proposed framework could also be applied to different 
conceptualizations of the CI to study how the recommended weighting 
would change based on e.g., different normalization methods and/or 
aggregation functions. 

7. Software 

The calculations for the case study on electricity supply resilience 
were performed with the software Composite Indicator Analysis and 
Optimization (CIAO) (Lindén et al., 2021), which was specifically 
developed for this research, and it is now freely available at the link: htt 
ps://bitbucket.org/ensadpsi/ciao-tool/src/master/. 
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