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Abstract: Besides robustness, a crucial aspect of power grid resilience is the postdisruption restoration of transmission capacity. Conven-
tionally, grid repair planning is initiated when damage assessment is complete. With the current communication bandwidth and the role of
drones in inspection, damage assessment is an increasingly dynamic process. Early damage estimates can serve preliminary repair planning.
Subsequent replanning is then performed as updated damage assessments come in, thus mitigating the impact of restoration uncertainties. The
present work examines the gains from starting grid recovery using preliminary damage estimates and replanning repair. A receding horizon
approach, model predictive control (MPC), is applied to the IEEE-39 bus system. The benefits are expressed by the integral loss of service
(ILOS), measuring the power demand not served over time. In the baseline, repair planning is not performed before definitive repair estimates
are delivered. In this study, MPC reduces the maximum ILOS by up to 57%. In terms of computation, three prediction steps are sufficient for the
receding horizon to decrease the maximum ILOS by at least 37%. DOI: 10.1061/AJRUA6.0001159. This work is made available under the
terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Extreme weather-related power outages have significantly increased
in the last two decades. In the United States, the number of major
power outages affecting more than 50,000 customers has doubled
since 2003; adverse weather conditions are associated with 80% of
all outages (Kenward and Raja 2014). In particular, 679 widespread
power outages due to severe weather conditions between 2003 and
2013 have resulted in annual losses between USD 18 billion and
USD 33 billion (National Geographic 2013). To counteract this
trend, resilience has been widely acknowledged as one of the most
significant properties to foster in power systems (Wang and Gharavi
2017; National Academies of Sciences and Medicine 2017) and the
ability to maintain and restore system functionality in the presence
of disruption is seen as an important facet of resilience (Hosseini
et al. 2016). For power grids, the US National Academy of Sciences
identifies as necessary activities planning, preparation, reaction to

disruptive events, endurance and assessment of the damage, resto-
ration, and recovery (National Academies of Sciences and Medicine
2017). Contrary to the estimation of damage severity in the case of
weather events, e.g., strong wind, by fragility modeling (Panteli
et al. 2017), nonpredictable disruptions, e.g., earthquakes, regional
risk assessment can enable faster response (Çağnan et al. 2006).
However, the large number of potential damage and outage scenar-
ios limits the degree to which the recovery is amenable to pre-
planned and detailed procedures (Jiang et al. 2012). This results in
a demand for quick planning response, addressing system recovery,
which comprises both the repair of the damaged infrastructure and
the restoration of the power flow.

The effects of recovery on system performance are quantified
by the evolution of the measure of performance (MOP) upon dis-
ruptions and the associated resilience phases as shown in Fig. 1.
The MOP at time t is expressed as the percentage demand served
at time t. The difference between the 100% MOP and the current
MOP value is the demand not served at any time; integrating the
demand not served through the recovery yields the cumulative de-
mand not served, referred to as the integral loss of service (ILOS)
(gray shaded area in Fig. 1). After a disruption, the absorption
capability lessens the impact to the MOP. Recovery starts at time
t0, the effect on the MOP is seen after the completion of the first
repair, at tw and spans over the time Tr.

Grid operating organizations commonly face two challenges
related to power grid failures. First, in the planning stage the chal-
lenge is to design more reliable networks and response plans, ad-
dressing the absorption capability through grid hardening (National
Academies of Sciences and Medicine 2017). The second challenge
is managing the repair and restoration process in the operational
stage, addressing the recovery capability, which aims at minimiz-
ing the demand not served and recovering as fast as possible, regard-
less of the initial postdisruption state of the grid (Arab et al. 2016).
Thus, efficient implementation of grid recovery, based on thoroughly
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assessed plans, critically contributes to power grid resilience (Na-
tional Academies of Sciences and Medicine 2017).

Damage assessment is the first recovery step in the case of large-
scale damage to the grid (Çağnan et al. 2006), providing repair time
estimates and thus the basis for repair planning. Damage assess-
ment typically consists of an aerial survey, which identifies mal-
functioning lines and delivers a coarse estimate of repair times
based on the detected damage severity. The following ground sur-
vey carried out by linemen inspection crews refines these estimates
(T&D World 2016). The complete assessment usually spans from
24–48 h (Nowak 2018).

In practice, repair planning and repair, i.e., crew deployment and
routing over the road network, are not initiated until damage assess-
ment is complete. Furthermore, damage information is increasingly
available in real time due to the digitalization of the damage assess-
ment process (Nowak 2018). Consequently, planning and repairs
can be initiated earlier, which could speed up the overall service
restoration. However, this implies planning on the basis of prelimi-
nary damage assessment results and the capacity to replan as the
damage estimates are refined. This paper examines the potential of
the receding horizon planning approaches and specifically evalu-
ates the model predictive control (MPC) method for this applica-
tion. These approaches incorporate updated damage estimates on a
rolling basis in a continuous replanning process. The process se-
quence of this approach is shown in Fig. 2. Subsequent to the event,
damage assessment is carried out followed by repair and restora-
tion. The overlapping part shows the gain from initiating the repair
and restoration process sooner before waiting for the completion of
the ground survey. The conventional approach of waiting until the
complete damage assessment information is available before pre-
paring a definitive repair plan is seen to correspond to an open loop
approach.

Therefore, the contribution of this work is to minimize the ILOS
of a damaged transmission grid by starting the repair process early
even with limited damage information to reduce the waiting gap (in

Fig. 1, the difference between t0 and tw includes both the waiting
gap and the time to complete the first repair). Second, by updating
the repair planning continuously with the most recent damage in-
formation to enable replanning of the scheduled repair actions and
grid operations.

Based on receding horizon model predictive control (MPC),
which allows dynamic replanning based on damage information
updates, this work addresses three questions:
1. Does the MPC approach improve the repair performance com-

pared with the current industry standards?
2. Which factors affect the MPC performance?
3. What is the minimum MPC planning horizon that yields an

acceptable level of performance?
The remainder of this paper is organized in sections as follows.

The next section examines the literature and research gaps leading
to this work. The section “MPC Approach for Repair Planning of
Power Grids” discusses the methodology of damage assessment and
repair planning under the open loop (OL) and MPC approach, the
modeling of the power grid, road network, and repair planning. The
section “Case Study” introduces the IEEE39 bus network to answer
the three aforementioned research questions. Thereafter, results and
discussion and findings are presented. The paper is concluded with
final observations and suggestions for future work.

Relevant Literature

Previous work on power grid recovery following disruptions ad-
dresses the construction or assessment of recovery strategies and
plans. The former includes handling of multiple teams and the eco-
nomic minimization of repair costs. Assessment studies, on the
other hand, cover analyses of existing recovery strategies, policies,
and plans through simulation or comparative analysis.

Assessments have especially focused on preformulated strate-
gies (PJM Interconnection 2017) which are used in the power trans-
mission and distribution industry for the ordering of repair actions.
In Çağnan et al. (2004, 2006), discrete event simulation is used to
examine how access times, repair times, spare part delivery times,
and the stocks of spare parts affect the performance of repair strat-
egies and plans. The stochastic simulations show that the difference
between actual repair times and logistics and their preplanned val-
ues might affect the order of the whole plan and the total repair
time. The authors conclude that there is a potential for the optimi-
zation of repair planning and logistics.

For the construction of repair plans subject to a specific damage,
Van Hentenryck et al. (2011), Coffrin et al. (2012b), Coffrin and
Van Hentenryck (2015), and Van Hentenryck and Coffrin (2015)
show that an optimized repair order minimizing the demand not
served, accelerates the repair process and minimizes the economic
impact of outages in damaged transmission grids. The associated
mixed integer problem with a nonlinear objective function and lin-
ear constraints is solved by decoupling the problems of repair order
and the optimal repair crew routing (Van Hentenryck and Coffrin
2015). The use of the repair order as precedence constraints in the
scheduling problem is known as constraint injection, and it is used
to schedule multiple teams through a vehicle routing problem.
However, this does not necessarily result in global optimal solutions,
which minimize the blackout size over time raising the question. As-
suming perfect damage, repair time, and access time information as
done in (Van Hentenryck et al. 2011; Coffrin et al. 2012b; Coffrin
and Van Hentenryck 2015; Van Hentenryck and Coffrin 2015)
makes replanning unnecessary, but is unrealistic.

Tan et al. (2019) present a multiteam scheduling approach for
the repair and restoration optimization of distribution networks

Disruption 100% service

Time

100 %
M

O
P

TrTw

t0 tw

Fig. 1. Resilience phases and capabilities. (Adapted from Hosseini
et al. 2016.)

Fig. 2. Process sequence of disaster response subsequent to a shock
event.
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with radial architecture. To accommodate multiple crews, the au-
thors introduce scheduling polyhedra within the repair order prob-
lem, which allows the whole problem to be solved within one stated
optimization problem. The set of power flow is approximated as
one-directional flows in the radial grid topology, simplifying the AC
power flow equations significantly. However, as shown by Coffrin
and Van Hentenryck (2015), reactive power flows are required to
describe a transmission grid during restoration and repair. Further-
more, only repair times are considered but not traveling times be-
tween the sites. Tan et al. (2019) assume perfect damage and repair
time information and discuss the possibility of replanning the repair
order due to updated damage information (Tan et al. 2017).

Morshedlou et al. (2019) extend the problem of repair planning
to general complex infrastructure networks with an application of
the DC power flow model to the French 400 kV system. Contrary
to the other models discussed, the allocation of multiple repair crews
for one line and the partial operability of damaged components are
being considered. Further, complete damage information is being
assumed, but the possibility of real time execution is mentioned but
not further investigated.

Xu et al. (2019) compare methodologies for solving the repair
planning problem in terms of ILOS performance given damage sce-
narios caused by various seismic intensities. These include compo-
nent importance-based methods, genetic algorithm-based meth-
ods, and time index-based heuristic and component index-based
exact solution methods. A combination of the index-based heuristic
method and the component index-based exact solution method is
shown to achieve the best ILOS performance. However, the model
does not consider changing damage assessment information or up-
dating and replanning.

A different approach on optimization is taken by Arab et al.
(2016). Contrary to the other work presented and to our work, the
authors aim to minimize the economic costs of disruptions, con-
sidering for disaster economics such as hourly crew costs, gener-
ation costs, shutdown and startup costs. However, this approach
assumes constant economic value of transmission lines and simple
linear flows on the transmission lines. As shown by Coffrin and
Van Hentenryck (2015), however, this does not reflect the realistic
power flows of grids during restoration. Nevertheless, this assump-
tion allows for modeling the problem as a linear program with an
exact solution through Benders decomposition. Updating or replan-
ning are not considered in this contribution, because repair costs are
considered as fixed given parameters.

The aforementioned studies do not consider the damage assess-
ment as an ongoing process, providing accessible but changing re-
pair time estimates. In turn, the resulting waiting gap that causes
additional ILOS is not taken into account, because these studies
assume that repair planning begins with perfectly accurate repair
time estimates once the damage assessment is fully available. To
overcome the waiting gap limitation and to utilize real time infor-
mation, Van Hentenryck et al. (2012) employed the online stochas-
tic combinatorial optimization (OSCO) methodology to solve the
problem based on fragility modeling. The authors suggest that a
mixed approach of OSCO and conventional damage assessment
shows the best performance. However, one essential assumption is
that damage assessment teams conduct repair, which is not in agree-
ment with the industry standards, as presented in (T&DWorld 2016;
Nowak 2018; Çagnan et al. 2004). To our knowledge, this is the
only work which considers actual repair times that may differ from
predicted repair times; however, this work does not derive the repair
times from a damage assessment based on aerial survey and ground
survey but from simulation.

A widely used approach to face real time information in multi-
stage optimization problems is model predictive control (MPC)

(Camacho and Alba 2013), which has shown to be suitable for dy-
namic decision-making problems requiring replanning (Sethi and
Sorger 1991). The receding horizon approach, as a central idea of
the MPC, solves the control problem for the next N steps, only
applies the first step of the solution and, then, repeats (Camacho
and Alba 2013). The approach is advantageous if the full horizon
is not solvable, or for reducing the computational burden. MPC
has been successfully applied for operational restoration planning
including black-start and re-energization, incorporating real time
information and system state feedback (Qiu and Li 2017; Golshani
et al. 2017; Gholami and Aminifar 2017). For combinatorial
problems, such as vehicle routing problems and traveling sales-
men problems, which are relevant to the repair planning as used
in (Van Hentenryck et al. 2011; Coffrin et al. 2012b; Coffrin
and Van Hentenryck 2015), receding horizon approach has been
studied in the operations research, game theory, and decision-
making context (Sethi and Sorger 1991; Kimms and Kozeletskyi
2016; Perez et al. 2013).

In summary, the optimization-based planning of repair order and
repair crew routing has been addressed in the literature. However,
existing approaches assume perfect information on damage extent
and repair times. This work examines the implementation of the
MPC concept to address one of the gaps in the repair planning,
i.e., the evolving state of information and the consequent replan-
ning and aims to evaluate its feasibility and performance.

MPC Approach for Repair Planning of Power Grids

To quantify the potential of the MPC approach, its performance is
compared in this section with the Open Loop baseline approach.
The latter follows the common repair planning strategies presented
in the literature (Van Hentenryck and Coffrin 2015; Tan et al. 2019;
Xu et al. 2019) and entails a sequential damage assessment, repair
planning, and repair execution process for all K damaged lines as
shown in Fig. 3(a).

Once the damage assessment is completed, the repair plan is cre-
ated for a whole set of K damaged transmission lines and executed
subsequently. Given the availability of exhaustive damage assess-
ment and precise repair times, the solution to the repair plan problem
produces the optimal repair sequence. However, this comes at the
cost of waiting until the ground survey is completed and hence of
increased ILOS.

MPC Approach

To overcome the limitation of waiting until the complete damage
assessment information is available, the MPC approach can formu-
late the repair plan and execute it as soon as the first piece of

(a)

(b)

Fig. 3. (a) Process flow of the open loop approach; and (b) MPC
approach and its feedback loop.
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information is available, i.e., the ground survey of the first in-
spected transmission line in this model as shown in Fig. 2. Embrac-
ing the MPC vocabulary, the repair planning for the K damaged
lines is executed in a receding horizon scheme with the planning

horizon K
∼ ≤ K based on a mix of aerial survey data and data from

the ongoing ground survey. After the repair of the next transmission
line, which marks one step k of the current plan, the repair planning
problem for the remaining damaged lines is solved again by in-
corporating the updated ground survey information as shown in
Fig. 3(b), which marks one iteration of the repair planning process.
After a line is repaired, it is removed from the set of damaged lines,
and the location of the latest completed repair is used as the updated
starting location for the routing of the repair crew in the next plan-
ning iteration.

A similar concept of MPC which accounts for traveling to con-
trol the state evolution is Mobile MPC (MoMPC) which merges
replanning combined with travel times and has been applied for the
manual control of irrigation channels (Maestre et al. 2014).

Fig. 4 shows the damage assessment and repair planning/
execution scheme for the baseline and MPC approach. The damage
assessment uses the result of the inspection by aerial survey and
ground survey and produces repair time estimates, which are up-
dated during the ongoing ground survey and are available in real
time to the repair planning. The repair planning allocates the repair
crews and determines the operational schedule by solving a joint
optimization problem with the objective of minimizing the ILOS
to fulfill the demand while utilizing the available power supply.
The repair plan is executed by the routing of the repair crew, which
performs the repair actions, and, concurrently, the operations,
i.e., line switching, load shedding, and generation output control
are jointly coordinated by the TSO, who leads the repair and oper-
ations planning.

The power grid is represented by two system perspectives,
i.e., by the grid transmission assets and by the corresponding opera-
tional features described by the power flow equations. The OL and
the MPC approaches are executed according to Figs. 3(a and b),
respectively. In particular, the OL approach executes the planning
only once after the completed damage assessment; conversely, the
MPC approach runs a new iteration of repair planning after a repair
of a transmission line has been accomplished based on the most
recent update from the damage assessment.

The developed MPC approach for the repair planning of power
grids is framed as an optimization problem with the objective
to minimize the ILOS. Its key components are introduced in the
remainder of this section. The next subsection describes the resil-
ience metrics and objective function of the optimization problem.
The structure and operations of the power grid and road network,
the damage assessment and the repair processes are represented as
constraints in the optimization problem. In particular, the follow-
ing subsection introduces the spatial model of the grid and of
the road network, which is used for the damage assessment and the
repair planning presented thereafter. After the description of the
power grid operational model, finally, the section is concluded
with a presentation of the overall optimization problem combining
the aforementioned objective and constraints.

Resilience Metrics and Optimization Objective

The increase of the recovery capability of the power grid, focusing
on the ILOS for the affected customers, is achieved in three stages,
namely: (1) by shortening the time Tw, which is the timespan be-
tween the start of damage assessment t0 and the completion tw of
the first repair action, as shown in Fig. 1; (2) by the repair order
optimization during the timespan TR; and (3) by the optimal sched-
uling of loads and power injections at each repair stage computed
by optimal power flow operations.

Given the active power Pi being served to the load at bus i, the
MOP is defined by the demand served over the whole grid:

MOP ¼
X

i∈loads
Pi ð1Þ

These power injections Pi are determined by the demand, sup-
ply, and the power flow depending on the current grid topology
available. Conversely, the loss of service (LOS) is defined by
the difference of the nominal total demand Pd and the MOP,
i.e., LOS ¼ Pd −MOP.

To measure the overall performance of the recovery phase, the
ILOS quantifies the energy which has not been served to all cus-
tomers in the grid over the recovery and is defined by the integral of
the loss of service over time. Given the discrete steps defined by the
repair actions of K damaged lines, the ILOS is calculated as:

 

  

 

 

Fig. 4. Flow chart of the approach linking the power grid operations, its physical state, the damage assessment and the repair planning and execution.
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ILOS ¼
XK
k¼0

ILOSðkÞ ¼
XK
k¼0

LOSðkÞ · dtðkÞ

¼
XK
k¼0

ðPd −MOPðkÞÞ · dtðkÞ ð2Þ

This is illustrated in Fig. 5 for one time step dtðkÞ. The time
difference dtðkÞ between two consecutive repair actions consists of
repair time and travel time. Indeed, travel times can have a non-
negligible impact on the ILOS especially in case of limited repair
crew resources. Thus, the ILOS depends on initial LOS, the LOS
levels following the power grid repair actions by the operations,
i.e., the solution of an optimal power flow, given the current grid
topology and the time in between those repair actions.

Spatial Grid and Road Network Representation

The power grid consists of geographically distributed components,
i.e., N substations (buses) and M transmission lines made up of di-
verse components, namely, line segments, towers, and poles. Trans-
formers are located at the substations and are modeled as part of a
transmission line with negligible length. Damage assessment and
repair crews can access substations through the road network. To re-
duce the problem complexity caused by the large number of loca-
tions requiring inspection and repair, transmission lines are modeled
as starting and ending at substations. The geographical properties of
a transmission line are characterized by its start and end locations.
The length is the Euclidian distance between those buses. Every
component of a transmission line can be accessed through a service
road or off-road terrain from the start or the end point of a trans-
mission line. To enable the crew routing, the matrix A is constructed
from the road network with each entry aij describing the shortest
path travel time between substations i and j.

Damage Assessment

The estimated total repair time of a transmission line is quantified
based on its damaged components and their damage severity. Be-
cause no repair planning data are available prior to the aerial survey,
the aerial survey must be completed before any planning is per-
formed (in the baseline and in the MPC case). The time t0 marks
the end of the aerial survey and the beginning of the ground survey.
Therefore, the aerial survey contributes to the waiting gap (as pre-
sented in Fig. 1) in the same extent in the baseline and inMPC cases.

The ground survey is carried out by inspection crews, traveling
along the damaged transmission lines with a given speed and re-
cording the detailed damage of all components affected as defined
in the Appendix. Contrary to the aerial survey which can only es-
timate the damage extent of a line, the ground survey inspection
crews provide detailed assessments on site. This provides an update
to the estimate of the damage severity from the aerial survey and,
thus, of the total repair time of the transmission line. Because in
practice, the ground survey identifies the parts needed for repairs;
hence, repair crews cannot start repairing a transmission line until
the ground survey is completed.

Fig. 6 illustrates the ground survey process for one transmission
line with two damaged components. Updates to the ground survey
are reported immediately and become available to the repair plan-
ning process; therefore, repair time estimates rely on aerial survey
data, ground survey data or a mix of both if the ground survey on
the particular line is still ongoing. Thus, the most recent repair time
estimate for of transmission line ij is computed as:

trij ¼
X
a∈La

tra þ
X
g∈Lg

trg ð3Þ

where La = set of components where only the aerial survey is avail-
able, whereas Lg represents the set of components for which the
ground survey has been completed with corresponding repair time
estimates tra and trg . The derivation of these estimates is presented
in the Appendix under “Damage Severity” based on the component
type and damage level classification. The conditional probabilities
that the aerial survey correctly classifies the damage level are listed
in the Appendix under “Damage Assessment.”

The ground survey needs to be scheduled optimally to minimize
duration and to ensure that lines with the highest impact to the ser-
vice restoration are released for repair first and repair allocation to
subordinate transmission lines is subsequent. This is achieved in
two stages, i.e., (1) a preliminary repair order is calculated without
considering travel and repair times as in Van Hentenryck and
Coffrin (2015), and (2) the sequence obtained is used as an impor-
tance ranking for scheduling the ground survey inspection crews,
the extremity of transmission lines at which inspection begins, and
the routing. The schedule is obtained through a round-robin scheme
(Rasmussen and Trick 2008), i.e., the lines to be inspected are al-
located to inspection crews in order of descending importance.

Considering the inspection order, the travel times over the road
network and the total ground survey inspection time of a line ij, its
ground survey finishing time tfij can be calculated. The minimum
ground survey finishing time determines the earliest start of the re-
pair process.

Cooptimization of Repair Planning and Operations

Based on the damage assessment, demand and supply and service
guidelines, two intertwined plans are developed through one joint

Fig. 5. Illustration of the ILOS and its dependence of MOP and
timesteps dtðkÞ.

Damaged tower
(located at km x
from start)

Damaged line
segment

Start location End location

Inspection direction
Inspection speed

Fig. 6. Sketch of the ground survey for one transmission line.
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cooptimization approach that minimizes the ILOS. These are the
repair plan, identifying the sequence of repair actions and locations,
and the operations plan, identifying when to activate repaired trans-
mission lines and how to dispatch power generators and perform
load shedding subject to the available topology and power flow
limits.

Repair Planning
Repair planning is characterized by the following features:
1. The main repair planning guideline is to minimize the total de-

mand not served, i.e., the ILOS. The guideline is general and can
be tailored to specific preferences of the system operators;

2. In the repair order problem, the damaged components are char-
acterized by the repair time calculated from damage severity;

3. Logistic issues, i.e., material and replacement components, are
not explicitly considered;

4. The repair of a transmission line starts at either endpoints and
ends at the opposite side;

5. The travel speed of repair crews is 50 km=h on roads and
20 km=h along the transmission lines between the repair ac-
tions; and

6. The repair of a damaged line can only start if the corresponding
ground survey has been completed to ensure that spare parts will
be on site.
Each line can be accessed by the two buses it connects; therefore,

4 · 2 travel combinations exist between lines ij and mn. Hence,
for every additional damaged line to set K, 4 · 2 · K travel combi-
nations are added and thus, the set K has a total of 8 · ðK ·
ðK − 1Þ=2Þ travel combinations. The crew routing is described by
the variable vij;mnðkÞ ∈ f0; 1g, which takes the value 1 if the crew
travels from bus j of line ij to busm of linemn, performs the repair
of line mn and completes the task at bus n during step k. Thus, the
time estimate cij;mn associated with this repair schedule is:

cij;mn ¼ ajm þ trmn
ð4Þ

where ajm = shortest path travel time between bus j and m, and
trmn

= repair time estimate of line mn. Accordingly, vðkÞ and c
are vectors of the 4 · K · ðK − 1Þ values of vij;mnðkÞ and cij;mn.

To complete the repair, all damaged transmission lines must be
visited. The following constraint prevents that a line gets visited
twice in opposite directions:X

k

X
fijg∈K

ðvij;mnðkÞ þ vij;nmðkÞÞ ≤ 1 ∀ ðmnÞ ∈ K ð5Þ

Eq. (5) is formulated as an inequality to accommodate for the

planning horizon K
∼ ≤ K and is an equality in the OL case. Here, we

assume one repair crew which can travel one path at a time. Thus,X
ðijÞ;ðmnÞ∈K

vij;mnðkÞ ¼ 1 ∀ k ð6Þ

holds for all permutations of ðijÞ, ðmnÞ ∈ K. Furthermore, a crew
can only depart from and arrive to a line, which is formulated by the
constraint: X

ðijÞ∈K
vij;mnðkÞ −

X
ðijÞ∈K

vmn;ijðkþ 1Þ ¼ 0

∀ k ∈ f1; : : : ; jKj − 1g; ∀ ðmnÞ ∈ K ð7Þ

The time difference between the steps k and kþ 1 is represented
by dtðkÞ as illustrated in Fig. 5. To exclude the case that no
damaged transmission lines are available for repair because the
damage assessment is still ongoing, the waiting time twrðkÞ ≥ 0 is

introduced. With the constraint, Eq. (6) which allows only one en-
try of vðkÞ to be 1, the time difference dtðkÞ can be calculated by:

dtðkÞ ¼ cTvðkÞ þ twrðkÞ ð8Þ

The MPC receding horizon scheme and the quantification of the
performance of a repair plan require that the scheduling and com-
pletion of repair actions be related to a common reference time. To
this aim, the total elapsed time at step k is introduced:

TðkÞ ¼ T0 þ
Xk
s¼1

dtðsÞ ð9Þ

T0 is initially set as the completion of the aerial survey time. In
the receding horizon, T0 needs to be set for every new planning
iteration to Tðk ¼ 1Þ of the previous planning iteration to keep ac-
count of the elapsed time. Due to the logistics issue of spare parts,
the repair of a transmission line cannot start before its ground sur-
vey completion time tfmn

. This is enforced by the constraint:� X
ðijÞ∈K

vij;mnðkÞ
�
· tfmn

≤ TðkÞ − trmn
∀ ij; k ð10Þ

To indicate that a line has already been repaired at time step k,
the indicator variable rijðkÞ ∈ f0; 1g, rijðkÞ ≤ rijðkþ 1Þ, is intro-
duced as:

rijðkÞ ¼
Xk
s¼1

X
ði;jÞ∈K

ðvij;mnðsÞ þ vij;nmðsÞÞ ð11Þ

and rijðkÞ ¼ rjiðkÞ. For the repair planning of the MPC approach,
the transmission lines already repaired are removed from the set of
the damaged lines K, which is updated at each planning iteration.
The repaired lines are not included in the remaining planning.

Power Grid Model
In the power grid, any bus i can host loads and generators, and is
characterized by the active power injection Pi and reactive power
injection Qi. The active power flow from or into the bus i;PiðkÞ, is
calculated by:

PiðkÞ ¼
X
j≠i

pijðkÞ ð12Þ

where pij = active power flow on the transmission line connecting
buses i and j. For the reactive power flow, QiðkÞ ¼

P
j≠i qijðkÞ. If

Pi > 0, then the bus represents a net generator bus. The net power
injections by generators and the withdrawal by loads of active and
of reactive power at bus i are characterized, respectively, by the
lower bounds P_i and Q_i and by upper bounds P_i and Q_i. Fur-
ther, the electric properties of a bus are described by its bus bar
voltage and phase angle. The transmission lines are described
by their conductance, susceptance, and thermal line flow limit S̄ij.

Because the grid is in the recovery state and not at its normal
point of operation, the DC power flow approximation does not
match the AC solution sufficiently as it neglects reactive power
flow and bus bar voltages (Coffrin and Van Hentenryck 2015).
Therefore, the AC power flow equations are approximated by a
linear programming approach which is known as linear program-
ming AC (LPAC) (Coffrin and Van Hentenryck 2014). This
approach approximates the cosine function of the phase angle dif-
ference in the power flow equations as LPAC ccosij with the selec-
tion of the best linear functions as approximations by solving a
linear optimization problem.
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To schedule grid operations, two sets of decision variables are
considered, i.e., (1) which lines are in operation, and (2) how to
shed load and how to set the generator feed-in. The former set ac-
counts for the Braess’s paradox, i.e., a repaired line should be kept
out of operation if this leads to a larger power supply. This is imple-
mented by introducing the variable zijðkÞ ∈ f0; 1g indicating if the
line ij is operational with the constraints

zijðkÞ ≤ rijðkÞ ð13Þ

zðkÞ ¼ zjiðkÞ ð14Þ

The second set of variables constrains the power injections Pi
andQi to minimize the ILOS and ensure safe operations. Therefore,

transmission lines can only transmit power when in operation and
must not be overloaded, i.e., the apparent power must stay within its
thermal limit S̄ij ¼ S̄ji:

P2
ij þQ2

ij ≤ zijðkÞ · S̄2ij ð15Þ

The nonlinear constraint in Eq. (15) is replaced by eight linear
constraints, forming a piece-wise linear approximation as explained
in Coffrin et al. (2012a).

Cooptimization Formulation
After introducing the objective function, damage assessment, repair
planning and power flow, the whole optimization problem is for-
mulated as the following mixed integer problem:

max
XjKj

k¼1

ðMOPðkÞ − 100%Þ · dtðkÞ þ
X
i;j;k

ccosij Eq: ð2Þ þ LPAC ccos variables
s:t: LPACpower flow

Bus summation constraints

Generation and loadconstraints Pi;Qi; P̄i; Q̄i

Apparent power flow limit replacement constraints

LPAC cosine replacement constraints

Location constraints Eqs: ð5; 6; 7Þ
Repair constraints Eq: ð11Þ
Braess’s Paradox Eqs: ð13; 14Þ
Timing constraints Eqs: ð8; 9; 10Þ
Initial conditions vð0Þ; rð0Þ; zð0Þ;Tð0Þ
vij;mnðkÞ; zijðkÞ; rijðkÞ ∈ f0; 1g ∀ ðijÞ; ðmnÞ; k ∈ f1; : : : ; jKjg
pijðkÞ; qijðkÞ;PiðkÞ;QiðkÞ; dtðkÞ;TðkÞ ∈ R ∀ ðijÞ; k ð16Þ

The objective function in Eq. (2) and the constraints presented
in the section “MPC Approach for Repair Planning of Power Grids”
result in mixed integer nonlinear programming. As the cosine
functions of the power flow equations are linearized by the LPAC
approximation and the apparent power limitation constrains are
replaced by a piece-wise linear approximation as explained in the
subsection “Power Grid Model,” only the objective function term
minimizing the ILOS remains nonlinear. This allows precomputing
the power flows according to every possible repair action over the K
steps as linear optimization problems. Eventually, the best sequence
can be obtained by assessing the objective function terms which
minimize the ILOS.

Case Study

To assess the viability of the MPC approach, its performance is
contrasted against the performance of the baseline approach for the
same scenarios. To answer the question, “Which parameters impact
the MPC performance?” we focus on those parameters that have
an immediate effect on the uncertainty of the repair time estimates
following the aerial survey, because the MPC approach particu-
larly relies on them for the initial planning. As the most crucial

parameters, we identify the quality of the aerial survey and the dam-
age severity given by the number and damage level of components
affected per line.

Whereas the damage severity and aerial survey quality address
situation- and scenario-specific parameters, we additionally assess
the main algorithmic parameter, i.e., the prediction horizon of the
MPC approach defined as the number of repair steps ahead calcu-
lated in the receding horizon. Our analysis starts at one step pre-
diction horizon up to five steps, determined by the limits of the
available computational power.

Demonstration System

The IEEE 39 bus system (Carr 2013) is used for demonstration
purposes. It resembles the size of a regional transmission grid con-
sisting of 39 buses with 10 generators, 19 loads, and 46 transmis-
sion lines. Published spatial data are only available for a part of
the grid (Manitoba Hydro International 2018). Subsequently, the
spatial grid properties are calculated by multidimensional scaling
from impedance-per-km industry standard values (Manitoba Hydro
International 2018) and shown in Fig. 7. The line colors indicate
the percentage of thermal loading limit in steady state operation.
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The artificial road network, represented by the dotted black lines, is
based on Euclidian distances.

Simulation Parameters

Table 1 presents the simulation parameters whose impact on the
MPC approach performance is assessed. Row one of Table 1 de-
scribes the value ranges over which the parameters are varied. The
damage scenarios are characterized by the damage topology, i.e., the
number and the spatial distribution of the affected lines, and by
the damage severity, i.e., the number and type of damaged compo-
nents and their damage levels per each affected line. The maximum
of damaged lines is set as 15 which represents a severe contingency
involving a third of all lines. The minimum is set to seven lines to be
beyond the maximum prediction horizon, to avoid confounding the
effect of the prediction horizon with the damage levels such that this
effect can be quantified and analyzed. The quality of the aerial sur-
vey refers to the conditional probability of classifying the correct
damage level and the resulting deviation between assessed and true
component repair time based on the true damage level. Rows two
to four of Table 1 describe the properties and implications of the
parameters. The parameters with the property algorithmic have a
direct impact on the problem size and on the solution approach,
i.e., OL or MPC. Damage specific parameters cover the parameters

defining the damage extent, i.e., the exact damage topology and
severity. Damage assessment specific parameters cover the aerial
survey quality. The parameters impacting the damage assessment
quality have an impact on the discrepancy between estimated and
real line repair times used in the repair planning. The effect of their
variability is discussed under “Which Factors Impact MPC Perfor-
mance?” Further details on the range of variability of the parameters
are provided in the Appendix.

Results and Discussion

Does the MPC Approach Improve the Repair
Performance Compared with the Open Loop
Approach?

This section focuses on comparing the performance of the MPC
approach relative to the OL approach, in terms of the resulting
ILOS (lower is better). We show this by direct comparison between
MPC and OL simulation results in scatter plots and by exceedance
probability plots over all simulations; further, the maximum ILOS
range of the two approaches is compared in percentage to each
other. This is conducted in two stages: first, one topology, i.e., the
set of affected lines, is fixed. This enables to show the performance

Table 1. Parameters assessed in the simulation of the case study

Parameters

Repair
planning
approach

Prediction
horizon

Aerial
survey
quality

Damage topology
(number of

damaged lines)

Maximum number
of damaged
components
per line

Damage level
of individual
components

Parameter variations in simulation
MPC,

open loop
One–five
steps

Perfect,
poor

7, 12, 15 Max 10,
Max 50

No damage,
light damage,
heavy damage

Parameter properties/implications
Algorithmic X X — X — —
Damage specific — — — X X X
Damage assessment specific — — X — — —
Impacting the damage assessment quality X — X — X X
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Fig. 7. IEEE 39 bus network with a spatial representation with generator/load and normal busses.
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increase in the scatter plot, given that the waiting gap is always the
same. To vary the damage severity which has an impact about
the repair order and aerial survey, 100 severities are generated,
i.e., number of damaged components, their positions and damage
levels and aerial survey results are generated for each of the seven
lines. Because this work intends to show the broad applicability of
the MPC methodology over any topology, in the next stage, 30 ran-
dom damage topologies are generated. For each of these topologies,
the algorithms are assessed for 20 different severities.

To show the benefits of starting the repair early even with lim-
ited information, relying partially on the aerial survey, Table 2
shows one damage topology with seven lines, and Fig. 8 shows
the comparison between the OL and the MPC approach. Each
datapoint shows one realization of severity. If a datapoint is below
the dash-dotted y ¼ x line, the MPC approach outperforms the OL
approach for that damage scenario, which is the case except for one
out of the 100 scenarios. In the under-performing case, the first
transmission line scheduled for repair in the first planning iteration
is selected due to its large impact on the MOP and its short repair
time. However, due to aerial survey quality, this repair time has
been underestimated, whereas the repair times of other transmis-
sion lines associated with smaller MOP contributions have been
overestimated. The combination of the aforementioned factors re-
sults in the underperformance of the MPC approach as compared
with the OL approach.

To quantify and compare the overall performance of the MPC
approach, Fig. 9 shows the overall exceedance probability for 30
different damage topologies and 20 severities for each damage top-
ology. The exceedance probabilities for theMPC curve is dominated
by the OL curve and, therefore, the probability of exceedance for

a given ILOS is smaller when applying the MPC approach for the
repair. Furthermore, the maximum range of the OL ILOS is up to
73% larger than for MPC.

Which Factors Impact MPC Performance?

This section presents the case study results on the impact of the
damage and damage assessment specific factors on MPC perfor-
mance, again in terms of ILOS; the factors are the aerial survey
quality, maximum number of damaged components per line, and
damage level of components.

The simulations of the repair process use the parameter values as
defined in the case study, and the damage topology is fixed to the
same seven lines as defined in Table 2. The damage severity, which
is quantified as light and high in the Appendix, is defined by the
number of damaged components per line and the damage level per
component. The probabilities of aerial survey damage classification
are defined in the Appendix. The two scenarios of perfect and poor
aerial survey represent the boundaries of the range of aerial survey
accuracy. With these parameter variations, four different cases are
simulated, namely, light severity and perfect aerial survey, light se-
verity and poor aerial survey, high severity and perfect aerial sur-
vey, and high severity and poor aerial survey.

As shown in the previous section, the MPC benefits from start-
ing the repair process before the completion of the ground survey.
However, the MPC approach initially relies on repair time estimates
from the aerial survey for planning the repair order, including un-
certainty of repair time estimation. Hence, the main difference be-
tween the MPC approach and the OL approach is the starting time
of repair and the ground survey information available to planning.
Leveraging information update, replanning occurs in the MPC ap-
proach if the updated repair plan based on novel information im-
proves the prospective ILOS.

Eq. (3) states that the repair time estimation is the sum of com-
ponent repair times and traveling time along the lines. Thus, the
overall uncertainty is related to the variance of the estimated repair
times. This variance of the estimation error for one single compo-
nent depends on the accuracy of the aerial survey given the damage
level. Further, the component damage level impacts the estimation
error variance because the damage level classification outcome
of the aerial survey is modeled by a conditional probability (see
Appendix). The interplay of these factors is shown in Fig. 10. The
left column of Fig. 10 illustrates the MPC performance given

Table 2. Affected lines of the fixed damage topology used in this case
study

Line No. From bus To bus

1 3 4
2 3 18
3 14 15
4 15 16
5 16 17
6 16 19
7 17 18
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Fig. 8. Scatter plot of Open Loop ILOS and MPC ILOS comparison
for 100 severities of one damage topology.
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Fig. 9. Exceedance probability plot (semilogarithmic) of 30 different
topologies of seven lines with 20 severities.
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perfect and poor aerial survey under low damage severity. In the
top-left scatter plot, the performance of perfect and poor aerial sur-
vey qualities within the MPC approach is demonstrated. As con-
firmed by the bottom-left exceedance plot, the difference in ILOS
performance between the perfect and poor aerial survey scenario is
not significant. However, in the right column, showing MPC per-
formance under high damage severity, the MPC approach with poor
aerial survey causes significant underperformance. This can be ex-
plained due to an increased variance of repair time estimates with
an increasing number of damaged components.

With independent distributed estimation errors, two conclusions
can be derived from Eq. (3) which explain the results in Fig. 10:
(1) the higher the variance of the individual component repair time
estimates, the higher the uncertainty; and (2) the higher the number
of components per line affected by an estimation error, the higher
the uncertainty of the overall repair time estimate because the vari-
ance of the overall estimation error increases.

Impact of the Aerial Survey Quality on Repair Time
Estimation Uncertainty
The poorer the quality of the aerial survey, the more likely the esti-
mated repair time deviates from the real repair time and deteriorates
the prediction of the prospective ILOS. In this case, the replanning
likely results in an improved repair sequence. If the aerial survey
estimates of the damage severity are exact, the MPC approach ob-
tains the same repair sequence as the OL approach. The difference
in ILOS is determined, hereby, by the waiting time until the ground
survey has been completed and the initial MOP resulting from the
damage induced topology. Moreover, the modification of the repair
sequence might lead to an increase of the travel time and, thus,

accrue the ILOS as compared with the theoretical optimal order
achieved by the OL approach. This happens if the travel time is
comparable to the repair time, if the damage is widespread or if the
number of crews is limited.

Fig. 10 illustrates the ILOS (upper row) and exceedance prob-
ability (EP) (lower row) for two different severity levels and quality
aerial surveys of two equally damaged topologies. As expected, in
both cases the perfect aerial survey yields the best performance. In
the case of the high severity damage, the difference between the EPs
for a given ILOS value increases, and a poor aerial survey causes a
maximum range of ILOS which is 15% larger as compared with the
perfect aerial survey.

If the travel time increases by ΔdtðkÞ due to the replanned
sequence, this also increases the prospective ILOS by the cost of
replanning:

ΔILOSðkÞ ¼ LOSðkÞ · ΔdtðkÞ ð17Þ

Impact of Damage Severity on Repair Time
Estimation Uncertainty
The increase of the number of damaged components increases the
variance of the repair time estimates and, thus, the likelihood of
suboptimal replanning. This is due to the cumulative effects of un-
certainties in the components’ damage levels identified by the im-
perfect aerial survey. Moreover, the damage level of a component
also influences the quality of the repair time estimates based on the
aerial survey. Therefore, there may be a misclassification of the dam-
age severity and the associated repair times as detailed in the Ap-
pendix under “Damage Assessment.” Fig. 11 shows the distribution
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Fig. 10. Comparison of MPC performance with different aerial survey qualities (perfect and poor) and (a and b) under different severities (low and
high) as scatter plots; and (c and d) under exceedance probability curves.
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of the actual and of the estimated repair times per line resulting from
a poor aerial survey for 6,000 transmission lines. Fig. 11(a) shows
the histogram for the case of light damage severity and Fig. 11(b) for
high damage severity. A low severity with a maximum of 10 com-
ponents per line with no damage or light component damage leads to
a similar performance of the algorithm given perfect or poor aerial
survey quality. This does not hold true anymore for a high severity
with up to 50 components per line of light and heavy component
damage level. For the light severity, the histogram shows less dis-
crepancy between aerial survey and real repair times as for the high
severity.

Is It Possible to Reduce the Planning Horizon
of the MPC Approach?

To the best of our knowledge, no clear algorithmic solution cur-
rently exists for the problem stated in Eq. (16). N damaged trans-
mission lines, which can be accessed from two sides, result in
2k · N!=ððN − kÞ!Þ repair planning combinations using a prediction
horizon of k steps. This configures a combinatorial exponential
growing state tree already at small problem sizes, if the full horizon
is solved, and prevents application of the developed methodology
to systems of realistic size. Therefore, this section investigates how

the horizon length impacts the performance of the MPC approach.
The ILOS performance associated with a certain horizon length
of the algorithm might depend on a specific topology; therefore,
20 randomly sampled topologies are investigated with 20 differ-
ent severities each. These problems are solved with MPC horizons
ranging from one to five steps and with the OL approach to com-
pare the performance in terms of ILOS. The EP plots for seven, 12,
and 15 lines are shown in Figs. 12(a–c), respectively. It is clearly
visible that all MPC approaches overperform the OL approach. The
average performance increase of MPC with a prediction horizon of
five steps versus OL is 78% for seven lines, 71% for 12 lines, and
68% for 15 lines. If the prediction horizon is reduced to three steps,
these average performance increases decrease slightly to 64%, 68%,
and 78%, respectively. The maximum ranges of the MPC approach
with a prediction horizon of five steps versus the OL are 42% less
for seven lines, 57% less for 12, and 15 lines. For a prediction hori-
zon of three steps, these ranges are 37% less for seven lines, 51%
less for 12 lines, and 41% less for 15 lines.

To further quantify the advantages of the MPC approach on a
case-by-case basis, we compare the marginal ILOS improvement,

Φ, between two horizon lengths K
∼
and K

∼ − 1. For the simulation u,
this is computed as
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Fig. 12. ILOS Exceedance probability plots (semilogarithmic) for (a) 7; (b) 12; and (c) 15 damaged lines.

0 10 20 30 40 50 60

Line repair time [h]

0

500

1000

1500

2000

N
um

be
r 

of
 li

ne
s

(a)

Aerial survey estimate
Real repair time

0 50 100 150 200 250 300 350

Line repair time [h]

0

200

400

600

800

1000

1200

N
um

be
r 

of
 li

ne
s

(b)

Aerial survey estimate
Real repair time
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ΦðK∼ ; uÞ ¼ 100% ·

�
1 − ILOS

K
∼ ðuÞ

ILOS
K
∼−1ðuÞ

�
ð18Þ

Respectively, we define the average marginal ILOS improve-

ment, Φ̄, between two horizon lengths K
∼
and K

∼ − 1 over all sim-
ulations u ∈ U as

Φ̄ðK∼ Þ ¼ 1

jUj ·
X
u∈U

ΦðK∼ ; uÞ ð19Þ

Fig. 13 shows the average marginal ILOS improvements, Φ̄,
over all 400 simulations for 7, 12, and 15 damaged lines in the
IEEE 39 bus system with MPC horizon lengths of one to five steps.
For all cases as shown in Fig. 13, this average marginal ILOS im-
provement falls below 5% as the MPC prediction horizon exceeds
four steps. A further observation is that at a given MPC planning

horizon K
∼
, Φ̄ðK∼ Þ is higher for the case of a higher amount of dam-

aged lines. This allows the interpretation that damaged topologies
with a higher number of damaged lines require a higher MPC pre-
diction horizon.

Benefits of the MPC Approach to the Repair Planning

Waiting Gap and Replanning
If the quality of an aerial survey is perfect, the MPC approach has
access to the correct planning data from the beginning which results
in the same repair sequence as the OL approach. By definition, the
OL approach starts the repair work not before the last line’s ground
survey has been finished, whereas the MPC approach is capable of
starting the first repair work by the time the first line’s ground survey
has been finished. The time difference of these two different starting
times is the waiting gap Tg which is the time advantage of the MPC
approach. Given the initial MOP after the damage withMOPT0, the
integral loss of service waiting gap (ILOSw) quantifies the advan-
tage upper bound of the MPC approach and is calculated by

ILOSw ¼ Tg · ðMOP100% −MOPT0Þ ð20Þ

Given that the OL approach is provided with the full ground
survey information, it is possible to compute the optimal repair
sequence. The MPC approach, however, relies on a mix of aerial

survey and already completed ground survey data. Hence, only in
a best-case scenario the MPC approach finds the same sequence
with an ILOS of ILOSMPC ¼ ILOSOpenLoop − ILOSw. This sets
the ILOSw as an upper boundary of over-performance against the
OL approach.

Replanning based on updated information might improve a sub-
optimal trajectory during the overlap of ground survey and repair.
Because the ILOS is composed of time and LOS, additional travel
time results in a higher additional ILOS in the beginning when the
MOP is particularly low. Thus, if many repair actions are scheduled
during the overlap, it is more likely for them to be rescheduled.
Furthermore, the more information and completed ground survey
results are obtained within the overlap, the more likely is the case of
replanning. Given these considerations, the MPC can especially
play its advantage in the case of large-scale damage in topology and
severity causing ground surveys of long duration. If the overlap is
long, the waiting gap will increase, and thus the benefit of starting
early increases. However, after the whole ground survey has been
completed, no replanning will happen anymore because informa-
tion will not change.

Future Trends of Damage Assessment and Repair Planning
Especially the first repair actions are depending on the ground sur-
vey scheduling because repair can only start on those lines which
damage assessment has been completed. Thus, the ground survey
and its scheduling are critical for both the OL and the MPC ap-
proach. Whereas for the OL approach only the duration of the whole
damage assessment is of interest because it determines the waiting
gap; it has a direct impact on the repair sequences being determined
in the MPC approach. As explained in the subsection “Waiting Gap
and Replanning,” the durations of repair actions in the beginning
have a higher impact on the resulting ILOS than the repair actions
in the end when the MOP is already close to 100%. If the quality of
the aerial survey is increased, the MPC approach will be less prone
to suboptimal planning due to deviating information. On the other
hand, if the duration of the ground survey gets shortened, the ILOS
of OL approach and the MPC approach will converge because the
advantage of starting early vanishes, and information will be fully
available after the short ground survey. This last point leads to the
future perspective of the damage assessment process. As recently
reported (Pasztor 2017), drone inspection will be used in the future
for the damage assessment as it has been successfully tested. De-
pending on the number of drones available and due to their speed
compared with ground survey crews, this might blur the line be-
tween aerial and ground survey which might be combined eventu-
ally. Due to a smaller distance to the damaged components, the
damage classification is likely to be more precise. This will allow
to decrease the waiting gap to a minimum and improve the repair
planning data quality.

Conclusion and Future Work

The benefits from starting the repair process for the power grid
while the damage assessment is still ongoing was presented in this
work.

The most significant benefit is drawn from starting early,
whereas replanning supports especially the correction of suboptimal
repair sequences. In our simulations, we have shown that this results
in an average ILOS performance increase of up to 78%. However,
we highlight that the performance increase of the MPC approach
decreases in the case of replanning where travel-intense correction
becomes necessary. A notable derivation we have made is that the
performance increase is bounded by the waiting gap determined
by ILOS due to waiting for complete damage information. Further,
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MPC step comparison
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Fig. 13.Average marginal ILOS improvement up to MPC 5 steps for 7,
12, and 15 damaged lines.
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we have demonstrated in our simulations that every factor, increas-
ing the variance of the repair time estimations, i.e., number of dam-
aged components and aerial survey estimation variance, increases
the probability that an ongoing sequence is suboptimal and might
need to be replanned at the cost of additional ILOS.

The main limitation of all approaches presented are that the
solution at every receding horizon step is performed brute force
with an increasing number of operations necessary with increasing
number of damaged lines or increasing number of prediction hori-
zon steps. Furthermore, our investigations were limited to one re-
pair team in this work. Thus, for further work, the MPC approach
has to be extended to accommodate multiple repair team planning.
The solutions of Van Hentenryck and Coffrin (2015), Arab et al.
(2016), and Xu et al. (2019) have not been compared yet in terms
of quality to our brute force MPC approach. For MPC for a smaller
number of teams, a sensitivity analysis needs to be carried out on
how the solutions of those approaches are converging with an in-
creasing number of teams. As one option to extend our approach
for multiple teams while incorporating the asymmetric feature of
the traveling times which are of significance for a certain level
of damage severities. Additionally, as mentioned in the subsection
“Future Trends of Damage Assessment and Repair Planning,” the
cooptimization of the damage assessment needs to be further em-
phasized in future work because it has a significant influence of the
solution quality.

To demonstrate the applicability to real world problems, further
work should cover case studies of existing power grids and road
networks. Realistic damage topologies might be sampled from,
e.g., earthquake probability distributions for the given area. This
might open up a further potential of case studies, revisiting existing
plans or policies, comparing the performance of the different ap-
proaches, and selecting the best performing approach for the net-
work given.

Furthermore, the methodology of combinatorial MPC with an
objective function minimizing the ILOS can be applied to other
fields of networked infrastructure and service systems as it has al-
ready been applied for the repair of road networks (Duque et al.
2016). These might include water systems, sewer systems, or tele-
com systems. Possible applications are disaster response, predictive
maintenance, and the response of hacking attacks in cyber physical
systems.

Appendix. Damage Model and Assessment

Damage Topology

For the simulations, damage topologies of 7, 12, and 15 damaged
lines are considered. To prevent the case that one topology just rep-
resents a special case, 20 damage topologies are randomly selected
for every given topology. The topologies chosen result in an initial
MOP between 53% and 100% in our simulations.

Damage Severity

The damage levels are classified into none, light, and heavy, which
are, respectively, associated with no, minor, and major repairs. For
instance, light damage would require the reinforcement of structures
and components. On the other hand, heavy damage implies a major
repair such as replacement by temporary structures. For the purposes
of this work, minor damage is essentially damage which can be re-
paired relatively quickly, whereas major damage requires more time,
whether this arises from the work required or the availability of the
required parts. Each damage level, depending on the component, is

associated with a given repair time as shown in Table 3. The com-
ponent repair times in this study have been arbitrarily selected but
are below complete reconstruction times (Karagiannis et al. 2017).
Individual component repair times are case specific and influence
the total line repair times. Consequently, the optimal repair planning
will use the case-specific information for deciding on the repair
sequence and the resulting ILOS.

For simplicity, in this work only towers and line segments are
considered. Transformers which are made to order and have long
delivery times would distort the showcase of this methodology and
hence are excluded. For the application in such a case, affected
lines causing major delays might be excluded from the planning
of this approach and threated separately. To address research ques-
tion number 2, three different levels of damage severity are consid-
ered. For each level, the number of damaged components is
sampled from a uniform distribution and capped by a maximum.
The uniform distribution is used because it is not specifying the
distribution mode. System-specific past damage scenario informa-
tion would be needed to define more realistic distributions. In ap-
plying the proposed repair planning approach to an actual system,
such data would be used to establish an appropriate distribution
type and to fit its parameters. Furthermore, the component types
are sampled from a uniform distribution, whereas their damage
severity is sampled with different probabilities as shown in Table 4.
The number of damaged components is drawn from a uniform dis-
tribution [0, max] with the maximum number defined in the table.
The component damage levels are drawn from the probability dis-
tributions defined in this table.

Damage Assessment

The damage assessment parameters for the ground survey are fixed
as inspection crews drive with a speed of 12 km=h along the lines.
Furthermore, three inspection crews are carrying out the ground
survey starting from the Depot located at bus 14. The repair times
revealed by the inspection crews are considered final and do not
deviate. The quality of the aerial survey quality, however, address-
ing research question three, varies. The following conditional prob-
abilities of correct damage classification, depending on poor or
perfect aerial survey quality, are shown in Table 5. The perfect aer-
ial survey detects every damage level correctly with the probability
of 1. To represent the opposite, the poor aerial survey detection

Table 3. Damage levels and corresponding repair times per component for
towers and line segments

Component
No damage

(h)
Light damage

(h)
Heavy damage

(h)

Tower 0 2 12
Line segment 0 1 3

Table 4. Maximum number of damaged lines and damage level
distributions for every severity simulated

Damage severity

Maximum
number of
damaged

components
per line

Probability
of no
damage

Probability
of light
damage

Probability
of heavy
damage

Light severity 10 0.5 0.5 0
High severity 50 0 0.5 0.5
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probabilities are chosen to approximate a uniform distribution be-
tween neighboring damage levels.

Data Availability Statement

The code generated or used during the study is available from the
corresponding author by request.
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