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Abstract

Anomaly detection techniques are applied in many industry settings with great success. This
paper presents experimental evidence of usefulness of these techniques in the High Intensity Pro-
ton Accelerator at the Paul Scherrer Institute. We present an anomaly detection model built as a
combination of the Numenta NuPIC model and an LSTM autoregressor that works on streaming
data from several beam diagnostic devices, automatically learning complex patterns from these
signals after a relatively small adaptation time and small number of false positives. We show
how this system could have alerted human experts of the failure of critical beam instrumentation
tens of minutes in advance by finding anomalies preceding it, which stood unnoticed for several
hours. We also present a full framework to exploit these models, which allows to monitor live
data from the diagnostic devices, model results and diagnostic data and show historical data for

easier model tuning.

1. Introduction

Particle accelerators instrumentation have very tight operational constraints. Bad readings
or failures of critical devices typically lead to avoidable beam interruptions. Particle accelera-
tors control systems handle data from hundreds of thousands of such sensors, like beam current
monitors, temperature sensors, beam loss monitors, etc., at different and often very high update

rates. In accelerators like the High Intensity Proton Accelerator (HIPA) at the Paul Scherrer
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Institute (PSI), which are operated using such control system but also where users require long-
term machine stability or the maximisation of some key parameters, device failure induced beam
interruptions can severely harm the performance and safety of the machine.

Human experts can typically spot any misbehaviour of these signals, and perform preventive
or mitigating operations to neglect or reduce the impact of the failures. However, it is impractical
for human experts to actively monitor thousands of signals. Automated analysis techniques are
therefore necessary if one wants to ensure that this kind of failures are detected reliably. As
many of the signals have a complicated structure that changes both short term and long term,
traditional statistical techniques might not be practical either, as their parameters would have to
be firstly tailored to each specific signal and secondly manually changed over time whenever the
operation configuration of the machine changes. The use of machine learning (ML) techniques
is required to produce models that automatically learn the behaviour and adapt to changes in the
input signals, and then detect any spurious deviations.

Anomaly detection is the branch of ML that automatically learns the structure of (parts of)
the input data and scores each individual point according to how far they deviate from some
notion of normality. The definition of this normality of the data points is usually one of the main
challenges of anomaly detection and requires human expertise and fine-tuning of the models. The
only requirements of this notion of normality and thus of the anomaly scores is that relatively
few points of the data set must be assigned a high score, i.e. the anomalies must be sparse over
the data set.

The anomaly detection tasks can be separated in several ways like, for example:

e Supervised vs. unsupervised: Whether the anomalies have been previously labelled (usu-
ally by human experts) and the models are trained in a supervised way, using the data under
study as input and the targets as outputs, or whether the model has to find the anomalies

by automatically learning the notion of normality from the input.

e Online vs. offline: In an online setting, the data is fed to the models continuously, can be

considered infinite and must provide an evaluation as fast as possible. Offline models are
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presented a finite-sized data set at once and can therefore infer a global structure on the

data, providing an evaluation only when the whole data set is available.

In this paper we will focus on models that address the online and unsupervised anomaly
detection problem.

In an online setting, the signal is sent to the models as soon as it is acquired, and they must
provide an evaluation before the next sample is available. Therefore, the required performance of
the models depends critically on the frequency of the input stream. These live models must have
the ability to quickly adapt to changes in the notion of normality. For example, after a change
on the operation configuration, a current sensor might exhibit a jump in the measurement and
settle at a new value. The anomaly detection models will identify these changes as anomalous,
but after certain amount of samples of this new state is available the notion of normality must be
adapted.

These types of models must also be able to forget about past learned structures or its mem-
orisation capability might be overwhelmed over time. As once the normality notion is changed,
past values are likely to become irrelevant and can typically be forgotten without harming the
model performance. This balance between quickly learning new normal sequence and forgetting
past irrelevant ones is one of the main tuning problems in these type of models as it depends
exclusively on the temporal structure of the input signals.

Many online unsupervised models are constructed by using autoregressor models. Autore-
gressor models are trained to predict future samples of the input sequence by observing past
values and learning some inherent structure. This way, a distance metric can be defined to com-
pare the predicted values and the measured ones which gives a score on how unexpected, or
anomalous, the newly received sample is.

Another good property of some anomaly detection models is the ability to take into account
the context of each new sample (the structure of the previous samples) and, even more impor-
tantly, to doubt in case of ambiguous context and expect several values at the same time. If the
signals can change unexpectedly but these changes might be fairly common, models that expect

several possible next values given the same context allow to reduce significantly the number of
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false positives.

A typical problem with unsupervised anomaly detection tasks, is the validation of the results
and assessment of the performance of the algorithms. Specifically, the identification of false
positives. However, as the number of anomalies must be by definition very sparse over time,
two or more algorithms of very different nature are very unlikely to report a false positive at the
same time. Therefore, by using ensemble learning i.e., using two (or more) anomaly detection
models and combining their input in some way that only outputs a high anomaly score when
many models agree, the false-positive rate can be kept under control.

Anomaly detection ML models have been successfully used in many industry settings, like
credit card fraud detection [, 2], intrusion detection in cybersecurity [3} 4], or fault diagnos-
tics in industry. Being such complex facilities, anomaly detection models can be an incredibly
useful tool to improve the operation and performance of particle accelerators. However, despite
their big potential, they are still used only sporadically. Isolation Forest has been used to de-
tect anomalies in the LHC beam position monitors [3]], which allows to automatically discard
monitors with spurious readings. For the future High Luminosity upgrade of the LHC, anomaly
detection models using recurrent neural networks are under study to detect anomalous behaviour
in superconducting magnets [6]. Convolutional neural networks have been used at the SOLARIS
synchrotron to detect anomalies in a set of signals of the vacuum levels of the accelerator [7].
Finally, an exploratory attempt was made to apply the Hierarchical Temporal Memory algorithm
to the RHIC collider at the Brookhaven National Laboratory with moderate success [8]. This is
one of the anomaly detection models used in this study (Section [2)).

In this paper we present an anomaly detection model built by averaging the scores of two
different models, the aforementioned NuPIC Hierarchical Temporal Memory model (Section [2))
and an LSTM autoregressor (Section [3). In Section 4] we show how the data from the control
system of the accelerator is prepared and the results and diagnostic information of the anomaly
detection models are recorded and shown to the human experts for evaluation. In Section [3]
several instances of real-time model predictions of the presented model are shown, demonstrating

how it learns complex structures in the input signals automatically and how it could have helped
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human experts detect device failures tens of minutes in advance.

2. Hierarchical Temporal Memory Detector

The Hierarchical Temporal Memory (HTM) algorithm, was born as a model of the mammal
pyramidal neurons’ organisation in the neocortex [9}10]]. This model postulates that the thousand
of connections between these type of neurons act as a very noise resistant and high capacity
sequence memory. Therefore, this algorithm is strongly suited to be used as an anomaly detector,
as each new sample in the input (with its context) can be compared with the expected values from
previously learned sub-sequences.

The input of the HTM algorithm is a binary vector with a few active bits (typically about
2%), named a sparse density representation (SDR) of the input value. To perform this encoding,
the input space is divided into bins and each bin gets a set of bits assigned. This representation
allows to include expert knowledge as the active bits are allowed to overlap (or not) to represent
proximity between input values.

These SDR binary vectors are given to the HTM model, which consists of:

1. The spatial pooler: a large set of cells which identifies patterns in the input SDR.
2. The temporal memory: organises the cells into columns representing the same input pat-
tern but with different connections between columns. These connections between cells of

different columns represent the different contexts in which each input pattern can appear.

As a specific implementation of the HTM algorithm, we used the NuPIC library developed
by Numenta [[11f]. This library is written in Python 2 with bindings to C++ to speed up the
core computations. Unfortunately, as this library is not being developed anymore and only sup-
ports Python 2, the communication with the rest of the Python 3 application is done via remote

procedure calls using the standard Python xmlrpc library [12]].

3. LSTM Detector

Long-Short Term Memory (LSTM) models [[13]] are a type of recurrent neural network (RNN)

models that are designed to overcome the vanishing gradient problem present in RNNs. LSTM
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models are sequence-to-sequence models that have been very successfully applied to many real
world applications like speech recognition [14]] and language translation [15]. LSTMs have been
typically used for anomaly detection as autoencoders, like for example in [16].

We build an anomaly detector using an LSTM as shown in Fig. [I} The model takes a window
of w + 1 samples from the sensor recordings: X;—,—1, X;—y, ..., Xr—1, Xz, being x, the most recent (or
current) sample. The vector x;_,,_p, ..., X;—1 of length w is used as input for the LSTM model. The
target of the model is to obtain a value close to x;. In this way the output of the model can be
compared with the real output sample and simultaneously compute an anomaly score depending
on how far the prediction is from the real sample and train the model on each time step using this
newly acquired sample.

As it was described in the introduction, the ability of anomaly detection models to predict
several values simultaneously to account for ambiguous context is extremely useful. To allow
this behaviour in our LSTM model, the latest value x; is transformed into a binary vector Z by
dividing the input space into N bins and setting to 1 only the index i corresponding to the bin

containing x;:

max—min

X = (1
0, otherwise

1, ifi= |22 N |

where max and min are the maximum and minimum possible readings of the device. Performing
a dot product of this vector %, with the output of the LSTM ¥, a value that represents how high the
expectation of the model is to find the latest value in its bin. Note that instead of a linear binning
also logarithmic or other binning, tailored to the observed sensor, can be used. The anomaly

score A for the x, sample can be written as:
A1 Xty o Xim1, %) = 1 = % - 2

Since a trivial solution is to always output a vector of ones y; = I, to force the model away from

this solution, the penalty function P for the LSTM model is defined as:

p=a+ll, ®
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Figure 1: Schematic representation of the LSTM anomaly Figure 2: Architecture of the LSTM anomaly detector. Here
detector. w is the length of the input window and n the number of
output bins.

where H ﬁ,”l is the 1-norm of the model output. The parameter y controls how strong this penalty
is on the model output 1-norm. Higher values will make the model forget faster about values he
has not seen in a while. Lower values instead will give a low anomaly score to values that have
been present long in the past.

This model was implemented using Keras and Tensorflow and the specific architecture of the

LSTM we used is shown in Fig.
4. Data collection and exploitation

We applied the previously described model to data from the HIPA diagnostic devices. HIPA
is one of the most powerful cyclotrons in the world, able to provide a 1.4 MW beam to several
experiments [[17)]. To operate and monitor this facility, about 180,000 signals are generated by
devices of very different nature, of which about 19,000 are stored in a database (the Archiver).

A framework has been developed in order to take the data from these devices, synchronise
and clean the data and present the results to the users. In our case, live data is requested to the
control system used at HIPA: EPICS [18]]. The framework is also able to take historical data

from the Archiver to assess the performance of the models on previously acquired data. The
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Figure 3: Screenshot of the live GUI, showing in the central plot the signal of a HIPA loss monitor in blue, and the
average anomaly score between the LSTM detector and the NuPIC predictor in orange. The plots on the right column
show the expectation each model has on the next sample value.

frequency of the data provided by EPICS depends on the monitored device and it is not fixed, a
sample is received every time the sensor reading changes its value a certain amount. However,
to keep track of the age of each of the samples, the input to the anomaly detection models must
have either an indication of the time elapsed between samples or just a constant frequency. The
input streams are therefore aligned to a fixed, 1 second frequency time grid by shifting the latest
available sample.

Each value read from the input streams is accumulated until a window of length w + 1 is
filled and then a new window is generated for every new sample by removing the oldest sample
and adding the new one. These windows are then sent to the anomaly detection models, in our
case the LSTM and the NuPIC detectors. The anomaly scores, input signals and diagnostics
information are recorded in a database sample by sample. The database can both be read live
to get the streaming anomaly scores and used for offline analysis. The anomaly scores of each
model are then averaged to obtain the final anomaly score.

Figure [ shows a screenshot of the graphical user interface (GUI) of the framework, devel-

oped to present a live and historical display of the anomaly scores. It displays the monitored



signal, the anomaly score and an indication of the expectation of the models.
The database can be also monitored by any other system. For example, a small program was
also developed that monitors the database and notifies (via email) human experts as soon as an

anomaly is encountered, attaching plots and useful information of the event.
5. Results

To test these algorithms, we took as a proof-of-principle one of the loss monitors in HIPA,
specifically one of the so-called ”Blende” (aperture) collimators in the beam dump line. This
collimator is composed of 4 blades that measure the losses on the top, bottom, left and right of
the beam direction.

Fig. 4 shows, in blue, the signal of the device and in orange the ensemble anomaly score
assigned by the model, averaging the LSTM and HTM models scores. The horizontal lines show
two different thresholds for the anomaly scores: at 0.5 the event is flagged as suspicious and at
0.8 the event is flagged as anomalous. The decision on where to set these thresholds is fairly
arbitrary, and depends on how many anomaly reports per unit of time we want to allow. This
information can be requested to experts on the devices under study. In any case, these specific
models tend to output very low values when the signal behaves normally and large spikes, very
close to the maximum score, when anomalies are found. Therefore they are not too sensitive to
the selection of the threshold. However, this does not hold in general for other models.

The dips in the device signal are caused by a kicker that diverts the beam to a different beam
line to feed the Ultra-Cold Neutron (UCN) experiment [19]. These UCN kicks last a few seconds,
and are typically triggered every 5 minutes. The kicker is only active at certain periods of the
HIPA operation and therefore the anomaly detection models should adapt fast to the start and
end of these UCN sessions.

This kind of behaviour is very challenging for the anomaly detection models as the chosen
time windows length of 20 seconds (in this specific case), is much shorter than the 5 minutes
space between UCN kicks and therefore these dips are very hard to predict.

One of the main characteristics of these models is their ability to discover patterns in the

9



—e— Signal —— Score

|
|
l
1

Device signal
N
o
w
Anomaly score

04:34 04:41 04:47 04:54 05:00

Figure 4: Example of the anomaly detection outcome on a signal from a loss monitor in HIPA. The blue line shows the
actual readings of the device. The orange line shows the anomaly score, with the warning and anomaly thresholds shown
as the horizontal dashed and solid lines respectively. The model started reading the signal at 00:00.

input signals. In the anomaly scores shown in Fig. ] the dips in the kicker are not flagged as
anomalies (they get a non-zero but generally low anomaly score), this is due to the model having
seen many of these events in the past and learning the behaviour, even though it only happens
once every 5 minutes or 300 samples.

Figure[5]shows in the bottom plot the individual anomaly scores computed by the NuPIC and
LSTM models and the top plot the monitored signal and the combined anomaly score (average
of the other two signals). This demonstrates how, as each model rarely outputs a high anomaly
score, the combination of both detectors is unlikely to flag false positives in the same time-step,
effectively improving the false-positive rate of the system.

An indication of the nature of the predictions of each of the models is shown in Fig.[6] For
the NuPIC model, darker colours at a specific time step and a specific bin number, indicate a
larger amount of cells expected to be activated in the current timestamp associated with values
in that bin, i.e. the model is expecting the current value to land in bins with darker colours. For
the LSTM model, this graph shows the ¥ vector (see Fig, the raw output of the model, which
also indicates the expectation that the current value falls in each bin.

These plots show how both models constantly expect the signal to fall to zero, as they saw
many of these UCN kicks that unexpectedly drop the signal with no prior indication, but also

expect the signal to stay more or less constant over time. The behaviour of the NuPIC model is
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Figure 6: Expectation for the next sample value for the NuPIC model (top) and the LSTM model (bottom). Darker spots
represent higher expectation of each model that the next sample will land in that bin and, if the next sample actually lands
in that bin, a lower anomaly score.
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more complex than the LSTM model, and captures better contextual information. For example,
it never expects the signal to drop to zero right after an UCN kick as these never happen right
after each other. The LSTM model is more conservative and just learned the broad behaviour of
the signal.

Figure [/a| shows the signal and ensemble anomaly score for another Blende loss monitor
(MHB34R). This signal has a very clear slow frequency of about one minute and a faster one of
a few seconds. The expectation plot, shown in Fig. demonstrates how the NuPIC detector
captures, at least during some periods, the periodic nature of the signal, whilst the LSTM detector
treats the signal as purely stochastic over its amplitude.

Figure [8| shows the MHB7R signal and ensemble anomaly score for a period of time when
the kicker is not active. The large anomaly score just after 7:00 is an unexplained sudden drop of
the device signal that produces a sudden spike in the anomaly score and therefore is detected as
an anomaly.

In Fig. 9] another example of this device signal and ensemble anomaly score are shown. At
approximately 10:20 the device failed and did not produce any further readings, defaulting to zero
value. During this event the beam was going through the device normally with stable current.

The spikes in the anomaly score during the period leading to this breakdown, just after 09:50
and just before 10:10, would have alerted the operators of the strange behaviour of the device
and preemptive actions could have been taken in advance. Also, the spike at 10:20 indicates
the moment the device stopped measuring and therefore would have alerted the operators in the
moment of the breakdown as well.

To asses how many false-positives the model produced during the analysis of this device,
the reported anomalies can be manually checked. During the full day of its failure the anomaly
detection model, ignoring the first 2 hours of the day as learning phase, reported in total 135
anomalous samples. However, many of theses anomalies are very close together, linked to the
same anomalous behaviour. In order to account for this and manually check for false positives,
we grouped the scores in 30 second windows counting only one anomaly in each window. Group-

ing like this, 61 anomalies are detected. One type of anomaly that is often reported is caused by
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Figure 7: Signal, anomaly core and models expectation for the MHB34R Blende loss monitor.
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Figure 8: Isolated anomaly detected in the MHB7R loss monitor signal while HIPA was operating with stable current.
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Figure 9: Signal of the MHB7R loss monitor blade and anomaly score calculated for it. The beam current was behaving
normally in the period shown here. At the 10:20 mark, the device stopped working completely.

beam interruptions triggered to protect the machine from damage, this type of false-positives
are unavoidable as these events are quite rare (about once per hour). However, these are easy
to ignore either manually or automatically. Ignoring the anomalies linked to the 35 beam in-
terruptions that happened in this period, results in 26 anomalous samples out of 79200 samples
(about 0.03%). Again, many of these anomalies happened due to manual changes of operation
(like starting and stopping the UCN kicker system) and can also easily be discarded, by letting
the system readapt to the new normality. At the end, the precursors of the failure of the device
shown in Fig.[9] some clearly human recognisable anomalies in the signal like the one shown in
Fig.[8and one false positive at an UCN kick were reported by the model.

These results were achieved while performing very little tuning of the two models. The HTM
algorithm has a large number of hyperparameters, however the NuPIC package provides a selec-
tion of settings that work well in most of the cases, and in these experiments the defaults were
used in all cases. The LSTM model network topology was designed after other models found in
literature and no significant difference was found between small variations of this architecture.
The only signal specific tuning performed was to set the maximum and minimum ranges, the
precision of the device, which affects the sensitivity of the models to small changes in the signal
and the time-scale parameters of both algorithms, which controls how fast the model forgets pre-
vious values. All these parameters are typically well known by the human experts who operate

the devices or can be statistically obtained.
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6. Conclusions and future work

The anomaly detection model presented in this paper is a combination of two models of very
different nature: NuPIC, a HTM model implementation and a LSTM autoregressor. This allows
to exploit the natural time sparsity of the anomalies as the two models are unlikely to agree on
a false positive, leading to a more robust anomaly detection model than each of the individual
models.

A full exploitation system has been presented, where the signals are acquired from EPICS,
the control system used at PSI, realigned to a fixed frequency and sent to the anomaly detection
models. The results, together with the input signals and diagnostics information, are stored in a
database that can be monitored and presented to the user, either in a live setting as soon as the
results are available, or offline for historical analysis.

We showed how this system has been used to monitor the MHB7R loss monitor during a
full day when a failure of the device happened and went unnoticed by human experts for hours.
The model would have alerted the experts of the failure of the device tens of minutes in advance
allowing for a more detailed investigation, preemptive maintenance of the device or to take any
necessary corrective action. This event was detected while the model only reported a single
false positive during the full day, apart from the first 2 hours of learning period, ignoring beam
interruption related anomalies and operator changes of machine configuration.

Therefore, we demonstrated how this type of model can be a very useful tool to monitor
system critical beam instrumentation, even when these signals exhibit a complex behaviour hard
to evaluate using classical statistical methods.

Still, the model presented here has potential to be even more effective by adding additional
individual anomaly detection models of other natures, for example, streaming tree-based mod-
els [20] or simpler statistical models [21]].

Additionally, both of the models presented here are used to monitor individual signals, but
are capable of taking an arbitrary number of signals as input. By passing several signals at
the same time to the anomaly detection models, these can find unusual behaviour not only in

each individual signal, but unusual correlations between them, expanding their detection power.
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However, this increases the complexity of the problem too, and much more careful tuning of the
model parameters and signal selection is necessary.

Therefore, we consider that the model presented here strikes a good balance of complexity
vs. effectiveness, and can be extremely useful tool to improve the maintenance efficiency of

particle accelerators.
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