SUPPLEMETARY MATERIALS

Supplementary Figures and Legends

A

B

Kar9

APC

SLAIN

coiled $\begin{gathered}\text { basic-S/P } \\ \text { coil } \\ \text { SxIP/LxxPTPh }\end{gathered}$

Figure S1. Multiple sequence alignment of selected budding yeast Kar9 orthologues and domain comparison of selected +TIPs. Related to Figure 1.

A, Sequence alignment of N -terminal domains of Kar9 orthologues including all constructs used for crystallization plus those of S.paradoxus, S.bayanus, T. delbrueckii, C. glabrata and A. gossypii for comparison. Conservation is indicated by background color from blue (low) to
red (high). The color of helices $\mathrm{H} 1-9$ on top indicate to which spectrin repeat (SR1-3; Figure 1A) they belong. Red triangles indicate residues that contribute to the dimerization interface. Red stars indicate residues mutated to perturb the dimerization interface (ScF195 only in S. cerevisiae), blue stars indicate position of Cdk1 site of interest. All features are aligned to the N.castellii sequence.

B, Kar9 domain comparison to APC, SLAIN and MACF/ACF7.

Figure S2. Section of the electron density of the NcKar9N structure. Secondary structural elements and selected residues are labeled. Related to Figure 1.

Figure S3. CD analysis of NcKar9N variants. Related to Figure 2.
A, CD spectra as mean residue molar ellipticity at $20^{\circ} \mathrm{C}, 4 \mu \mathrm{M}$ protein concentration, 150 mM $\mathrm{NaCl}, 20 \mathrm{mM}$ Tris-HCl at pH 7.5, 1 mM DTT. Shown are the average of three replicates.

B, Thermal denaturation from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ plotted as unfolded protein fraction based on CD signal at 222 nm . Shown are single runs.

His-NcKar9N WT (black), His-NcKar9N-F288A/F344A (red), and His-NcKar9N-3E (blue).

Supplementary Tables

Table S1. Detailed numbers of analyzed cells and clones (cells/clones). Related to Figures 3-
6.

Figure 3									
D	319/3	193/3	241/3	174/3					
E	361/3	262/3	308/3	209/3					
F-G	285/3	199/3	262/3	268/3	172/3				
Figure 4									
C, F-G	560/3	52/3	89/2	$\begin{aligned} & 172 / 3 \\ & (\mathrm{~F}-\mathrm{G}) \\ & \hline \end{aligned}$					
D	113/3	77/3	114/2						
E	171/3	52/3	89/2						
Figure 5									
D, F-G	560/3	415/3	156/3	136/3	181/3	229/3	134/3	113/3	$\begin{aligned} & 172 / 3 \\ & (\mathrm{~F}-\mathrm{G}) \end{aligned}$
E	549/3	256/3	114/3	93/3	171/3	198/3	143/3	133/3	
Figure 6									
B	171/3	170/3	155/3	136/3	181/3	138/3	133/3	113/3	
C	83/1	33/2	24/2	41/2					

