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Predicting the macroscopic and microscopic mechanical response of metals
and alloys subjected to complex loading conditions necessarily requires a
synergistic combination of multiscale material models and characterization
techniques. This article focuses on the use of a multiscale approach to study
the difference between intergranular lattice strain evolution for various grain
families measured during in situ neutron diffraction on dog bone and cruci-
form 316L samples. At the macroscale, finite element simulations capture the
complex coupling between applied forces and gauge stresses in cruciform
geometries. The predicted gauge stresses are used as macroscopic boundary
conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier
transform crystal plasticity model. The results highlight the role of grain
neighborhood on the intergranular strain evolution under uniaxial and
equibiaxial loading.

INTRODUCTION

Metals and alloys used for engineering purposes are
often subjected to biaxial stress states and strain path
changes during their fabrication or under service
conditions. These complex strain paths, coupled with
elastic/plastic anisotropy of polycrystals, result in
heterogeneous distributions of intergranular strains,
governing macroscopic response such as yield
strength, work hardening, etc. Although biaxial test-
ing is increasingly used to study macroscopic behavior
of materials,1–3 limited research efforts have been
directed toward understanding the underlying
microstructure and intergranular strain evolution.4–6

In-situ neutron and synchrotron x-ray diffraction
are well established techniques to study internal
stress and microstructure evolution.7–9 The evolution
of diffraction peak positions, width, and intensity can
provide insight into the average intergranular and
intragranular strains and texture evolution within
different grain families;10 these grain families are
classified according to their crystallographic orienta-
tion with respect to the diffraction vector. In the

present work, the focus is on intergranular strains,
also known as lattice or micro-strains, in differently
oriented grain families. The average lattice strain of a
grain family represents the fraction of applied load,
i.e., type-I or macroscopic stresses, shared by that
grain family. Elastic anisotropy, plastic slip, grain
neighborhood interactions and the direction of loading
significantly influence this evolution. Average lattice
strain evolution during uniaxial loading has been
studied for a variety of materials.7–12

Recently, a biaxial testing rig was developed to
deform cruciform samples during in-situ neutron
diffraction measurements.13 Cruciform samples of
316L austenitic stainless steel were deformed under
uniaxial and biaxial monotonic tensile loading and
strain path changes.5 The results showed that
lattice strain evolution under monotonic equibiaxial
tension (EQUI) is significantly different from uni-
axial tension in a dog-bone (DB) sample.

A comprehensive understanding of the relation-
ship between the biaxial stress ratio and lattice
strain evolution can be achieved by combining in-
situ diffraction studies with crystal plasticity
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modeling. Mesoscale models such as the mean-field
elasto-plastic self-consistent model,14,15 the mean-
field elasto-viscoplastic self-consistent model,16 the
full-field crystal plasticity finite element (FE)
model,17 the full-field elasto-viscoplastic fast Four-
ier transform (EVP-FFT) model,18 etc., have been
used to understand the lattice strain evolution
during uniaxial loading for different material sys-
tems. In this work, the computationally efficient
full-field EVP-FFT model is used.19 The EVP-FFT is
designed to study representative volume elements
(RVEs) of polycrystals subjected to strain rate or
stress boundary conditions.

To that end, a multiscale modeling strategy was
recently proposed in Ref. 6 and is illustrated in Fig. 1.
The approach involves supplying an experimental
applied load and displacement conditions as bound-
ary conditions to drive a macroscale FE simulation of
cruciform geometry using the ABAQUS software.
The predicted gauge surface strains are validated by
using digital image correlation (DIC) measurements.
The predicted macroscopic gauge stresses are sup-
plied as homogeneous boundary conditions to drive
the EVP-FFT model. Then, lattice strains calculated
with EVP-FFT are averaged over all the grains
belonging to a grain family and compared with in-
situ neutron diffraction measurements. The com-
bined FE and EVP-FFT approach (FE-FFT) was used
to study the role of uniaxial and biaxial loading on the
contribution of elastic/plastic anisotropy to the aver-
age lattice strain evolution of different grain families
for 316L stainless steel cruciform samples.6

In this work, the objective is to highlight the role
of grain neighborhood interactions on the lattice
strain evolution of 200 and 220 grain families
during DB and EQUI loadings. The 200 and 220
families demonstrate elastically the most compliant
and intermediate compliant average lattice strain
response, respectively, for both loadings.5 Further-
more, during DB and EQUI loadings, the average

lattice strain evolution in these families shows the
most interesting similarities and differences.6 The
article is divided into sections as follows. The
experimental and simulation setup are first
recalled. Then, the simulation procedure is vali-
dated by comparing the predicted average lattice
strain evolution for the two grain families with in-
situ neutron diffraction results. Next, the simula-
tion results are used to study the lattice strain
distribution within the two grain families for DB
and EQUI loadings. The comparison shows that
EQUI loading results in a much larger spread in
lattice strain evolution in comparison with DB
loading for both grain families. To appreciate the
role of grain neighborhood interactions, the lattice
strain evolution is studied within the subsets of the
200 and 220 grain families; the classification into
subsets is based on the crystallographic orientation
of the 200 and 220 grains with respect to the
diffraction vector and loading directions. The
results show that the contribution of the grain
neighborhood to the lattice strain evolution is highly
dependent on the loading conditions.

EXPERIMENT AND SIMULATION SETUP

In the following, the material properties, experi-
mental details, and simulation setup are briefly
recalled. For details, the readers are referred to
Refs. 5 and 6.

Material Properties and Sample

The material is a warm-rolled, face-centered cubic
(fcc) 316L stainless steel composed of Cr-17.25, Ni-
12.81, Mo-2.73, Mn-0.86, Si-0.53, C-0.02 wt.%. Elec-
tron backscattering diffraction reveals a mild tex-
ture, the details of which are presented in Ref. 5.
The grains are equiaxed with �7 microns average
size. The von Mises (VM) true stress versus strain
curve from a DB tensile test is shown in solid black
in Fig. 2. The cruciform geometry is shown in Fig. 1.
Direction 1 is aligned along the rolling direction for
both cruciform and DB samples. The cruciform
sample has a central gauge thickness of 3 mm and
an arm thickness of 10 mm. A two-camera system is
used to perform in-situ DIC surface strain mea-
surements. The DIC speckle pattern is designed by
hand spraying layers of black and white spray
paint. A homogeneous pattern is obtained with the
following order of spraying: white–black–white. The
spatial resolution for strain measurements is
150 9 150 lm2. The error in DIC strain measure-
ment scales according to the equation:
err %ð Þ ¼ a� E %ð Þ þ b %ð Þ, where E is the true
strain along one of the in-plane directions and a
and b fall in the range [0.014, 0.024] and [0.05,
0.09], respectively. In the present work, EQUI
loading, i.e., F2:F1 = 1:1, of cruciform samples is
compared with uniaxial tensile DB loading. Both
tests are performed under load control at a rate of
40 N s�1.

Fig. 1. Multiscale synergy between in-situ neutron measurements
during biaxial testing and FE-FFT modeling.
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In-Situ Neutron Diffraction

Neutron diffraction experiments were performed
at the pulse overlap time-of-flight diffractometer
(POLDI) beamline in the Swiss spallation neutron
source (SINQ) facility. The incoming beam, having a
cross section of 3.8 9 3.8 mm2, is incident at the
center of the circular gauge area. The detector and
samples are oriented such that the diffraction vector
~g lies along direction 1 of cruciform sample and
along the DB loading direction. An hkl diffraction
peak is obtained when the normal ~n to the {hkl}
planes is closely aligned with~g. The peak position of
each hkl reflection determines the average inter-
planar spacing dhkl for an hkl grain family with ~n
parallel to~g. Average lattice strain for this hkl grain
family is then determined as:

ehkl ¼
dhkl � d0

hkl

d0
hkl

ð1Þ

where d0
hkl is the initial average interplanar spacing

of the hkl family. The detector only measures those
grains that have their normal to the {hkl} plane
oriented at ±7.5� with respect to direction 1.

During neutron measurements, sample arms are
held under constant displacement resulting in
stress relaxations. The dotted curve in Fig. 2 shows
VM stress versus strain curve obtained from a DB
test during in-situ neutron diffraction.

Macroscale FE Simulations

ABAQUS FE simulations20 are used to obtain
gauge stresses. Only one eighth of DB and cruciform
geometries are simulated. A linear 8-node hexahe-
dron mesh is used. Macroscopic elastic properties of
316L steel obtained from monotonic DB tests are

assigned to the simulated geometry. The macro-
scopic elastic response is modeled as isotropic with
the experimentally measured Young’s modulus of
190 GPa and Poisson’s ratio of 0.31. The plastic
response is modeled with built-in nonlinear isotro-
pic and kinematic hardening law with five back-
stresses. Stress versus strain curve from monotonic
tensile test (black line in Fig. 1) on DB samples is
provided as input. The ABAQUS/Standard algo-
rithm uses this curve to fit the back-stress param-
eters without the need for manual fitting. The FE fit
is shown with a gray dashed line in Fig. 2.

Mesoscale EVP-FFT Model

The EVP-FFT approach19 models the periodic
representative volume element (RVE) of the poly-
crystalline domain. The RVE is divided into evenly
spaced voxels along the sample reference directions
such that each grain contains several voxels. Single-
crystal elastic and plastic properties are attributed
to each voxel. The elastic behavior is modeled with
Hooke’s law r ¼ c : e� epð Þ; and the viscoplastic
behavior is modeled with a power law
relationship:19

_ep ¼
X

s

_c0

ms : rj j
ss

c

� �n

sgn ms : rð Þ ð2Þ

where r; c; _ep, and ms are local stress, elastic stiff-
ness, viscoplastic strain rate, and Schmid tensor for
slip system s, respectively. _c0, n, and ss

c are the
reference shear rate, power law exponent, and
critical resolved shear stress (CRSS) for slip system
s, respectively. The evolution of CRSS is modeled as
a function of the total accumulated shear (C) on all
slip systems with the extended Voce-type hardening
law:21

ss
c ¼ ss

0 þ ss
1 þ h1C

� �
1 � exp � hs

0

ss
1

����

����C
� �� �

ð3Þ

where ss
0; ss

0 þ ss
1

� �
; hs

0, and hs
1 are the initial CRSS,

the back extrapolated stress, and the initial and
final hardening slopes for a given slip system s,
respectively. A detailed explanation of the FFT
numerical approach is given in Refs. 19 and 22.

A 2,500-grain Voronoi tessellated microstructure
with random texture is divided into 643 voxels. Each
voxel is assigned single-crystal properties of face-
centered-cubic 316L steel.6 The three independent
elastic constants for this steel are c11 = 204.6 GPa,
c12 = 137.7 GPa, and c44 = 126.2 GPa. The harden-
ing parameters are fit to obtain an artificial stress–
strain curve that overlaps with the cusps during in-
situ neutron measurements (dot-dash line in Fig. 2);
this is typically done in crystal plasticity modeling
of in-situ diffraction tests.23 The fitted extended
Voce hardening law parameters are shown in
Table I. Macroscopic stress boundary conditions
obtained from FE simulations are used to drive
the EVP-FFT model.

Fig. 2. VM stress versus strain curve from uniaxial tensile loading on
316L stainless steel dog-bone samples. In dots, the experimental
curve is obtained during in-situ neutron diffraction measurements. In
solid black, the experimental curve is obtained during ex-situ
monotonic loading. The dashed gray line (overlapping the black line)
is the macroscopic FE simulation fit, and the dot-dash line is the
EVP-FFT fit.
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Virtual Diffraction

In the polycrystalline reference frame,~g is aligned
along the loading direction for the DB sample and the
loading direction 1 for the cruciform sample. Note
that the EVP-FFT model provides detailed informa-
tion on the lattice strain or microstrain (le) evolution
including for those grains that are out of neutron
detector range. Nevertheless, for comparison with in-
situ neutron diffraction, only those voxels are chosen
that have one of their {hkl} planes nearly aligned
(±7.5� tolerance) with ~g. In the simulation (experi-
ment), during plastic deformation, some voxels
(grains or parts of grains) in the simulated (experi-
mental) microstructure will move in or out of the
detector angular range as a result of plastic slip-
induced rotations. To facilitate a comparison with in-
situ neutron diffraction results, the number of voxels
contributing to the lattice strain evolution is updated
after every time step. Following this comparison in
the section titled ‘‘Average Lattice Strain Evolution
in 200 and 220 Families,’’ only those voxels are
considered that contributed to the lattice strain
evolution prior to deformation. This is explained in
detail in the section titled ‘‘Lattice Strain Distribu-
tion in 200 and 220 Families.’’ For all such voxels,le is
computed as ~g � ee �~g. Then leh ih ihkl—here the inner
brackets indicate averaging over all voxels from one
grain belonging to the hkl family, and the outer
brackets indicate averaging over all grains belonging
to the same hkl family—should correspond to the
experimentally measured ehkl from Eq. 1. Finally, in
the present work, le is defined as 106 times the lattice
strain; the lattice strains are of the order 10�3;
therefore, any quantity computed from le will be of
the order 103. This is typically done to compare with
experimental lattice strains that are often presented
as ehkl 9 106.

RESULTS

The FE-FFT model has already been successfully
validated for DB and EQUI loading by comparing at
the macroscale the FE predicted and experimental
DIC strains.6 To avoid redundancy, the macroscale
validation is not repeated. Henceforth, macroscale
and mesoscale quantities are denoted with upper-
case and lowercase letters, respectively.

Macroscopic Stresses and Strains

Figure 3a shows the FE predicted stress versus
strain along loading direction 1, i.e., R11 versus E11

curves for DB and EQUI loadings. EQUI loading

results in a stiffer elastic and a harder plastic
response in comparison with DB loading. This is
because in the elastic regime, as a result of Poisson’s

(ratio v) compression, EEQUI
11 ¼ EDB

11 1 � vð Þ for the
same R11. In the plastic regime, for the same VM
stress and equivalent plastic strain,

Ep;EQUI
11 ¼ Ep;DB

11 =2; the superscript p denotes the
plastic component.

Average Lattice Strain Evolution in 200 and
220 Families

Figures 3b and c show, for the 200 and 220
families, the comparison between simulation pre-
dicted leh ih ihkl and experimental ehkl as a function of
FE predicted macroscopic stress R11 under both
loadings. In general, a good agreement is obtained
between simulations and experiments. The noisy
behavior of 220 lattice strains is a result of the
decrease in 220 peak intensity inducing uncertain-
ties during the fitting.6 In the elastic regime, EQUI
loading results in a stiffer response for both fami-
lies. For both loadings, the 220 response is stiffer
than the 200 response. The difference in leh ih ihkl
between both loadings is most pronounced for the
200 family, which suggests a significant role of the
elastic anisotropy and grain interactions. During
the elastic–plastic transition between R11 = 200 and
300 MPa, the leh ih ihkl evolution under EQUI load-
ing deviates toward that of DB loading for the 220
family. This is not the case for the 200 family, where
the difference between DB and EQUI increases. The
different behavior is ascribed to heterogeneous load
sharing between different grain families as a result
of elastic–plastic anisotropy and grain interac-
tions.7–9 Following the elastic–plastic transition,
the leh ih ihkl response for both grain families under
both loadings deviates toward the original elastic
slope. At the end of loading, the 220 family has
nearly equal leh ih ihkl for both loadings, whereas
there is a large difference for the 200 family.

Lattice Strain Distribution in 200 and 220
Families

The results in Fig. 3 indicate that the leh ih ihkl
evolution under a biaxial stress ratio R = R22/R11

depends on the interplay among (1) R, (2) elastic
anisotropy, (3) plastic slip activity on each slip
system, and (4) elastic/plastic grain neighborhood
interactions. The role of R on the contribution of
elastic anisotropy and plastic slip has been exten-
sively studied in Ref. 6. In the following, the role of
R on the contribution of grain neighborhood inter-
actions to lattice strain evolution is highlighted.
Understanding this requires going beyond the spa-
tial resolution achievable from in-situ neutron
diffraction experiments. Therefore, for the remain-
der of this article, the analysis will be performed
solely by using the simulation results. This study
complements the work done in Ref. 6.

Table I. Fitted Voce hardening parameters for
316L stainless steel

ss0 (MPa) ss1 (MPa) hs0 (MPa) hs1 (MPa)

50 70 105,000 410
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In an in-situ neutron diffraction experiment, some
parts of, or entire grains that contributed to, leh ih ihkl
in the elastic regime may move out of the neutron
detector range in the plastic regime because of plastic
slip-induced lattice rotation. On the other hand, new
grains may move within the detector range. The
simulated leh ih ihkl evolution shown in Fig. 3 accounts
for this evolution. Nevertheless, for a clearer under-
standing, in the following, we focus only on the set of
hkl grains that in the elastic regime contributed to the
simulated leh ih ihkl. The analysis is performed on the
samevoxels (grains) inbothelasticandplastic regimes
under the two loadings. Note that in the plastic
regime, some of these voxels (grains) may move out
of the detector angular range. In doing this, we
eliminate possible influences of the detector geome-
tries that are inherent in the experimental setup.

As a first step to understand the role of R on grain
neighborhood interactions, the leh ihkl distribution
within 200 and 220 families is studied; hihkl repre-
sents averaging over all voxels of only one grain
belonging to an hkl family. Note that leh ihkl smears
out intragranular distributions of lattice strains. Its
value depends on grain neighborhood interactions.
Figure 4 shows the probability distribution function
(p.d.f.) of leh i200 and leh i220 for all grains contribut-
ing to the 200 and 220 families, respectively, under
both loadings in both regimes.

All p.d.f. peaks are asymmetric with a pronounced
right shoulder. In some cases, there are distinguish-
able second peaks. This implies that subsets of 200
and 220 grains experience different stress states
and, consequently, different leh ihkl. When going
from the elastic to the plastic regime, the width of
the leh ihkl distribution increases in both families
and for both loadings. After plastic deformation, the
difference in mean leh i200 and mean leh i220 between
the two loadings increases and decreases, respec-
tively. Consequently, under the two loadings, there
is negligible overlap in p.d.f.( leh i200) but consider-
able overlap in p.d.f.( leh i220). EQUI loading results
in a wider leh ihkl spread among the grains for both
grain families. To understand this better, in the
next two sections, a classification scheme is pre-
sented to subdivide the hkl grain families according
to their crystallographic orientation with respect to
the diffraction vector. Then, a graphical analysis of
the leh ihkl spread between grains belonging to these
subsets is performed.

Classification of hkl Families Based
on Crystallographic Orientation

An hkl grain family has the loading direction 1
and~g normal to an {hkl} plane. Every hkl family can
be subdivided based on crystallographic orienta-
tions of its constituent grains about ~g. Figure 5

Fig. 3. (a) FE predicted R11 versus E11 plot for DB and EQUI loading. FFT predicted leh ih ihkl versus FE predicted R11 in (b) 200 and (c) 220
families during DB and EQUI loadings compared with in-situ neutron diffraction experiments.
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graphically shows the 200 and 220 grain unit cells
with respect to their orientation relative to ~g. These
grains form part of the subset 200f g aibicih i and

220f g aibicih i of the 200 and 220 families, and they
lie in the shaded regions shown on the symmetric
stereographic triangles in Fig. 5.

Fig. 4. p.d.f. of leh ihkl in (a, c) 200 and (b, d) 220 grain families in the (a, b) elastic and (c, d) plastic regimes under DB and EQUI loadings.

Fig. 5. (a) 200f g aibi cih i and (b) 220f g aibi cih i subset unit-cell orientations with respect to cruciform in-plane loading directions and ~g. The
shaded surface facilitates the visualization of the unit-cell rotation about ~g for different subsets. h100i symmetric stereographic triangles showing
the shaded region containing hklf g aibi cih i subsets of the (c) 200 and (d) 220 families at ±7.5� with respect to direction 1.
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Lattice Strain Distribution within 200 and 220
Subsets

To understand the distribution of leh ihkl between
subsets of 200 and 220 families, the leh i hklf g aibicih i
distribution is analyzed; here hi hklf g aibicih i implies

averaging over all voxels belonging to one grain in
an hklf g aibicih i subset. For brevity, the analysis is
performed only on 200f g 010h i; 200f g 031h i; 200f g
021h i; 200f g 011h i; 220f g 001h i; 220f g 1�13

� �
; 220f g

1�11
� �

; 220f g 3�31
� �

and 220f g 1�10
� �

subsets. Figure 6

shows the graphical distribution of leh i hklf g aibicih i
within four different grains belonging to each subset
in both regimes for both loadings. Here the

leh i hklf g aibicih i represents leh i hklf g aibicih i normalized

by using max leh i hklf g

	 

from a single hkl family in

one regime under a given load. For example,

leh i 200f g 010h i for DB loading in the elastic regime is

Fig. 6. Graphic representation of leh i hklf g ai bi cih i distribution within 200f g aibi cih i and 220f g aibi cih i subsets during DB and EQUI loadings in
elastic and plastic regime. Each column contains two-dimensional projections, along the out-of-plane direction 3 in Figs. 5a and b, of some

randomly selected grains belonging to the hklf g aibi cih i subsets. The grains are color coded according to their leh i hklf g ai bi cih i values.The scale is

shown at the bottom of the figure as well as with the histograms within the figure. The histograms show the difference in leh i hklf g ai bi cih i distribution

for an hkl family in both regimes subjected to DB and EQUI loadings.
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normalized using max leh i 200f g

	 

for DB loading in

the elastic regime. Note that the grain with

max leh i hklf g

	 

may not appear in Fig. 6.

The following arguments can be made on the

mean leh i hklf g aibicih i response of each hklf g aibicih i
subset of an hkl family. Under EQUI loading in both
regimes, the following descending order for mean

leh i 200f g aibicih i within the 200 family is observed:

200f g 010h i, 200f g 031h i, 200f g 021h i; and

200f g 011h i. The ordering for mean leh i 220f g aibicih i
within the 220 family is 220f g 1�13

� �
, 220f g 001h i,

220f g 1�11
� �

, 220f g 1�10
� �

, and 220f g 3�31
� �

. Under DB
loading, for both families, there is no clear ordering
scheme in the elastic or plastic regime.

The grain colors in Fig. 6 show that the width of

leh i hklf g aibicih i is narrower for DB loading than for

EQUI for all subsets of the same hkl family; the
normalized histograms in Fig. 6 also confirm this.

The difference in leh i hklf g aibicih i distributions arises

as a result of the alignment of loading directions
with respect to ~g. DB samples are only loaded along
~g; therefore, the lattice orientation about ~g does not
influence the contribution of elastic–plastic aniso-

tropy to leh i hklf g aibicih i for any hklf g aibicih i subset.6,7

Nevertheless, EQUI loading has a macroscopic
stress component in the direction normal to ~g. Then
the contribution of elastic/plastic anisotropy of 316L
steel and crystallographic orientation of
hklf g aibicih i subsets about ~g has an influence on

leh i hklf g aibicih i for EQUI (R = 1) in comparison with

DB (R = 0).6

For EQUI loading, the leh i hklf g aibicih i spread within
the same hklf g aibicih i subset increases going from
the elastic to the plastic regime. Nonetheless, such a
trend is not clear for DB loading. These results
imply that along with elastic–plastic anisotropy,
grain neighborhood interactions have an important
contribution to the load-carrying capacity of differ-
ent grains belonging to the same hklf g aibicih i
subset, and this contribution increases from DB to
EQUI loading.

CONCLUSION

A multiscale FE-FFT elastic–plastic model was
used to understand the differences in intergranular
strain evolution of the 200 and 220 grain families
during uniaxial dog-bone and equibiaxial cruciform
loading of 316L stainless steel. The distribution of
lattice strain averaged over a grain belonging to an
hkl family, leh ihkl, and belonging to hkl aibicih i
subsets, leh i hklf g aibicih i, is analyzed. The following

are the main results of the study:

1. The leh ihkl distribution for both families in the
elastic regime shows that equibiaxial loading
results in a wider distribution of leh ihkl. The

width of the leh ihkl distribution increases for
both loadings in the plastic regime. The com-
bined effect of elastic–plastic anisotropy signif-
icantly affects the leh ihkl distribution for both
grain families and is higher for equibiaxial
(biaxial stress ratio R = 1) loading compared
with dog-bone (R = 0) loading. Therefore, it can
be expected that these effects vary according to
R.

2. Grain neighborhood plays an important role on
leh i hklf g aibicih i distribution for grains belonging to

the same hklf g aibicih i subset and is significantly
higher for equibiaxial loading in comparison
with dog-bone loading, and it may also depend
on R.
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