
H O S T E D  B Y Contents lists available at ScienceDirect

Progress in Natural Science: Materials International

journal homepage: www.elsevier.com/locate/pnsmi

Original Research

Periodic continuum solvation model integrated with first-principles
calculations for solid surfaces

Wenjin Yina,b, Matthias Krackc, Xibo Lib, Lizhen Chenb, Limin Liub,⁎

a School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
b Beijing Computational Science Research Center, Beijing 100084, China
c Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland

A R T I C L E I N F O

Keywords:
First-principles
Water-solid interface

A B S T R A C T

The structural and reactivity properties of the solute in aqueous solution are vital in chemistry and condensed
matter physics. In order to understand the detailed adsorption structures and reaction processes on the solid
surfaces or liquid/solid interfaces, the solvation effect should be considered in the realistic first-principle
calculation. In this work, a periodic continuum solvation model (PCSM) was implemented into a mixed
Gaussian and plane-wave density functional theory (DFT) program, CP2K/Quickstep. The reliability of such
approach is carefully examined for several typical systems. The results exhibit that the current application can
give the accurate solvation energy and reaction pathway for the clusters compared with the available theoretical
and experimental ones. We further extend the application to water adsorption on the periodic slab systems, such
as metal and semiconductor surface systems. The results reveal that both the adsorption structures and reaction
processes are significantly affected by the solvation effect.

1. Introduction

The importance of structural and reactivity properties of the solute
in aqueous solution is self-evident. Most of chemical reactions occur in
water or other solvents, no matter in nature or the laboratory [1–4].
This is exactly true for biochemistry, most of the organic, inorganic,
catalytic chemistry, and a vast part of materials and surface science [1].
On the experimental side, the aqueous solution environment can be
easily regulated [5]. On the theoretical side, the general approach is to
use explicit water molecules to simulate the aqueous solution environ-
ment [6]. However, if all solvent molecules are considered in the
simulations, the computational system is usually quite large. Thus the
computational cost is extremely high, especially for the first-principle
molecular dynamics (FPMD) simulation. Even if the computational
cost is feasible for some cases, the structural properties may also vary
with the number of the solvent molecules.

In order to save the computational time, the way is to examine the
adsorption or the reaction in the vacuum, ignoring the water environ-
ment. While the structural and reactivity behaviors of the solute
molecules in aqueous solution is rather complex, the accuracy of such
calculation may be greatly affected without considering the solvent
effect. In order to accurately describe the structural and reactivity

properties of the solute in aqueous solution, considerable theoretical
works have been done to resolve this problem to resort the continuum
solvation model. The general approach is to represent the solvent
molecules as a continuous homogeneous and isotropic medium char-
acterized by the dielectric permittivity [2,7–10].

The earliest continuum solvation model was proposed by Onsager,
handling the solute molecule by using a sphere cavity [11]. The two
most widely used classes of solvation models are the polarizable
continuum model (PCM) suggested by Tomasi et al. and the conduc-
tor-like screening model (COSMOS) proposed by Klamt and
Schuurmann [9,10]. Such techniques have made great successes in
the non-periodic system. However, all the models mentioned above are
not widely used in condensed matter, not to mention the solid-liquid
interfaces.

In order to extend the solvation model to periodic system, Fattebert
and Gygi proposed a new independent model [12,13]. The dielectric
permittivity in this new model is defined as a smooth self-consistent
function of the electronic density of the solute, and placed into the
rigorous framework of density functional theory (DFT) [12,14]. This
approach was further extended to involve the calculation of cavitation
energy by Scherlis et al. [15–17] Following these, the periodic solvation
model has been implanted into the DFT program [18]. Marzari et al.
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further reformulated to overcome the numerical limitation encoun-
tered, which extends its range of applicability in charged species in
aqueous solution, along with adding a model for cavitation and
dispersion energies [19,20].

Following the approaches of Fattebert and Marzari [12,19], we
briefly review the theoretical underpinnings and framework of the
periodic continuum solvation model. The implementation of the
solvation model derived from DFT in CP2K/Quickstep, a widely used
and multi-featured mixed Gaussian and plane-wave DFT code is
described [21,22]. Due to the mixed Gaussian and plane wave basis
sets, this implementation of the solvation model is suitable for the large
periodic slab system. The accuracies of our implementation in CP2K
are carefully checked by the solvation energies and reaction energies
for both non-periodic and periodic systems, through comparing with
the available experimental and theoretical results. The calculated
results show that the structural behavior, binding energy, and reactivity
are affected by the solvation effect. Therefore, the implanted solvation
model is efficient and accurate to determine the solute molecular
properties in aqueous solution.

2. Theoretical framework of periodic continuum solvation
model

Starting from the basic equations of Fattebert and Gygi [12], the
continuum dielectric permittivity functional in solution is introduced,
which defines the dielectric permittivity as a function of the electronic
density of the solute as follows,
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This function asymptotically approaches the dielectric permittivity
of the bulk solvent,є∞, in the regions, where the solute electronic
density is low. The solute electronic density is high in the other regions
(inside the solute cavity). The two parameters, ρ0 and β, are the
electronic density threshold, which determines the solute cavity size
and modulates the smoothness of transition from є∞ to 1. This
smoothness function allows dielectric permittivity to be well defined
in the three dimensional meshes used in typical calculations.
Nonetheless, the total energy and atomic force are usually difficult to
converge when this model is used for the periodic slab system [17].

To extend the solvation effect to periodic slab system, a new
dielectric permittivity function using a piecewise definition was pro-
posed as follows [19],

є ρ t ρ
є

ρ ρ

ρ ρ ρ

ρ ρ

( ) =
1

exp( (ln ))

>

< <

<
є ρ ρ

elec elec

elec
max

min
elec

max
elec

min

, ,

∞
min max∞

(2)

Unlike Eq. (1), this dielectric permittivity function introduces a
smooth function t(x), which is defined as,
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This smooth function involves the t(x), which monotonically
decreases from t ρ є(ln ) = lnmin ∞ to t ρ(ln ) = 0max . It is important to
notice that the proposed dielectric permittivity function does not
contain any internal adjustable parameters, but only depends on the
dielectric permittivity constant є∞ and two electronic density thresholds
ρmin and ρmax.

Combined with the DFT result, the dielectric permittivity of the
whole system can be easily computed by the above dielectric permit-
tivity function. Adopting the readily obtained whole system dielectric
permittivity, the total electrostatic potential Φ r( )tot of the whole system
can be solved by the dielectric medium Poisson equation written as,

є ρ r Φ r πρ r∇ ⋅ ( ( ))∇ ( ) = − 4 ( )elec tot solute (4)

To solve this equation, the general approach is resorted to the finite
difference scheme, such as fourth-order and sixth-order or even higher.
The density ρsolute(r) is the total charge density of the solute,
containing the electronic density ρelec(r) and the ionic density
ρion(r) of the solute.

Due to the low computational and MPI parallel efficiency of the
Poisson scheme, a more efficiency method depending on iterative
procedure was used to calculate the total electrostatic potential of the
system. During the iterative procedure, the Eq. (4) can be evolved to a
vacuum-like Poisson equation through the Maxwell equation,

Φ r πρ r∇ ( ) = − 4 ( )tot tot2 (5)

where ρ r( )tot is the total charge density of the system, containing the
solute charge density ρ r( )solute and the polarization charge density
ρ r( )pol introduced by the polarization effect.

The detail iteration process can be found in this Ref 19. On the basis
of obtained ρpol(r), the polarization potential ϕpol(r) and solute
potential ϕsolute(r) can be calculated. Furthermore, the polarization
energy Eel

pol and electrostatic energy of the solute Eel
solute can also be

obtained. Combined with these two energies, the total electrostatic
energy of the system can be calculated as follows,
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Integrated the electrostatic energy into the Kohn-Sham energy of
the SCF in the standard DFT framework, a new form Kohn-Sham
energy can be obtained as follows,

∫E ρ T ρ υ r ρ r dr E ρ E[ ] = [ ] + ( ) ( ) + [ ] +xc
el

(7)

where the first three term are the standard kinetic energy, interaction
energy with an external potential, and exchange and correlation energy.

Except for the electrostatic energy contributions, other effects such
as cavitation, and repulsion energy also play significant role in the
solvation energy of the continuum solvation model. These non-
electrostatic effect is concentrated in the first solvation shell, thus an
electrostatic term itself is insufficient to describe solvation of solute.
According to the definition of Ben-Naim [23], the main terms of other
effects can be expressed as,

ΔG ΔG G G G PΔV= + + + +sol el cav rep dis (8)

In the equation, it contains the electrostatic, cavitation, repulsion,
and pressure term energy. The electrostatic energy ΔGel=Gel-Go, and
Go=(Etot)vacuum is the standard DFT energy of the isolated solute in
vacuum, and Gel is the analogous quantity computed by Eq. (7) in
solution. The cavitation energy is the energy to build into the solution
the cavity containing the solute. The repulsion and dispersion terms are
the continuum equivalent of the non-bonded short-range interactions
generated by the Pauli Exclusion Principle and by vdW interactions.
The pressure term takes into account the change in volume of the
solvated system. Adopting the cavity surface S and volume V in
empirical model proposed by Scherlis [15], the solvation energy of
the continuum solvation model can be redefined by

ΔG ΔG α β S βV= + ( + ) +sol el (9)

where the two factors α and β are solvent-specific tunable parameters
that can be fitted, together with the other parameters in the solvation
model.

3. Implementation and application of periodic continuum
solvation model

The periodic continuum solvation model discussed above is im-
plemented into the CP2K/Quickstep [21] package, which is within the
frame of DFT. CP2K/Quickstep employs a hybrid Gaussian and plane
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wave basis set and norm conserving Goedecker-Teter-Hutter (GTH)
pseudopotentials [21,22,24]. The CP2K/Quickstep solves the Kohn-
Sham equation through self-consistent field (SCF) iterations to find the
ground electronic state. In order to include the solvation effect, the
local potential of the Kohn-Sham Hamiltonian and the expression for
the total energy are modified based on the equation (13) as shown in
the above section. During the solvation calculation, a strict polarization
SCF is included, namely, the solvation effect is only computed as the
accuracy of the polarization SCF calculation reaches a given threshold
value τscf for each DFT electronic SCF iteration step. For each
polarization iteration, the gradient of the total potential for the system
is computed in reciprocal space via one fast Fourier transform (FFT)
and three inverse FFTs. In addition, for the numerical stability, we
adopt high order (fifth- and seventh-order) finite differences scheme to
compute є ρ r∇ ln ( ( ))elec in real space. The generalized Poisson equation
is solved using a pre-conditioned conjugate gradient algorithm in each
polarization iteration step. The total number of polarization SCF
iterations required in the calculation is related to the tolerance value
τscf imposed on the residuals.

In the following, we firstly examine the reliability and accuracy of our
periodic continuum solvation model for the non-periodic systems,
through comparing the solvation energies and reaction barrier with other
theoretical or experimental results. Then, we extend the application of
this model to the periodic systems, such as slab or interface structure.

3.1. Computational setups

All the calculation results are performed within the CP2K/
Quickstep code. Core electrons are described with norm-conserving
Goedecker, Teter, and Hutter (GTH) pseudopotentials [25], along with
the PBE functional [21,26,27]. The wave functions of the valence
electrons are expanded in terms of Gaussian functions with molecularly
optimized double-zeta polarized basis sets (m-DZVP) [28]. For the
auxiliary basis set of plane waves a 500 Ry cut-off is used, which yields
total energies converged to at least 0.001 eV per atom, as conformed by
calculation with higher cutoff energy. The large system size is applied,
since CP2K contains only single Γ point for k-point sampling. In order
to avoid the interaction between the adjacent images, a vacuum spacing
of 15 Å is employed for all the systems. Transition states along the
reaction pathways are utilized the Climbing Image Nudged Elastic
Band (NEB) method [26]. All atoms in the slab are relaxed until the
maximum residual force is less than 0.02 eV/Å.

The interaction behavior for the solute adsorbed on the slab surface
in aqueous solution is different from that in the vacuum, which can be
characterized by the binding energy defined as [29,30],

E E E= +bind
sol

bind
vacuum

sol (10)

where Ebind
vacuum is binding energy calculated in the vacuum, which can be

calculated as,

E E E E= − −bind
vacuum

slab adsorbate
vacuum

slab
vacuum

adsorbate
vacuum

− (11)

where Eslab adsorbate
vacuum

− is the total energy of the slab and the solute, Eslab
vacuum

is the total energy of the slab, and the Eadsorbate
vacuum is the total energy of the

isolated solute calculated in the same box.
The Esol is the solvation energy, which can be calculated as

E E E= −sol slab adsorbate
solvation

slab adsorbate
vacuum

− − (12)

In the equation, Eslab adsorbate
solvation

− is the total energy of the slab and
solute in aqueous solution, while Eslab adsorbate

vacuum
− is the total energy in

vacuum.

3.2. Reliability and applications

3.2.1. Non-periodic system
For the non-periodic system, some neutral molecules, such as H2O,

NH3, CH4, and C4H10N2 are considered as the solute, and the solvent is

aqueous solution. Table 1 lists the calculated results of the solvation
energies for these species. As shown in Table 1, the calculated solvation
energies in this work agree well with other available theoretical results.
For example, an isolated H2O solvation energy of −0.29 eV is a little
larger than the other theoretical calculation of −0.31 eV [31,32]. The
solvation energy for other organic solutes also agree with the theore-
tical simulation results [19]. Compared with the experimental results
[31,32], only solvation energy of H2O and C4H8O molecules agree well
with the experimental results, while some others are within ± 0.16 eV
away from the experimental results. It should be noted that main
difference in solvation energy between the experiment and theory
comes from the no-polar molecule, thus more care should be taken
during dealing with such system with the solvation model.

Apart from the solvation energy, the reaction pathway and energy
barrier are further explored by our model for the non-periodic system.
Here, we choose the SN2 reaction as a model to check the reaction
pathway and energy barrier. This reaction is a typical bimolecular
reaction, which can occur both in gas and solution phase,

Cl- + CH3Cl → CH3Cl + Cl-

Fig. 1 shows the pathway and energy profile for this reaction, where
the blue and red lines are the pathways for the reaction in the vacuum
and solution phase, respectively. The calculated energy profiles exhibit
that the energy barrier in solution increases significantly compared to
that in gas phase. Considering the solvation effect, the energy barrier
changes from 0.21 eV in the gas phase to 0.45 eV in the solvation. The
energy barrier obtained by our model agrees well with the result of
Fattebert and Gygi about 0.63 eV, and it is also close to the explicit
solvent result of 0.82 eV [13,33,34]. Therefore, our solvation model is
accurate to study chemical reaction in solution.

3.2.2. Periodic system
In the real chemical catalytic reaction, most of the reactions occur

on the surface in the aqueous solution. The structure and reaction

Table 1
Solvation energies (eV) for molecules solute in water obtained with our method (column
1) compared with the other experimental and theoretical results.

Molecules EPCSM Eexpt Eother (a)

H2O −0.29 −0.27 −0.31
NH3 −0.33 −0.19 −0.27
CH4 −0.07 0.09 −0.05
C4H10N2 −0.15 −0.32 −0.16
C3H9N −0.03 −0.15 −0.01
C4H8O −0.14 −0.138 −0.138

Fig. 1. Energy profile for the reaction pathway of Cl- + CH3Cl → CH3Cl + Cl- as a
function of the distance C-Cl. The Cl, C, and H atom are colored in green, gray, and white,
respectively. ‘-’ and ‘+’ mean without and with the solvation effect.
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pathways of the solute on solid surface may be significantly affected by
the aqueous solution. Hence, we extend the application of our solvation
model to the periodic slab systems.

3.2.2.1. Water adsorption on Pt (111) surface. Here, we firstly
consider the system that the H2O solute adsorbs on metal slab
surface in aqueous solution. The platinum (Pt) (111) surface is a
typical metal slab surface, which is widely used as catalyst. Here, the
water interaction with Pt is considered as a model system to study the
solvation effect. The water adsorbs on the Pt (111) slab, containing
three Pt atom layers (see Fig. 2).

After geometry optimization, the H2O molecule almost parallels to
the surface of the Pt (111) (see Fig. 2(a)). As shown in Fig. 2(b), the O
atom of the H2O is on the top of the Pt atom, and the H atoms point to
the adjacent Pt atoms. The relaxed results of the configuration
parameters and binding energies in gas and solution phase are shown
in a tabular style in Fig. 2(c). It is obvious that the solvation
significantly affects the structural behavior of the solute on the surface.
For example, the distance between Pt atom and O atom is 2.378 Å in
the vacuum, and it reduces to 2.260 Å as the solvation effect is
considered. Meanwhile, the solvation effect changes the angle of the
H2O from 104.02° in vacuum to 105.66°, but has almost no influence
on the O-H distance of the H2O. Besides the solvation effect greatly
changes structural properties between the solute and metal surface.
The typical binding energy of H2O on Pt is −0.32 eV in vacuum [35].
When the solvation effect is considered, the binding energy increases to
−0.69 eV, which is in consistent with the decreasing tendency of the Pt-
O distance. Yao et al. studied the solvation effect on water adsorption
on Pt (111) surface, and they found that the binding energy of the H2O
on Pt is −0.58 eV when considering the solvation effect [29]. Thus, our
calculated binding energy in solution agrees well with the results of the
previous work [29]. In all, the solvation can significantly affect the
structural and interaction behavior of the solute interaction with the
metal slab system.

3.2.2.2. Water adsorption on the perfect TiO2 (110) surface. Apart
from the metal slab surface, we further explore our solvation model to
semiconductor slab surface, which plays vital roles in the photocatalytic
splitting water. Among various photo-catalytic semiconductors, TiO2 is
one of the most promising catalysts for water splitting [3]. One long
debated question is whether the water is automatically dissociated on
the perfect rutile TiO2 (110) surface during the photocatalysis [36–41].
Most of the previous theoretical investigations considered the water
adsorption on TiO2 (110) in the vacuum situation. In the real
photocatalytic reaction, the reactions occur in the water environment.

In order to know the water adsorption state on the perfect TiO2 (110)
surface, we systematically study this issue by considering the solvation
effect.

In this work, a (4×2) periodic rutile (110) surface was used,
containing four tri-layer. And only one water molecule was adsorbed
on the surface, which corresponds to 1/8 ML of water coverage. Fig. 3
shows the relaxed configurations of the molecular and dissociated
states of H2O on the rutile (110) surface. As shown in Fig. 3(a) and (b),
the O atom of intact H2O adsorbs on the top of the 5-fold coordinated
Ti atom (Ti5c), and one of the H atoms points to the bridge oxygen atom
(Ob) and the other H atom parallels to the Ti5c atom. The dissociated
H2O can be regarded as one of H atoms transfers from the water to the
nearest Ob (see Fig. 3(c) and (d)).

In order to check whether water prefers to dissociate on the perfect
TiO2 (110), several different effects, such as solvation and vdW, are also
considered. Table 2 displays the calculated results including the
binding energy, energy difference between the molecular (M) and
dissociated (D) state, and relaxed geometrical parameters for the H2O
adsorption on the perfect rutile (110). Without considering solvation
effect, the PBE result shows that the binding energy is −0.66 eV for M-
H2O, which agrees with the other DFT result [39,41–43]. The energy
difference is −0.24 eV, indicating that the M-H2O is more favorable.
Such results agree well with the previous works [41]. When including

Fig. 2. The configuration of a H2O adsorbed on Pt (111) surface. (a), (b) the side and top
view of the H2O adsorbed on Pt (111) surface, respectively. (c) The binding energies and
the relaxed configuration parameters of the H2O on Pt (111) surface. The O atom in red,
H atom in white, and Pt atoms in gray blue except for the top Pt atom layer in yellow.

Fig. 3. The molecular and dissociated state of H2O on rutile (110) surface. (a), (b) the
side and top view of the molecular state. (c), (d) the side and top view for the dissociated
state. The O atom in red, Ti atom in gray blue and H atom in pink.

Table 2
Binding energy, energy difference between the molecular and dissociated H2O, and
representative geometrical parameters for the different state H2O adsorbed on TiO2

surface. The letters M and D denote the molecular and dissociated state of the H2O. The
‘-’ and ‘+’ mean without and with the functional, respectively. The U value is 4.2 eV. Hb is
the hydrogen adsorbed on the bridge oxygen on TiO2. The energy difference between the
molecular and dissociated state of H2O by introducing the solvation effect, which can be
calculated as ΔE E E= −M D, where EM and ED are the total energy for the molecular and
the dissociated state of H2O, respectively. The adsorption energy of the more stable state
is bolded.

PCSM vdW H2O Ebind (eV) ΔE (eV) O-Ti5c (Å) H-
Ob

(Å)

O-
Hb

(Å)

O-H-O (θ)

− − M −0.66 −0.24 2.316 2.52 107.28
D −0.42 1.841 2.52

− + M −0.96 −0.27 2.27 2.02 106.76
D −0.69 1.84 2.20

+ − M −1.07 −0.29 2.273 2.39 106.24
D −0.78 1.804 2.58

+ + M −1.37 −0.31 2.25 2.16 106.29
D −1.05 1.82 2.19
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the vdW correction, the binding energy is about 0.3 eV larger than the
corresponding one for both the M- and D-H2O calculated with PBE.
The energy difference between the M- and D-H2O is −0.27 eV,
indicating the molecular state is still more stable. Recently, Sorescu
et al. have studied the H2O on rutile (110) surface by including the
vdW correction, and the calculated binding energy is −1.01 eV for M-
H2O [44], in consistent with our result of −0.96 eV.

When the solvation effect is considered, all the calculated results are
significantly changed. Firstly, the adsorption energies increase by
−0.36 eV for both the M- and D-H2O compared with the pure PBE.
The energy difference between these two states increase by −0.05 eV,
and the M-H2O is still more stable. The structural behavior shows that
O-Ti5c distance decrease by 0.04 Å for both case, and O-H-O angle
decrease by 1°.

When combination of the solvation effect with vdW correction, the
binding energy increase by 0.4 eV for both the M- and D-H2O,
compared with pure vdW correction results. Similarly, the energy
difference increases from −0.27 eV to −0.31 eV. The O-Ti5c distance
decreases by 0.02 Å for both states, while O-H-O angle decrease by
0.45°. Thus the solvation effect increases the binding energy by about
0.4 eV, and the solvation effect slightly increase the energy difference
by ~0.05 eV, indicating that H2O adsorption on the rutile (110) surface
is favorable molecular state considering the solvation effect.

As shown above, the structural behavior of the H2O is greatly
affected by the solvation effect, and the water adsorption on the perfect
rutile (110) prefers the intact state. It is essential to know whether the
solvation effect can change the dissociated barrier of water on TiO2

(110) in aqueous solution. In order to know this, the energy barriers
are calculated with the different techniques. The calculated results are
shown in Fig. 4.

Without including solvation effect, the calculated energy barrier
with the pure PBE functional is 0.38 eV, which is consistent with the
previous DFT result of 0.33 eV [37]. When including the vdW correc-
tion, the energy barrier becomes 0.36 eV. If solvation effect is included,
reaction energy barrier with PBE functional changes from 0.38eV to
0.43 eV. If the both effects are included, the energy barrier becomes
0.42 eV. Thus when considering the solvation effect, the energy barriers
of the water dissociation on the perfect TiO2 (110) increase by 0.02–
0.05 eV for the different approaches used. In all, the solvation effect can
affect the reaction energy barrier in solution for the periodic semi-
conductor slab system.

The current PCSM model as implanted in CP2K/Quickstep has the
advantage to deal with the large system compared with the others based
on plane-wave DFT programs. It should be noted that the approach is
not suitable for the small system size due to only single Γ point for k-
point sampling implanted in CP2K/Quickstep at the current version.

4. Conclusion

In summary, we have implemented a periodic continuum solvation
model that describes the effect of polarization, electrostatics, cavitation,
dispersion, and pressure term in the interaction between a solute and
solvent into the mixed Gaussian and plane-wave DFT code CP2K/
Quickstep. The accuracy of our implanted continuum solvation model
is examined for the different situations. The calculated solvation
energies, configuration, and energy barrier are compared with the
other available theoretical and experimental results. For non-periodic
systems, the calculated solvation energies are consistent with other
results within 0.17 ( ± 0.13) eV. Furthermore, we extent the application
of our solvation model to the periodic slab systems. The results show
that the solvation effect significantly changes the structure, binding
energy, and the reaction energy barrier at the solid-liquid interface. The
binding energy for the H2O adsorbed on metal and semiconductor slab
surface increases by about 0.4 eV when the solvation effect is con-
sidered. Meanwhile, the energy difference between the molecular and
dissociated state of H2O adsorption on the rutile TiO2 (110) increases
in solution, indicating that molecular state is more favorable in the
water environments. In addition, the reaction barrier for the H2O
dissociated on rutile (110) surface increases by about 0.05 eV when the
solvation effect is considered.
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