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Symmetry and curvature effects on spin waves in vortex-state hexagonal nanotubes
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Analytic and numerical studies on curved magnetic nano-objects predict numerous exciting effects that can
be referred to as magneto-chiral effects, which do not originate from intrinsic Dzyaloshinskii-Moriya interaction
or interface-induced anisotropies. In contrast, these chiral effects stem from isotropic exchange or dipole-dipole
interaction, present in all magnetic materials, which acquire asymmetric contributions in case of curved geometry
of the specimen. As a result, for example, the spin-wave dispersion in round magnetic nanotubes becomes
asymmetric; namely, spin waves of the same frequency propagating in opposite directions along the nanotube
exhibit different wavelenghts. Here, using time-resolved scanning transmission x-ray microscopy experiments,
standard micromagnetic simulations, and a dynamic-matrix approach, we show that the spin-wave spectrum
undergoes additional drastic changes when transitioning from a continuous to a discrete rotational symmetry,
i.e., from round to hexagonal nanotubes, which are much easier to fabricate. The polygonal shape introduces
localization of the modes to both the sharp, highly curved corners and flat edges. Moreover, due to the discrete
rotational symmetry, the degenerate nature of the modes with azimuthal wave vectors known from round tubes
is partly lifted, resulting in singlet and duplet modes. For comparison with our experiments, we calculate the
microwave absorption from the numerically obtained mode profiles, which shows that a dedicated antenna design
is paramount for magnonic applications in 3D nanostructures. To our knowledge these are the first experiments
directly showing real space spin-wave propagation in 3D nano-objects.

DOI: 10.1103/PhysRevB.104.184429

I. INTRODUCTION

After having been proposed by Bloch in the 1930s [1],
the propagation of spin waves (SWs)—the elementary exci-
tations in magnetically ordered systems—has been studied
extensively. Because of their peculiar linear and nonlinear
characteristics, SWs promise great potential in information
transport and processing such as the magnon transistor [2]
and the magnonic diode [3] for multifunctional spin-wave
logic applications. Spin waves (including the spatially uni-
form ferromagnetic resonance precession) have also been
proven to be an excellent tool to probe the magnetic charac-
teristics of solids as they are sensitive to spin currents [4–6],
impurities [7–9], crystal anisotropies [10], or asymmetric ex-
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change interactions, among others. For example, the presence
of an asymmetric interaction such as the Dzyaloshinskii-
Moriya interaction (DMI) leads to an asymmetric dispersion
and consequently to a nonreciprocal propagation of spin
waves therein [11–21]. Similar nonreciprocal spin-wave prop-
agation is observed in magnetic bilayers [22–24]. Therefore,
the study of spin-wave propagation is of both a technological
as well as a fundamental interest.

While many of the aforementioned effects have been in-
vestigated mostly in bulk or in flat thin-film samples, over
the last decade, curvature-induced effects have been uncov-
ered as a new way to manipulate magnetic equilibria and
spin dynamics. Numerous analytic and numerical works have
already shown that the surface curvature and geometry of
3D magnetic membranes leads to phenomena not present in
flat specimens of the same material [25–34]. For example,
in conventional soft magnetic materials, exotic noncollinear
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magnetic textures such as skyrmions [35] may be stabilized
by bending the magnetic material. Moreover, magnetization
dynamics can be influenced, leading to symmetry break-
ing of domain-wall motion [25,26], asymmetric spin-wave
transport [31,36], or the emergence of a topological Berry
phase [37]. The influence of curvature on magnetic equilibria
has been shown to be mainly due to a renormalization of the
magnetic exchange interaction [29,38]. However, as shown in
Ref. [38], the long-range dipole-dipole interaction can also
lead to chiral symmetry-breaking effects and thus introducing
handedness in an intrinsically achiral material. In our recent
works Refs. [31,32,39], we predicted that curvature-induced
effects, of both dipolar and exchange origin, lead to an asym-
metric dispersion of SWs in round magnetic nanotubes being
in the helical state.

In this paper we show that magnetization in 3D nano-
objects is not only governed by the curvature and topology.
At the example of hexagonal nanotubes we present that the
discrete rotational symmetry induces drastic changes in the
spin-wave spectra. In particular, the mode spectrum is non-
trivially split into standing waves (singlets) and running waves
(duplets). In the previously investigated round nanotubes, the
modes with the same k but opposite sign of azimuthal quan-
tization index form duplets, except for the uniform mode,
which is a singlet. Moreover, in contrast to round magnetic
nanotubes, which are extremely difficult to fabricate with
sufficiently low damping, we succeeded in fabricating hexag-
onal nanotubes and preparing them in the vortex magnetic
state [40]. This allowed us, for the first time to our best knowl-
edge, to directly image magnetization dynamics in curved
3D nanostructures, using time-resolved scanning transmission
x-ray microscopy (TR-STXM) [41–43]. Prior to this work,
experimental evidence in curved samples was restricted to
equilibrium effects, such as the spiral Landau pattern in bent
rectangular elements [44] or the domain wall pinning by a
curvature gradient, shown in parabolic stripes [45].

For the quantitative analysis of the experiments, we
have conducted an extensive numerical study using stan-
dard micromagnetic simulations as well as our recently
developed finite-element propagating-wave dynamic-matrix
approach [46]. We find that the mode spectrum of vortex-
state hexagonal tubes is asymmetric and quite complex in
nature. The polygonal shape introduces localization of the
modes into the highly curved corners and flat facets. More-
over, the degenerate nature of the modes with azimuthal wave
vectors known from round tubes is lifted in the polygonal
case, resulting in singlet and duplet modes. The singlet-duplet
differentiation is related to the discrete symmetry resulting
from the hexagonal cross section of the waveguide housing
a vortex magnetic ground state. Using the spin-wave profiles
resulting from our eigensolver, we calculated the dispersion
relation with the microwave absorption for two different an-
tenna field profiles, a current loop and a stripline antenna.
The numerical results show that the stripline antenna used in
the TR-STXM experiments excites multiple modes at a fixed
frequency, though with different intensity; thus the resulting
spin waves propagating in the nanotube form a beating pat-
tern instead of a single wave with a well-defined wavelength.
Therefore to measure and eventually exploit the asymmetry of
the dispersion a stripline antenna is not satisfactory. Instead,

a proper design of the microwave antenna is needed to couple
and thus excite only single modes with well-defined frequency
and wavelength.

In Sec. II we briefly discuss the sample fabrication fol-
lowed by the description of the micromagnetic methods used
in the paper, employed both in the time domain and in the
frequency domain. The experimentally measured spin-wave
propagation together with finite-element micromagnetic sim-
ulations is shown in Sec. III. To understand the spin-wave
propagation in hexagonal tubes the dispersion relation is dis-
cussed in detail, showing the localization of modes and their
singlet-duplet nature related to the combined symmetry of the
tube geometry and its ground magnetic state. The predicted
microwave absorption and its effect on the spin-wave excita-
tion depending on the antenna geometry is discussed to allow
for a realistic comparison of the numerical and experimental
results. The conclusions of the study and a possible outlook,
with suggestions for further experimental investigations, will
be discussed last in Sec. IV.

II. METHODS

In this section we will briefly summarize the numerical
as well as the experimental methods, including the sample
fabrication involved in the current study.

A. Sample fabrication and STXM experiments

The nanotube fabrication involves a two-step routine:
first, GaAs rods are grown on oxidized Si(111) wafers via
molecular-beam epitaxy (MBE) in a III-V MBE using Ga
droplets as catalysts. After in situ transfer to a metallic
MBE chamber in a pressure lower than 1 × 10−10 mbar, the
coating layers composed of the permalloy magnetic layer
and an Al capping layer to avoid oxidation are deposited
at pressures around 1 × 10−10 mbar (base pressure of 5 ×
10−11 mbar). The sparsely populated grown nanotubes are
mounted with a gas injection system (GIS) at their tip to
a nanomanipulator and cut at their bottom with a focused
ion beam (FIB). Subsequently the nanotube is placed as de-
sired (again using the GIS) and the tip is cut off by the
ion beam, thus removing the tube from the manipulator. De-
tails of the sample preparation are described in Ref. [40].
As a result of the growth-induced easy-plane magnetic
anisotropy perpendicular to the symmetry axis, the equilib-
rium magnetization is a vortex state, as confirmed by STXM
measurements [40].

The TR-STXM measurements were performed to directly
image the magnetization dynamics in the tubes in hopes
of experimentally obtaining the spin-wave dispersion. The
time-resolved measurements were mostly performed at the
MAXYMUS endstation of BESSY II at Helmholtz-Zentrum
Berlin, Germany. The static and low-frequency (up to 6 GHz)
measurements have been done at the POLLUX endstation of
the PSI, Villigen, Switzerland.

An exemplary scanning-electron-transmission-microscopy
image of a hexagonal nanotube, with 250 nm outer di-
ameter, 30 nm thickness, and 12 μm length, used for the
measurements is shown in Fig. 1 together with a sketch of the
nanotube and its cross-sectional view. The magnetic nanotube
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FIG. 1. (a) Scanning-electron-transmission-microscopy image of
a hexagonal permalloy nanotube with 250 nm outer diameter, 30 nm
thickness, and 12 μm length on a GaAs wire. The gold stripline
antenna (here colored for visual purposes) was patterned on a SiN
membrane, and the nanotube was placed on the top using a focused
ion beam (FIB) tool and a micromanipulator. The Oersted field of
an rf current is used to excite SWs. (b) Cross-sectional sketch of the
hexagonal nanotube showing the layer structure. The permalloy layer
is directly evaporated on the GaAs wire in situ and capped with Al to
avoid oxidation. A relative angle of 60◦ was used between the x-ray
beam and the symmetry axis of the nanotube. This configuration
allows for being sensitive to the in-plane dynamic magnetization of
the top and bottom surfaces of the tube, which is expected to be larger
than the out-of-plane dynamic magnetization component.

is placed on the top of a gold stripline antenna patterned
on a SiN membrane. The nanotube is usually oriented such
that one of the flat facets is parallel to the substrate surface,
and thus the top facet normal is parallel to the x-ray beam.
The absorption images were collected by exploiting the x-ray
magnetic circular dichroism (XMCD) effect [47] of the trans-
mitted soft x-ray radiation at the L3 edge of iron (708 eV). The
dynamic magnetization contrast to visualize the real space
spin-wave propagation was obtained with left circularly po-
larized light. A Fresnel zone plate is used to focus the x rays
to a single spot on the sample, allowing for a lateral resolution
of approximately 25 nm when the sample is raster scanned
through the beam. The acquired magnetic contrast scales with
the projection of the magnetic orientation in the direction of
photon propagation. Hence, in normal incidence, our STXM
setup is sensitive to the dynamic magnetization component
in the propagation direction perpendicular to the top and
bottom surfaces. While the 30◦ inclined sample mounting,
compared to the surface normal, used in the experiments also
allows for detecting in-plane magnetization components at
the same time. To summarize, the photon counts shown in
this paper are proportional to the projection of the dynamic
magnetization (both in-plane and out-of-plane component) to
the direction of the photon beam. The spin waves were ex-
cited with the stripline antenna at various frequencies between
frequencies of 1 GHz and 10 GHz. Every excitation yielded a
seven-frame movie; each frame contains the real-space pro-
files of the excited spin waves at equidistant phases with
respect to the excitation signal. In order to highlight the time-
dependent magnetic changes in the sample, a normalized data
representation is used where each frame is divided by the time
average of all seven frames.

TABLE I. Parameters used for micromagnetic modeling.

Exchange stiffness (Aex) 13 pJ/m
Saturation (Ms) 820 kA/m
Reduced gyromagnetic ratio (γ /2π ) 28 GHz/T
Gilbert damping (αG) 0.007
Uniaxial anisotropy constant (Ku,1) −20 kJm−3

Uniaxial anisotropy direction (eu) ez

Tube outer diameter (D) 250 nm
Tube shell thickness (T ) 30 nm
Tube length (L) 8.0 μm
Edge length along tube 5 nm
Edge length along cross section 3 nm

B. Micromagnetic modeling

In this section we introduce the micromagnetic methods
used to investigate the spin-wave propagation and dispersion
in our hexagonal nanotubes.

1. Finite-element time-domain simulations

In the framework of micromagnetism the magnetization
dynamics is described by the Landau-Lifshitz-Gilbert equa-
tion of motion,

dm
dt

= −ωM (m × heff ) + αG

(
m × dm

dt

)
, (1)

where m is the reduced magnetization m(r, t ) = M(r, t )/Ms,
Ms the saturation magnetization, heff the normalized effective
field, ωM = γμ0Ms the characteristic frequency, and αG the
Gilbert damping parameter. In order to study the propagation
of the spin waves in the hexagonal tubes we have solved
numerically the equation of motion using our custom de-
veloped GPU accelerated finite-element micromagnetic code
TETRAMAG. [48] For the simulations we have considered an
8 μm long hexagonal tube with 30 nm thickness assuming
permalloy material parameters. The exact values can be seen
in Table I. The equilibrium state, which is a flux-closure state,
is computed using a conjugate-gradient energy minimiza-
tion starting from a circular vortex initial state. The uniaxial
anisotropy along the long axis of the tube with a negative
constant will prefer a flux-closure (vortex) state. In order to
mimic the experimental excitation scheme, monochromatic
spin waves were excited at the center of the hexagonal tube
using a microwave field of 1.0 mT magnitude, with compo-
nents in the yz plane, and with the spatial profile of the field
corresponding to the stripline antenna of 250 nm. The rf field
with a sinusoidal time variation was applied for 100 periods
for all simulated frequencies.

2. Propagating-wave dynamic-matrix approach

To numerically calculate the spin-wave dispersion for
waves traveling along the hexagonal nanotube we utilize
our recently developed finite-element dynamic approach for
propagating waves. This approach uses the same spatial dis-
cretization method as TETRAMAG [48] and relies on the
numerical solution of the eigenvalue problem

ων (k)

ωM
ηνk = im0 × �̂kηνk with m0 ⊥ ηνk, (2)
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which is the nondissipative (αG = 0) version of the LLG equa-
tion (1), linearized in the vicinity of some (stable) equilibrium
state m0(r) and transformed into a single cross section of
the nanotube for the case of plane waves propagating along
the z direction with wave vector k and angular frequency
ων (k). Note that the z axis in this study is the axis along
the long axis of the hexagonal nanotube. The eigenvectors
ηνk ≡ ηνk (ρ) represent the (complex) lateral mode profiles,
which depend only on the coordinates ρ = (x, y)T and can
be denoted additionally by some lateral mode index ν which
labels the respective branch of the dispersion.

The plane-wave Hamiltonian operator �̂k is given by

�̂k = h0Î + N̂k = h0Î + e−ikzN̂eikz (3)

with h0 being the projection of the unitless static effective
field (including any static external field) onto the equilibrium
direction, Î the identity operator, and N̂ the self-adjoint oper-
ator describing the magnetic self-interactions, which, in our
case, are exchange and dipolar interaction, as well as uniaxial
magnetic anisotropy (see Ref. [46]). All operators and vectors
are discretized in the framework of the finite-element method.
The resulting linear system is numerically diagonalized for
each k value using the iterative Arnoldi-Lánczos method,
which yields a desired number of lowest-magnitude eigenval-
ues ων (k) as well as their corresponding eigenvectors ηνk . In
our case, the lowest 30 modes for each k were calculated for
a total number of 201 wave vectors between ±35 rad/μm. To
account for the dipolar potential generated by the individual
spin-wave modes we employ a modified version of the hybrid
FEM/BEM Fredkin-Koehler method, which was recently ex-
tended to plane-wave potentials in Ref. [46]. The equilibrium
state m0 is found by energy minimization, the same way as for
the time-domain simulations.

In contrast to a full 3D time-domain simulation, the mag-
netic nanotube only needs to be modeled in a single cross
section which drastically reduces the computational load. The
spin-wave frequencies and mode profiles are directly obtained
(within minutes), without the need of additional postprocess-
ing. Moreover, as an additional benefit, degenerate modes can
be detected, which is not easily possible using a single field
pulse followed by an FFT-based analysis.

III. RESULTS AND DISCUSSION

In this section we will first show the spin-wave propa-
gation measured experimentally using time-resolved STXM
and compare it with those from micromagnetic simulations.
We would like to emphasize that according to our knowledge
these are the first experiments directly showing real space
spin-wave propagation in 3D nano-objects.

A. Mode localization

To obtain a first overview of the spin-wave transport in
hexagonal nanotubes we excite monochromatic waves using
a stripline microwave antenna at the center of the tube and at
different fixed frequencies.

In Figs. 2(a)–2(d) we show exemplary snapshots of
two counter-propagating spin-wave modes at 4.571 GHz,
5.571 GHz, 8.571 GHz and 9.571 GHz, obtained by TR-

FIG. 2. Numerical (red-blue) and experimental (gray scale)
snapshots of the dynamic magnetization at fixed times for modes
propagating in the corners of the hexagonal tube (a) at 5.571 GHz
and (b) at 4.571 GHz, and for modes mostly propagating in the top
and bottom facets (c) at 8.571 GHz and (d) at 9.571 GHz. For the
numerical profiles, a side view is shown next to the projection of
the upper half the nanotube. For better illustration, they have been
stretched in the width direction. Below we show all frames of the
respective STXM movies. In addition to each last frame, we show an
average line scan along the tube, together with sinusoidal fits used to
obtain the wave lengths. The position of the antenna is in all cases
marked with a translucent gold-colored patch. The dashed lines in
each STXM frame mark approximately the contour of the hexagonal
tube.

STXM and time-domain micromagnetic simulation. For the
experiments, we show a full oscillation cycle as seven frames.
As seen especially from the simulation profiles, the modes
exhibit different localization within the cross section of the
hexagonal tube, e.g., there are modes more localized in the
corners of the tube [5.571 GHz in Fig. 2(a) and 4.571 GHz
in Fig. 2(b)] or on the facets of the tube [8.571 GHz and
9.571 GHz in Figs. 2(c) and 2(d)]. We also would like to
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refer to the animated experimental movies of these modes,
provided in the Supplemental Material [49], which may show
the localization of the modes at 4.571 GHz and 5.571 GHz
in the corners better than the static frames. We observe an
intensity asymmetry of the modes at large frequencies. This
is a commonly known effect for Damon-Eshbach SWs (with
k ⊥ m0) excited with a stripline antenna in magnetic thin
films [50] and is also present here as our tubes are in the
vortex state (k ⊥ m0). Moreover, in the numerical mode snap-
shots at 5.571 GHz [Fig. 2(a)] and 4.571 GHz [Fig. 2(b)],
one can already clearly see a wave-vector asymmetry for the
two counterpropagating modes, which is the evidence for an
asymmetric SW dispersion.

To obtain the wave lengths of the counterpropagating spin
waves from the experimental data, we average the measured
data for different excitation frequencies along the width of
the tube (shown for each last STXM frame in Fig. 2) and fit
these curves for individual time frames with decaying sinu-
soidal functions along the long axis of the tube (propagation
direction) on either side of the antenna. Between two and
18 fits could be obtained per frequency and direction. The
resulting wave vectors were obtained as the averages of all
associated fits. This method was chosen because only a few
wavelengths are observed in the measurements, and a Fourier
analysis to obtain the wave vectors at a given frequency was
not conclusive. Note that from the two-sided fit presented for
the corner mode at 5.571 GHz in Fig. 2(a), one can also see a
wave-vector asymmetry in the experimental data

B. Dispersion and mode symmetry

For a more detailed analysis of the modal spectrum, we
calculate the full dispersion for all modes below 12 GHz
and with wave vectors between ±35 rad/μm using the
FEM propagating-wave dynamic matrix approach outlined
in Sec. II and explained in detail in Ref. [46]. We would
like to point out again that, in contrast to usual time-domain
simulations based on microwave excitation, this analysis pro-
vides access to modes which might have a nontrivial spatial
profile and which therefore do not couple to commonly used
microwave-field distributions. Moreover, it becomes possible
to always separate degenerate modes. The resulting dispersion
including all modes is shown in Fig. 3(a). As suggested by the
varying mode localization at different excitation frequencies
in the previous section, the spectrum is divided into several,
in certain cases, even degenerate branches. We will see in the
next section that only a few of them are easily accessible in
experiments. The different branches ν can be categorized by
analyzing the corresponding (complex-valued) lateral mode
profiles ηνk (ρ) within the hexagonal-tube cross section. To
visualize these, we plot the magnitude |ηz| and the phase
arg(ηz ) of the z component of the mode profiles as color maps
in Fig. 3.

As indicated by the magnitudes of the spatial profiles in
Fig. 3(b), the branches can be categorized by their localization
either to the corners (C) or to the facets (F) of the hexago-
nal tube. Moreover, there are also several hybrid-corner-facet
modes (CF). Apart from their localization, the modes differ
in the number of periods along the hexagonal circumference.
In this sense, the spin waves in a hexagonal tube are similar

FIG. 3. Dispersion relation and modes profiles directly result-
ing from the dynamic-matrix approach for propagating spin waves.
(a) Full dispersion for all modes below 12 GHz. The modes can be
categorized based on their localization position as corner C, facet F,
and corner facet CF modes, shown in (b). A second categorization
can be made based on their singlet and duplet nature by looking at
the phase of the wave along the azimuthal direction in (c); singlets
are standing spin-wave solutions, while duplets are two degenerate
solutions of counterpropagating waves along the azimuthal direction.
In panels (d) and (e) the mode magnitude as well as its phase is
shown for several examples of the singlet and duplet solutions. Below
the modes, we annotate the corresponding irreducible representations
(irreps) to which they belong.

to the ones in round nanotubes or rings in the vortex state
where the azimuthal dependence of the mode profiles is given
by exp(imφ) with m being an integer number often called the
azimuthal mode index. In such cylindrical or tubular systems,
modes with the same k but opposite sign of m are degenerate,
i.e., they form duplets, except for the m = 0 mode, which is a
singlet. In the phase plots such as Fig. 3(c), loosely speaking,
the number of periods is given by the number of times a
color reappears as one goes along the circumference of the
hexagonal cross section. As an important difference to the
cylindrical systems, which are characterized by full rotational
symmetry about the tube axis, the phase around the hexagonal
cross sections does not increase linearly along the circumfer-
ence. In fact, the discrete sixfold rotational symmetry induces
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FIG. 4. Generators of the symmetry group 6/m′mm shown for
the hexagonal tube containing a vortex state, where 6 is the sif-fold
rotational symmetry, m indicate mirror planes and ’ is the time
reversal operation.

drastic qualitative changes. We observe that, depending on the
number of periods, the modes can be either doubly degenerate
or nondegenerate, respectively forming duplets or singlets.
Singlets form standing waves along the circumference, as
can be seen in the π jumps of the phase of the C3 mode
in Fig. 3(c). In contrast to this, the duplets consist of two
solutions which have equal localization (magnitude) but are
propagating in opposite directions along the circumference, as
depicted for C2+ and C2− in Fig. 3(c). Albeit the phase does
not increase in a linear fashion as in cylindrical systems, it
still changes continuously. In Figs. 3(d) and 3(e), we show the
mode profiles close to k = 0 for all branches whose dispersion
is plotted in Fig. 3(a). Notably, for all the modes the profile
of the magnitude obeys the sixfold rotational symmetry of
the hexagonal tube. The observed splitting of the spectrum
into singlets and duplets has also been observed in a sim-
ilar way for whispering gallery modes in hexagonal optical
cavities [51].

In the following, we show how the splitting of some of the
duplets to singlet pairs upon lowering the symmetry of the
vortex tube from cylindrical to hexagonal can be understood
via a basic group theory approach, even without considering
the form of the magnetic interactions. The symmetry of the
hexagonal vortex tube is described by the magnetic point
group 6/m′mm. The generators of the group are shown in
Fig. 4: the sixfold rotational symmetry about the axis of the
tube, two sets of mirror planes (m) containing the axis of the
tube, and the mirror plane perpendicular to the tube axis (/m′).
Due to the magnetic vortex pattern, the latter are symmetries
only when combined with the time reversal operation (′).
This magnetic point group has only 1D and 2D irreducible
representations; thus the excitations of the hexagonal mag-
netic vortex can form only singlets and duplets. No modes
with triple or higher degeneracy can emerge. The singlet so-
lutions listed in Fig. 3(d) can be classified according to the
1D representations of 6/m′mm [52]. Since the amplitude map
of all modes obeys all symmetries in this group, one needs
to check how the phase pattern of the modes change upon
the different symmetry operations. For singlets, the phase
pattern can either be invariant upon a symmetry operation or
acquire a π shift. The modes C0 and CF6 belong to the fully
symmetric A1 irreducible representation, as their phase pattern
is invariant upon all symmetry operations of the 6/m′mm
group. The phase pattern of the F6 mode is invariant upon all
symmetry operation but the reflections to the mirror planes
containing the tube axis; thus it belongs to the A2 irreducible
representation. The classification is indicated for all the modes
in Figs. 3(d) and 3(e). In the case of duplets, some of the

symmetry operations interrelate the phase patterns of the two
modes, leading to a zero entry in the character table [52].

One can easily find a correspondence between the modes of
the cylindrical and the hexagonal vortex. The C0 singlet corre-
sponds to the only singlet mode of the cylindrical tube, which
is nothing but the simple ferromagnetic resonance for k = 0.
When the hexagonal symmetry is increased to cylindrical, the
rest of the singlets become doubly degenerate, i.e., arrange
into pairs, such as CF6-F6, C3-F3, etc. This is because modes
localized to corners and facets become nondistinguishable
once the cylindrical symmetry is restored.

We observe that modes with different periods around the
circumference are hybridized, while it seems that singlets
(duplets) hybridize only with singlets (duplets). In Fig. 3(a)
the hybridization can be seen for the branches CF5 and CF7
and was confirmed by analyzing the mode profiles of the
two branches on different sides of the crossings. To avoid
visual clutter, we refrained from double labeling the branches
twice. Let us also note that the dynamic-matrix approach used
here can yield only the already hybridized normal modes
of the system. Therefore, presenting a dispersion with the
nonhybridized branches as well as a proper treatment of the
hybridization would require an analytic theory, which is not
available at the moment.

The same holds if one would like to disentangle the con-
tributions resulting in the strongly asymmetric dispersion for
some of the spin-wave modes. Based on our knowledge from
the thin-shell cylindrical nanotubes we can state that the
asymmetric dispersion has its origin in the dynamic charges
associated with the dipole-dipole interaction. Let us note that
the antiparallel alignment of the equilibrium magnetization in
opposite facets would alone lead to an asymmetry, resulting
in a linear shift of the dispersion in the small k limit [24].
However, in our case the asymmetry is far stronger than a lin-
ear shift and therefore suggests the presence of a geometrical
volume charge due to the strongly curved regions between
the flat facets. The concept of geometrical charges and its
relation to possible magnetochiral effects are discussed in
detail in Ref. [38]. A detailed discussion of the origin of the
asymmetric dispersion as well as the presence of singlet and
duplet states and their relation to the magnetic point group of
our system is out of the purview of the current paper and will
be investigated in a forthcoming work.

C. Predicted microwave absorption and
comparison with experiments

The dispersion branches excited in an experimental setup
can drastically depend on the spatial distribution of the oscil-
lating excitation field h(r), i.e., on the microwave antenna at
hand. In the case of propagating waves, the microwave power
absorbed by the magnetic system is determined by the overlap

hν (k) = 1

Nν

〈η∗
νk · h̃(k)〉A (4)

with h̃(k) denoting the Fourier transform of the spatial distri-
bution of the microwave field with respect to the z coordinate
(long axis of the tube), 〈·〉A denotes the spatial average
in the hexagonal-tube cross section, and Nν is a normal-
ization factor (see Appendix A). The full frequency- and
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FIG. 5. Predicted microwave absorption calculated using the mode profiles from the dynamic-matrix approach for two different antenna
geometries. (a) The zeroth-order peak of the excitation efficiency at the surface of the antennas is shown on the top of the full dispersion
relation including all modes up to 16 GHz. The dispersion relation obtained when exciting spin-wave modes with a current loop antenna is
shown in (b). Only singlets belonging to the fully symmetric A1 representation are susceptible to the spatial distribution of such a field. The
dispersion relation for a stripline antenna used in the experiments is summarized in panel (c). The usual asymmetry of the excitation efficiency
known for Damon-Eshbach modes is recovered. This antenna will excite simultaneously a multiple of modes with the same frequency. The
white dashed lines indicate the excitation frequencies for which the experimental spatial spin-wave profiles are shown in Fig. 2.

wave-vector-dependent absorption is then given by summing
up the response of all branches ν, as

P(k, ω) ∝
∑

ν

|hν |2(k)

[ων (k) − ω]2 − 	2
ν (k)

. (5)

Here 	ν = αGενων is the life time of the spin-wave modes
which is determined by the Gilbert damping factor αG

and by the mode ellipticity εν (k) (see Ref. [53] and again
Appendix A).

In the following, we present the predicted absorption calcu-
lated for two different important antenna geometries: a single
current loop wrapped around the nanotube and for a single
stripline antenna attached to one of the facets, such as the
one used in our experiments. We fix both antenna widths
to W = 250 nm. In Fig. 5(a) on top of the dispersion, we
show the zeroth-order peak of the excitation efficiency at
the surface of both antenna types, which is approximately
given by |sinc(�k)|, with � ≈ W/2. Exact expressions for
the Fourier components of h̃(k) for the presented antennas
are found in Appendix B. As an important difference between
the antenna geometries, the microwave field produced by
a stripline antenna is inhomogeneous within the hexagonal
cross section and is, therefore, not rotationally symmetric.
While the microwave field produced by a current loop can
be assumed to have a homogeneous magnitude along all
facets. As a result, the spin-wave modes of particular sym-
metry propagating in the hexagonal tubes couple differently
to the microwave excitation, depending on the specific field
distribution. This knowledge is crucial when designing and
interpreting experiments (and even classic time-domain mi-
cromagnetic simulations). To this end, in Fig. 5(b) we show
the absorption P(k, ω) for a current-loop microwave antenna.
As can be seen, only a number of singlet branches (C0, CF6,
and CF12) are susceptible to such a field. These are the only

modes which, according to their symmetry, exhibit a nonvan-
ishing absorption in a rotiationally symmetric microwave field
in the observed frequency range. The period of these modes
is an integer multiple of 6, and in general the period of the
singlets is 3n, with n � 0.

In contrast to this, the stripline antenna used in our experi-
ments will couple to the singlet as well as to the duplet modes,
as shown in Fig. 5(c). Note that the excitation efficiency of
the spin-wave modes is asymmetric; therefore for the con-
sidered vortex state and antenna geometry the spin waves
propagating with negative wave vector are excited stronger
than the counterpropagating ones. As mentioned before, this
is a commonly known effect for spin waves excited in the
Damon-Eshbach geometry, namely, k ⊥ m0, and is also seen
when analyzing the individual frames of the spin-wave spatial
profiles obtained from the TR-STXM experiments. The white
dashed lines mark the excitation frequencies for which the
experimental and micromagnetic simulation spatial profiles
of the spin waves are presented in Fig. 2. The consequences
of the stripline antenna microwave source are that multiple
modes with the same frequency are excited simultaneously,
leading to a beating pattern instead of a plane wave propa-
gation pattern with a well-defined wave length. The presence
of multiple wave lengths can already be seen when carefully
looking at the propagating spin-wave profiles taken at given
snapshots in time from the time-domain micromagnetic sim-
ulations presented in Fig. 2. Especially for the 4.571 GHz
and 5.571 GHz frequencies it is quite obvious that multiple
wave lengths are present. On one hand this explains why only
certain frames from the experimental measurements could be
used to approximately evaluate a wavelength for the excited
spin waves. On the other hand, with this information in mind
we need to emphasis that the determination of the wavelengths
are rather imprecise. Still, without drawing conclusions, in
Fig. 5(c) we have overlaid the experimentally determined
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dispersion with the one yielded from the predicted microwave
absorption using the spin-wave mode profiles of the dynamic-
matrix approach simulations.

IV. CONCLUSIONS AND OUTLOOK

We have investigated spin-wave propagation in hexagonal
nanotubes using time-resolved STXM measurements and mi-
cromagnetic simulations. The experimental results show that
spin waves can be excited with a simple stripline antenna.
Using a finite element dynamic-matrix approach for propa-
gating spin waves, we calculated the dispersion relation for
the hexagonal tube with geometrical and material parameters
as in the experiments. The dispersion relation turned out to be
asymmetric and complex. Due to the hexagonal cross section,
spin waves can be localized to the highly curved corners,
to the flat facets as well as to both sites at the same time.
The hexagonal symmetry lifts the azimuthal mode degener-
acy known from round nanotubes and results in singlet and
duplet spin-wave solutions. The singlets are always standing
spin-wave solutions, and their azimuthal mode index is an
integer multiple of 3. The duplets consist of two degenerate
spin-wave solutions counterpropagating along the azimuthal
direction. We have shown that, using the spin-wave profiles
resulting from the eigensolver, the frequency- and wave-
vector-dependent microwave absorption of different antenna
field profiles can be calculated. These numerical results show
that the stripline antenna used in the TR-STXM experiments
will simultaneously excite modes with the same frequency
but different wave vectors. Therefore, the resulting spatial
profile of the spin waves propagating in the nanotube forms
a beating pattern instead of a single wave solution with a
well-defined wavelength. These experimental results are not
suitable for drawing conclusions about the spin-wave disper-
sion asymmetry that is present in the dispersion calculated by
micromagnetic simulations, in either the time or frequency
domain. We can conclude that the antenna design in further
experiments needs to be changed, and if possible a single
current loop should be used to allow for the excitation of
single modes with a well-defined wave length. Alternatively
one could use a CPW antenna which selectively excites spin
waves with specific wave vectors. We hope that with the recent
developments in materials research and fabrication methods
the production of high-quality 3D nanostructures and waveg-
uides (magnetic for this purpose) will be standardized and the
investigation of exciting effects as the curvature-induced mag-
netochiral effects on the magnetization statics and dynamics
will become feasible.

ACKNOWLEDGMENTS

The experiments were mainly performed at the MAXY-
MUS endstation of BESSY II at Helmholtz-Zentrum Berlin
(HZB), Germany. We thank HZB for the allocation of
synchrotron radiation beam time. Some experiments were
performed at the PolLux endstation of the Swiss Light
Source. We acknowledge the Paul Scherrer Institut, Villi-
gen PSI, Switzerland for provision of synchrotron radiation
beam time. The PolLux endstation was financed by the
German Ministerium für Bildung und Forschung (BMBF)

through contracts 05K16WED and 05K19WE2. Financial
support by the Deutsche Forschungsgemeinschaft within the
program KA 5069/1-1, KA 5069/3-1, and the Project ID
422 314695032-SFB1277 is gratefully acknowledged. We
also gratefully acknowledge financial support by the Fondo
Nacional de Desarrollo Cientfico y Tecnológico, Chile, for
the project Fondecyt Iniciación No. 11190184. We thank
M. Bechtel (MPI-IS) and B. Sarafimov (PSI) for technical
support.

APPENDIX A: MICROWAVE ABSORPTION AND
LINE WIDTHS

Here we briefly describe how the microwave absorption is
calculated from the lateral mode profiles ηνk obtained with our
propagating-wave dynamic-matrix approach. As mentioned in
the main text, the microwave power absorbed by the spin-
wave system is determined by the overlap of the spin-wave
mode profile with the spatial profile of the microwave field.
Our formalism here is a special case of the general cases, e.g.,
discussed in Refs. [54] and [53]. For a general volumentric
spin-wave mode profile mν (r) denoted only with the mode
index ν, the microwave absorption is obtained as

hν = 1

MνV

∫
V

dV ′ m∗
ν (r′) · h(r′), (A1)

with V being the volume of the magnetic specimen, h being
the spatial profile of the microwave field, and Mν being the
normalization factor of the mode with respect to the volume,
which is given by

Mν = i

V

∫
V

dV ′ m∗
ν (r′) · [m0(r)′ × mν (r′)]. (A2)

In our case, the mode profiles are given as mν (r) =
ηνk exp(ikz) and the equilibrium magnetization is translation-
ally invariant along the z direction, m0(r) = m0(ρ). For a very
long waveguide with finite length L, one can now insert these
mode profiles into Eqs. (A1) and (A2), perform the integral
along the z-direction, and then let L → ∞. One then obtains
the wave-vector dependent overlap

hν (k) = 1

NνkA

∫
A

dA′ η∗
νk (ρ′) · h̃(ρ′, k) (A3)

with h̃(ρ, k) being the Fourier transform of the microwave
field along the z direction and Nνk = Mνk/L being the nor-
malization factor of the mode with respect to the cross section
area A, which is given as

Nνk = 1

A

∫
A

dA′ η∗
νk (ρ′) · [m0(ρ′) × ηνk (ρ′)]. (A4)

In order to obtain the full microwave absorption, one also
needs to know the line widths of the modes, 	νk = αGενkωνk ,
which depend on the Gilbert damping parameter αG and the
mode ellipticity ενk . A general formalism to obtain the linear
spin-wave damping from the mode ellipticities was presented
in Ref. [53], which can be applied to our case in the same way
as above. For our case we obtain

ενk = 1

NνkA

∫
A

dA′ |ην (ρ′)|2. (A5)
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APPENDIX B: EXPRESSIONS FOR MICROWAVE-FIELD
WAVE-VECTOR SPECTRA

In our specific study, we calculated the microwave absorp-
tion for a current-loop antenna around and a stripline antenna
attached to the hexagonal nanotube. In the case of a current
loop the wave-vector spectrum of the microwave field can be
approximated as

h̃
(loop) ≈ (eξ (ρ) + ez )|sinc(�k)|e−β0k (B1)

with � ≈ 125 nm being approximately equal to half of the
width of the antenna and β0 = 0.5 nm/rad being some decay
factor. The unit vector field eξ can be approximated as being
the one locally perpendicular to both m0 and ez, which, in the
case of a hexagonal vortex state, gives the “radial” direction.

In the case of a stripline antenna which is attached to the
facets of the hexagonal tube (without any loss of generality
a facet which is parallel to the xz plane) the wave-vector
spectrum can be approximated as

h̃
(strip) ≈ (ex + ez )|sinc(�k)|e−β(s)k . (B2)

Here β(s) is now a function which depends on the distance s
to the center plane of the antenna. To obtain this dependence
we calculated the full 3D profile of the stripline antenna and
performed a Fourier transform in the z direction for different
distances from the antenna. A simple linear approach gave a
reasonable fit β(s) = β1s + β0 with β1 ≈ 1 and again β0 =
0.5 nm/rad.
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