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ABSTRACT

Surfaces of correlated electron oxides are of significant interest from both fundamental and applied perspectives. Many such oxides feature a
near-surface region (NSR) that differs from the bulk’s properties. The NSR can significantly affect the interpretation of the material’s elec-
tronic structure, especially for those in thin film form, and have detrimental effects for applications such as field effect devices and catalysts.
In this work, we study the changes in the composition and the electronic structure of the NSR of SrVO; (SVO) thin films. We employ x-ray
photoelectron spectroscopy (XPS) and compare TiOy-capped SVO films to identical uncapped films that were exposed to ambient condi-
tions. The significant overoxidation of the SVO surface in the bare film, illustrated by a primary V>* component, is prevented by the TiOj
layer in the capped film. The capped film further exhibits a decrease in Sr surface phases. These results demonstrate the importance and
potential of such capping layers in preserving the bulk properties of correlated oxides in their NSR, enabling more accurate probes for their
underlying physics and offering a route for their integration into devices.

Published under an exclusive license by the AVS. https://doi.org/10.1116/6.0001419

1. INTRODUCTION

Materials with electron correlation have attracted considerable
scientific attention for nearly a century, owing to their fascinating,
sometimes unexpected physics. Advancement in thin film synthesis
techniques has heralded prospects of emergent interface physics'
and of maturing some of these phenomena toward practical
devices.”” Moreover, driving thin films into the ultrathin (few
nanometers) regime can give rise to interesting electronic and mag-
netic phenomena, driven by quantum confinement” ™ and dimen-
sional crossover.””'” From a device point of view, the application of
an electric field is a desirable strategy for controlling and switching
material properties, such as metal-insulator transitions.”'”~'” Given
the typically high carrier densities in such materials,'® ultrathin

films would be required to produce a non-negligible modulation
under realistic electric fields.

A common feature of correlated electron materials is that their
electronically active cation, e.g., the transition metal in the B-site of
perovskite oxides, often has several metastable oxidation states.
Furthermore, in many of these materials, the B cation is not in its
most stable oxidation state (e.g, V*' in SrVO; and Mn®*' in
LaMnO3). As a result, when exposed to atmospheric conditions,
ions near the surface can be readily tempted by the abundance of
oxygen and humidity to chemically react with atmospheric mole-
cules and achieve an oxidation state closer to equilibrium. This
results in a near-surface region (NSR) on the films that differs from
the bulk in its chemical, structural, and electronic properties.‘:”l7’18_22
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These differences between the bulk and the surface can be further
compounded by the phenomenon of A-site cation enrichment

—
Q
—

toward the surface of the film.”””*> When considering ultrathin — Bare SVO LSAT (002)
films, the NSR might constitute most or even all of the film —— Capped SVO

volume, prohibiting access to the correlated electron physics of SVO (002)
interest.” X

In this work, we chose SrVO; (SVO) as a model correlated
system. It is a 3d" correlated metal,” an end member of a filling-
controlled metal-insulator transition system,”® and an attractive
earth-abundant transparent conductive oxide,” a critical compo-
nent of solar and optoelectronic devices.

We examine the surface of SrVO; and the effect of an ultra-
thin TiO4 cap on the NSR. Motivated by a successful implementa-
tion of similar caps by Zou et al.” for protecting LaTiOs films, we
set out to examine the interface of such a capping layer with a cor-
related material and its effects on the film’s NSR.
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Il. EXPERIMENT

A bare SVO sample and a TiO,-capped SVO sample were epitax-
ially grown in a customized Veeco GenXplor oxide molecular beam
epitaxy (MBE) instrument, operated at a base pressure of ~5x 107
Torr. Growth was done on (001) (LaAlOs),3(Sr,AlTa0s)y, (LSAT)
5x5 mm?® substrates (CrysTec GmbH). The growth was done at
oxygen backpressure of ~5x 1077 Torr controlled by a manual leak
valve at 1000°C,”" as measured by a thermocouple in proximity to a
Mo backplate in contact with the sample. The thickness of the SVO
films is estimated from the finite thickness oscillations [Fig. 1(a)] to be
~28.5 %1 nm. SVO growth was done by a shuttered method’>** where
a monolayer of Sr and a monolayer of V are alternately deposited onto
the surface with the oxygen being kept continuously steady throughout
the growth. Sr and V are evaporated from Veeco SUMO and high-
temperature sources, respectively. Their atomic fluxes are independently
calibrated in vacuum before each growth using a quartz crystal micro-
balance (QCM). Fine tuning is further done via the shutter times con-
trolled by the growth software. The samples are cooled to room
temperature under the same oxygen pressure as the growth.

In situ deposition of the TiOx capping layer on the SVO film
was performed at an oxygen backpressure of 8 x 10”7 Torr by evapo-
rating Ti from a high-temperature source. Deposition is done during
the cooldown of the sample from its growth temperature, starting at
200 °C. The nominal thickness of the cap is ~4 nm, which was cali-
brated by x-ray reflectivity (XRR) analysis of a similar layer deposited
on a SrTiO; substrate (without epitaxial layers). The TiOy layer is
most likely amorphous, as inferred by the absence of crystalline
reflection high energy electron diffraction (RHEED) patterns from
its surface and the absence of Bragg reflections in a grazing incidence
x-ray diffraction”* [excluding (102)g,ri03 from the substrate which is
near the Bragg condition in this geometry].

Structural characterization was done with high-resolution x-ray
diffraction (XRD) using a Rigaku SmartLab with a 2-bounce incident
monochromator. The surface morphology was imaged with an
Asylum Research/Oxford Instruments Cypher ES Environmental
atomic force microscope (AFM) operated in tapping mode. FIG. 1. (a) X-ray diffraction patterns around the (002) Bragg reflection of bare

X-ray photoelectron spectroscopy (XPS) was used for the (bottom) and capped (top) SVO fims, gown on LSAT substrates.
chemical analysis3 432 of the SVO surface with and without a TiO, ?g&r(:egt;gvif/;il\lls |nr1T?des Gir () 15272 2] ) Ceppes] D10 ey exic
capping layer. High-resolution measurements were acquired with a I
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PHI Versaprobe III using a monochromated x-ray source of Al Ko
(1486.6 V). The photoelectrons were collected at a take-off angle
of 45° and a pass energy of 55 eV with energy steps of 0.05eV. The
binding energies (BE) were aligned according to the C 1s peak
(285.0 V), and curve fitting was done using the CasaXPS software
with a Shirley background and a line shape of 30% Lorentzian and
70% Gaussian.”*"”

lll. RESULTS AND DISCUSSION

The structural analysis of the films by XRD [Fig. 1(a)] con-
firms the high quality of the epitaxial layer for both capped SVO
and bare SVO samples, as indicated by the sharp and intense SVO
peaks and the abundance of finite thickness oscillations. The
out-of-plane lattice parameters of the bare and capped SVO (3.819
and 3.830 A, respectively) are in agreement with previous reports,
further attesting to their high structural quality;’">*"” the small dif-
ference between the values is ascribed to small stoichiometry fluc-
tuations between growths.”’

The topography of the bare and capped films is analyzed by
AFM [Figs. 1(b) and 1(c), respectively]. The films exhibit smooth
surfaces with root mean square (RMS) roughness of ~0.3 nm for
the bare SVO sample and ~0.4 nm for the capped sample. The few
surface precipitates (~1-2nm in height, <1 precipitate-um™) that
are visible in both films are ascribed to the segregation of Sr-rich
phases near the surface, as discussed later within the XPS results.

The chemistry of the TiO4 cap layer was inferred from the
XPS spectrum of the Ti 2p core level. Most of the Ti 2ps/, signal
(Fig. 2) is fitted with a Ti*' component, accompanied by a small
contribution at lower binding energy typical of a Ti’" state,”’ con-
stituting 4% of the Ti 2p total area. This indicates that the cap con-
sists of TiO,_g namely, it is close to titanium dioxide.

We now focus on the XPS analysis of the SVO surface and
how it is affected by the capping layer. Figure 3(a) presents the XPS
spectra of O 1s and V 2p core levels of the bare and the capped
SVO samples. Since the O 1s signal appears in close proximity to

— T

— Ti**
—— Background |
Fit

Data

Intensity (a.u.)
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FIG. 2. High resolution XPS spectrum of the Ti 2p3/, core level of the capped
SVO sample.
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the V 2p doublet, they were all fitted with a single Shirley
background.

Figure 3(b) focuses on the fit of the V 2ps,, spectral region for
both the bare and the capped samples. The V 2ps, signal of the
bare SVO sample consists of a main component associated with a
5+ oxidation state,””*"** while the remaining low-energy tail can
be fitted with a peak related to the V** component of SVO.">"’
This key observation of this work highlights the tendency of the
SVO surface to get overoxidized when exposed to ambient air,
which results from the higher stability of the 5+ state, versus the
lower oxidation states of V. While some surface overoxidation is to
be expected, the dominance of vor (>90% of the signal, Table I) in
the near-surface region of SVO is noteworthy. We estimate the
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2'01s-V2p Bare SVO
—~20¢ Capped SVO|

72)
o 0
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FIG. 3. (a) Background-subtracted XPS spectra of O 1s and V 2p core levels of
bare SVO and capped SVO. The inset shows schematic structures of both
samples. (b) Fit of the V 2ps, spectral region of bare SVO and capped SVO
(inset). The fitted curve of the capped SVO is also presented, magnified, and
vertically shifted, under the bare SVO signal, for comparison.
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TABLE . Binding energy (BE), percentage of total area (% area), full width at half maximum (FWHM), and doublet separation of the different components used to fit the V
2p3j2 and Sr 3ds;, XPS spectra for bare and capped SVO samples.

Bare SVO Capped SVO
Doublet Doublet
BE (eV) % Area  FWHM (eV) separation (eV) BE (eV) % Area  FWHM (eV) separation (eV)
V 2ps (V) 515.08 8.4 2.38 7.28 515.03 100 3.65
V 2ps (V1) 517.07 91.6 1.64 7.51
Sr 3ds), (SVO) 132.04 5.1 0.80 1.80 132.00 44.7 1.04 1.78
Sr 3ds,, (Surface) 133.35 94.9 1.81 1.77 133.30 55.3 1.64 1.75

signal depth to be 3sin(6)A~ 4 nm, where 6 is the takeoff angle
(45°) and A is the inelastic mean free path (IMFP) of the Aol pho-
toelectrons (~1.84 nm), estimated** for stoichiometric SVO accord-
ing to the TPP-2M equation.”” The overoxidized NSR in SVO is
therefore estimated to be on the order of 10 unit cells.

For the capped sample, the V 2p;;, signal is relatively weak
since the SVO film is attenuated by the ~4 nm capping layer. This
signal is fitted with a single peak [inset of [Fig. 3(b)], and it is posi-
tioned approximately at the same binding energy as the V** com-
ponent of the bare sample (Table I). This comparison is visually
illustrated by a magnified depiction of the fitted curve below the
signal of the bare SVO in the main panel of Fig. 3(b).

We note that the fitted V** peak is relatively wide for the bare
sample (FWHM =3.65€V), and we raise the possibility that tita-
nium in the cap layer reduces the SVO surface during TiO4 deposi-
tion, similar to the effect observed on SrTiO; surfaces.’® In that
case, the V 2ps, signal could be fitted with a slightly narrower V**
component and a smaller V>* peak at a lower binding energy."
Such a potential scenario is presented in the supplementary mate-
rial.** Alternatively, the broad V** component could be the result
of many-body effects, where the interactions of valence electrons
with the core hole, created after the emission of a photoelectron,
can result in different final states of the ion, giving rise to the for-
mation of multiple spectral features around the primary peak.”” Lin
et al. discussed these phenomena in various open-shell transition-
metal oxides, including SrVO3.’12 Other works have shown that
screening by the (conducting) electrons near the Fermi level can
cause such broadening of the V 2p features.”**’ At this point, we
consider all the above as valid explanations for the broad V**
feature. As such, some surface reduction cannot be fully ruled out
at this point, which requires further study and possibly optimiza-
tion of cap deposition. Nonetheless, our key observation remains
the disappearance of the V°* component, demonstrating the effi-
cacy of the capping layer in eliminating the overoxidation of NSR
and retaining a predominately V** SVO surface.

In the Sr 3d spectral region (Fig. 4), the signal for both the
bare and the capped samples is fitted with two doublets. The first
doublet, positioned at a lower binding energy, is ascribed to the
perovskite structure of the SVO film,”*® whereas a broader
doublet is positioned at 1.30+0.05eV higher energy in both
samples. This broader component is attributed to other chemical
states of Sr that can form as a result of Sr excess near the surface of
the film. Such Sr enrichment has been observed in many perovskite

oxides’' and can result from segregation of Sr-rich phases to the
surface;”” these could be SrO precipitates, as was shown, for
example, in strontium titanate-based perovskites”’ and in
SVO.” In other cases, the formation of surface Sr-rich
Ruddlesden-Popper (RP) phases™ has been reported in different
perovskite oxides'””” and in SVO films, where structures of
Sr3V,04"°" were identified. Additional surface phases, like Sr
(OH), and SrCO;, have been reported following interaction with
ambient air.” """

In the Sr 3d spectrum of the bare SVO sample, most of the
signal is fitted with the broader surface-related component, while
only a small fraction (~5% of the signal) is related to the SVO
structure; this is comparable to the fraction of the V** component
in the V 2p spectrum of the bare sample (Table I). The capped
sample, however, exhibits a significant increase in the area fraction
of the SVO component, which corresponds to the decrease in
surface Sr phase that attenuates the SVO signal from the bulk.

Comparison of these results with the effect of the caps on the
V 2p features allows another conclusion to be drawn: while the cap
seems to eliminate the non-SVO V 2p moieties, in the Sr 3d spec-
trum (Table I), the non-SVO components remain significant (55%

Sr 3d

— Sr(SVO)
—— Sr (surface)
Fit

Intensity (a.u.)

139 138 137 136 135 134 133 132 131 130 129
Binding Energy (eV)

FIG. 4. Background-subtracted XPS spectra and fits of Sr 3d core level for bare
SVO (bottom) and capped SVO (top, normalized, and vertically shifted for

clarity).
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of the signal). This observation might indicate that the surface
phase of the capped sample is likely SrO that forms as a result of Sr
enrichment in the NSR. The formation of SrCO; phase on the
surface, as a result of a reaction between SrO and CO, from the
ambient air,”’ needs to be considered as well, since the C 1s
spectra®® exhibit a small carbonate peak. However, this peak is
found in the spectra of both the bare and the capped samples, and
because the SVO film in the capped sample was not exposed to
ambient air, it is more likely that the carbonate component is origi-
nated from adventitious carbon contamination.

These results further support the conclusion that a thin TiOy
capping layer, grown in situ on top of the SVO film before expo-
sure to ambient air, can efficiently prevent the formation of surface
phases and undesirable chemical states.

IV. SUMMARY AND CONCLUSIONS

The chemical states of the near-surface region of SVO films,
with and without a protective capping layer, are studied using
ex situ XPS analysis. It is demonstrated that a few nanometers thick
of in situ-deposited TiOy cap, which protect the SVO film from
exposure to ambient air, can efficiently prevent the overoxidation
of the transition-metal cation and diminish Sr-rich surface phases.
A possible reduction of the surface by the cap is not entirely ruled
out and could benefit from in situ XPS analysis. Effective capping
of correlated oxides provides a better-defined testbed for their
physics, which becomes critical the thinner the oxide is.
Implementing such caps enables to study ultrathin oxide films and
decouple the effect of the near-surface region from their intrinsic
physics, an important aspect for future devices.
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