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A B S T R A C T   

Laser powder bed fusion (L-PBF) is a versatile additive manufacturing process that can print geometrically 
complex metal parts for a variety of applications. However, poor control of defect formation during processing 
hampers its widespread industrial adoption. Many materials suffer from a high crack susceptibility during L-PBF, 
which results in degraded mechanical properties, and is an obstacle to the certification of critical parts. In order 
to unveil the mechanisms of crack formation in a prone-to-cracking nickel-based superalloy, we employ high- 
speed synchrotron X-ray imaging in combination with a miniaturized L-PBF set-up that reproduces real pro-
cessing conditions. This unique set-up provides operando imaging of crack formation during L-PBF. Comple-
mentary post-mortem inspection of crack morphology and thermal simulations supported by operando X-ray 
diffraction-based measurements of the temperature evolution allow to identify the cracking mechanism and to 
differentiate solidification cracking from liquation.   

1. Introduction 

Additive Manufacturing (AM) refers to different technologies that 
produce three-dimensional parts in a layer-by-layer mode. Due to its 
high technological and economic impact, the interest for AM has 
increased dramatically in recent years[1]. Laser Powder Bed Fusion 
(L-PBF), also known as Selective Laser Melting (SLM), is a highly ver-
satile, and one of the most studied AM processes for metals. It enables 
the manufacturing of very complex metallic objects by selectively 
melting successive layers of powder based on a computer-aided design 
(CAD) file. From a metallurgical point of view, the complex thermal 
history that the material undergoes during L-PBF differs substantially 
from conventional processing. It is characterized by a succession of fast 
melting, fast solidification (cooling rates ~ 106 ◦C.s− 1), and cyclic 
remelting or reheating in the vicinity of the melt pool. The thermal 
gradients induced by the process and the large degree of shrinkage 
occurring during solidification create high residual stresses and favor 
crack formation [2–6]. 

The CM247LC nickel-based superalloy is a γ′-strengthened Ni su-
peralloy, which is of particular interest due to its excellent mechanical, 
creep, wear, and oxidation properties at both ambient and elevated 
temperatures [7–10]. However, this alloy contains high amounts of Al 
and Ti and is considered vulnerable to cracking due to L12, Ni3 (Al, Ti) 
precipitation [11,12]. In literature, several mechanisms are reported to 
be responsible for cracking during the manufacturing of CM247LC alloy. 
Solidification cracking, liquation cracking and ductility dip cracking 
(DDC) are the main mechanisms that have been suggested [13–18]. 

Solidification cracking occurs in the last stages of solidification, due 
to a combination of solute-rich liquid entrapment between solid in-
terfaces and tensile residual stresses that pull the interfaces apart 
[13–15,19,20]. Liquation cracking results from the micro-segregation 
that takes place during fast solidification, which locally lowers the sol-
idus point. When an adjacent line scan or additional layer is processed, 
localized melting and associated cracking occur in the heat-affected 
zone [13–15,21]. Finally, ductility reduction in a [0.5 Tsolidus – Tsoli-

dus] temperature range has been reported in Ni-based superalloys. As is 
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the case for solidification and liquation cracking, the presence of re-
sidual stress within this temperature range results in the so-called 
“ductility dip cracking” (DDC) [16–18,22]. 

Kalentics et al. [13] observed solidification and liquation cracks in 
as-built CM247LC samples. Griffiths et al. [14] suggested that 
micro-cracking in CM247LC was attributed to both solidification and 
liquation cracking. Gleeble experiments on as-built CM247LC L-PBF 
samples showed that a liquation cracking mechanism is most likely 
active in the heat-affected zone of laser tracks. Both numerical simula-
tions and chemical analysis suggested that Hf influences the freezing 
range of the alloy and makes it susceptible to cracking. 

Liquation cracking was also reported in as-built samples of IN738LC 
(another γ′-strengthened Ni superalloy) [23]. The presence of low 
melting point alloying components in the vicinity of the crack surface 
constitutes evidence of this cracking mechanism [14,16,23]. 

Carter et al. [17] studied L-PBF-printed CM247LC samples and 
observed high-angle grain boundaries near the cracks, thus concluding 
that DDC is the main cracking mechanism in this alloy. The micro-
structure consists of columnar grains containing slightly misorientated 
cells elongated along the build direction. TEM analysis revealed the 
presence of small carbides within the cells, inter- and intra-cellular γ′

precipitates, and a high density of dislocations at the grain and cell 
boundaries. These observations support the DDC mechanism[16,18]. 

The origin of cracking in additively manufactured γ′-strengthened 
Ni-based superalloys is thus still a matter of debate. So far, only post- 
mortem crack examinations have been performed and no observation 
of cracking during additive manufacturing of CM247LC samples in real 
conditions is reported in the literature. As demonstrated for other ma-
terials, in-situ analysis is a useful approach to study a variety of phe-
nomena, such as crack formation, that take place during laser processing 
[24,25]. In particular, in-situ X-ray imaging is a powerful technique to 
investigate the formation of defects in metals during thermal processing. 
In recent years, several fast in-situ radiography measurements have been 
performed during laser processing. These experiments mostly focus on 
the study of melt pool dynamics [26–41], on the formation and elimi-
nation of pores [27,30,42–45], and on the generation of spatters [27, 
46–51]. Despite its importance for the final mechanical integrity of 
L-PBF parts, there exists little literature on the in-situ observation of 
crack formation. Preliminary work demonstrated the feasibility of 
observing cracks in an aluminum alloy 6061 [52,53]. Their geometry 
and interaction with porosities was emphasized from single laser line 
tracks, with however a simplified setup consisting of cuboidal solid 
specimens with no powder layer on top [53]. Whenever the aforemen-
tioned in-situ studies use a powder-bed system, the chosen configuration 
faces several limitations. It systematically consists of two plates that are 
transparent to X-rays and separated by a few hundred microns, between 
which a substrate is sandwiched. In most cases, a 100 µm-thick single 
layer of powder is manually applied on top of the substrate [26,27,37, 
38,43], whereas in other cases the X-ray experiments are directly per-
formed on the bare substrate, without any powder bed, to enhance 
clarity [28,37,43,53]. This two-plate setup can be considered as a 
quasi-2D configuration, which captures the evolution of a single layer 
melt track rather than the whole 3D character of the L-PBF process. In 
this type of setup, heat extraction from the melt pool may differ from 
what takes place in larger three-dimensional parts which consist in the 
superposition of multiple layers. Regardless of the mechanism at play, 
most crack formation mechanisms during L-PBF are promoted by tensile 
residual stresses, which tend to accumulate through several layers. It is 
therefore essential to monitor the printing of several layers to observe 
cracking during the L-PBF process. To that end, a miniaturized L-PBF 
device [54,55] optimized for usage at synchrotron beamlines and 
reproducing at a small scale close-to-real processing conditions in the 
three dimensions, is employed in the present study. Operando radiog-
raphy, combined with post-process SEM, EBSD and EDX analyzes and 
thermal simulations, provides valuable information on the conditions of 
crack initiation and the possible cracking mechanisms taking place 

during processing. Complementary operando X-ray diffraction experi-
ments are used to monitor the evolution of temperature during pro-
cessing and relate it to the simulated results. 

2. Experimental method 

2.1. Materials and fabrication 

Commercial gas-atomized CM247LC powder provided by Oerlikon 
Metco (Pfaeffikon, Switzerland) was used in this study. Powder size 
distribution was 15 – 45 µm with a D50 of approximately 30 µm. The 
chemical composition of the powder is listed in Table 1 [14]. The 
operando radiography experiments were performed with a miniaturized 
L-PBF device developed at the Paul Scherrer Institute (Switzerland). It 
mimics a commercial L-PBF device while being optimized for usage at 
synchrotron beamlines, thanks to its relatively small dimensions (height: 
520 mm, lateral dimensions: 280 mm and 260 mm) and weight (25 kg) 
and to the presence of two openings (at the back and front) allowing the 
incoming X-ray beam to enter the backside through a 100 µm-thick 
glassy carbon window, interact with the specimen and exit at the front 
through a 500 µm-thick glassy carbon window. The surface of the build 
plate is 12 × 12 mm2 while the total build height is limited to about 5 
mm. A more detailed description of the device can be found in [54,55]. 
The laser source is a 500 W redPOWER® continuous wave (CW) Fiber 
Laser (SPI Lasers Ltd, UK), operating at a wavelength of 1070 ± 10 nm. 
The laser beam is collimated as a parallel Gaussian beam into a 2-axis 
SuperScan III deflection-scanning unit (Raylase GmbH, Germany) with 
a 15 mm input aperture. Two fused silica mirror galvanometers allow 
scanning the laser beam over the power bed. The beam is focused down 
to a ø100 µm spot size through an F-Theta lens (Sill Optics, Germany). 
Both laser and scanning unit are controlled via an SP-ICE-3 board and 
the WeldMARK software (Raylase GmbH, Germany). Before and during 
operation, the chamber is flushed with Ar-gas. Furthermore, on the 
recoater a gas-outlet is mounted, which blows Ar-gas over the powder 
bed. 

The laser process parameters were determined based on ex-situ 
analysis preliminary to the operando experiments (Table 2). 

The printed samples were cut along the build direction and polished 
mechanically by SiC papers up to 2500 grit size and then polished by 
diamond suspension until 1 µm. To reveal the microstructure around the 
cracks, polished samples were etched with the Kalling solution (25 ml 
ethanol +25 ml HCl +2.25 g CuCl2) for one minute. Crack morphology 
analysis was done using a Zeiss-Gemini2 field emission scanning elec-
tron microscope. SEM-EDX analysis was performed at 15 keV. Electron 
Backscatter Diffraction (EBSD) maps were acquired at 25 kV using the 
same microscope equipped with the Symmetry camera and Aztec 
acquisition software (Oxford instrument). The maps were acquired with 
the step size of 0.5 µm and acquisition rate of 400 Hz with detection of 
10 bands, with a gain of 2 in the mode speed 1. 

2.2. Operando synchrotron X-ray imaging 

The operando X-ray imaging experiments were performed at the 
TOmographic Microscopy and Coherent rAdiology experimenTs 
(TOMCAT) beamline of the Swiss Light Source using an in-house built L- 
PBF device [54,55]. Fig. 1 displays a schematic view of the setup. The 
miniaturized L-PBF device was mounted on a dedicated stage and tilted 
by 20 degrees compared to the direction of the incoming X-ray beam. 
The edge of the powder bed was illuminated by a parallel X-ray beam 
with energies ranging between approximately 10 and 55 keV. The 
polychromatic radiation emerging from the source was filtered with 5 
mm of Sigradur (50% power filter) and 0.525 mm of Si. The transmitted 
beam was recorded with a custom-made 4 × microscope [56], coupled 
to the in-house developed GigaFRoST detector [57]. This detector ex-
hibits a 2016 × 2016 pixels CMOS imaging chip with 11 µm pixel size 
and 12-bit nominal dynamic range. Its novel readout system provides 
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continuous and sustained data streaming up to almost 8 GB/s to a 
dedicated high-performance data backend server. To optimize the visi-
bility of crack observation, the microscope was positioned at a relatively 
large distance from the sample (70 cm). This resulted in an enhanced 
contrast for edges. The experiments were performed at an acquisition 
frequency of 10 kHz. This was achieved by reducing the region of in-
terest to 672 × 512 pixels, equivalent to a field-of-view of 1.85 × 1.41 
mm2 (width × height). The optics consist of the custom-made micro-
scope with 4 × magnification and a high numerical aperture of 0.35, 

resulting in an effective pixel size of 2.75 µm. Prior to the operando 
radiography experiments 8 × 2 × 0.4 mm3 cuboids were printed near 
the edge of the build plate (Fig. 1c). During the operando radiography 
experiment, a single layer was printed with the same process parame-
ters. Fig. S1 in the supplementary materials indicates some examples of 
printed CM247LC samples. All the acquired data were Flat-Field Cor-
rected (FFC) using MATLAB R2018a [31] and an average flat-field 
image computed out of 10 consecutive frames. The contrast of cor-
rected images was adjusted by Fiji and GIMP using color balance and 
color curve adjustment features. Supplementary Fig. S2 displays a pic-
ture of the mounted setup at the TOMCAT beam line of the Swiss Light 
Source. 

As the sample is tilted compared to the incoming beam, the inter-
pretation of the radiographs is not straightforward. Fig. 2 displays a 3D 
schematic of the operando experiment for the first and final printed track 
of a given layer, together with representative features in the 2D pro-
jected images. This includes powder particles, solidified material, spat-
ters, pores, and cracks. A more detailed discussion on the observed 
contrasts of these features can be found in the Supplementary materials 
S3. 

Table 1 
Chemical composition of the CM247LC powder.  

wt% Al W Co Cr Ta Hf Ti Mo C Fe B Zr Ni 

CM247LC  5.71  9.93  9.24  8.62  3.08  1.37  0.73  0.54  0.06  0.02  0.017  0.006 Bal  

Table 2 
Processing parameters.  

Laser and material characteristics  

Spot diameter (1/e2) 100 µm 
Power 160 W 
Scanning speed 220 mm/s 
Hatch distance 100 µm 
Scanning strategy Bi-directional 
Base plate material 316 L stainless steel 
Pre-heating temperature 25 ◦C 
Layer thickness 40 µm  

Fig. 1. Schematic view of the operando radi-
ography setup at the TOMCAT beamline. a), b) 
Open build chamber of the miniaturized L-PBF 
machine and the camera in two different views, 
and c) zoom on the build plate and the printed 
sample to highlight the volume in which data is 
acquired during the operando experiment. A 2- 
axis scanning head (1) deflects the laser beam 
(2) on to a 12 × 12 mm2 build plate (3) and the 
sample (4). A parallel X-ray beam (5) passes 
through the sample (Fig. 1c) and reaches the 
microscope (6).   
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2.3. Operando synchrotron X-ray diffraction 

The operando X-ray diffraction experiments were performed at the 
MicroXAS beamline of the Swiss Light Source (SLS) using the same L- 
PBF device and processing parameters as for the X-ray imaging experi-
ments. The X-ray beam had an energy of 17 keV and was focused to a 
projected spot size of 80 × 80 µm2. Fig. S3 in Supplementary materials 
displays a picture of the L-PBF device mounted at MicroXAS. The ex-
periments are performed in reflection mode, where the X-ray beam is 
positioned in the center of the sample. The diffracted beam is recorded 
by a 1 M EIGER detector, developed at the Paul Scherrer Institute. 
During printing, 4-bit 2D diffraction patterns are recorded at a frequency 
of 20 kHz. Azimuthal integration was done with pyFAI, resulting in 1D 
images with an angular range between 10◦ and 70◦. 

Fig. S3 in Supplementary materials shows a representative ‘intensity 
vs diffraction and time’ plot. When the laser passes the area illuminated 
by the X-ray beam, the diffraction peaks change their position due to 
thermal expansion and contraction. This can be expressed as a change in 
lattice strain, which, in turn, is converted into a change in temperature 
using temperature-dependent thermal expansion coefficients [59,60]. 
Here, it is assumed that the thermal effects on the lattice constant are 
significantly larger compared to the effects of residual stresses and 
chemical composition [54]. 

2.4. Numerical simulations 

A dedicated numerical simulation software has been developed to 
model the temperature distribution during the L-PBF process. Stress 
calculation is not implemented in the current version of the FEM code. 
The powder bed is considered as a homogeneous medium, with effective 
properties such as absorptivity, optical penetration depth, density, 
thermal conductivity, etc. Thermophysical properties vary according to 
the material state (powder, solid, and liquid). The absorptivity of pow-
der particles is 57%, as measured with a Perkin Elmer Lambda900 
spectrophotometer at 1070 nm wavelength [61,62]. Thermophysical 
properties and their evolutions with temperature are taken from [14, 
63–66]. To validate simulated temperatures, the values are compared 
with operando x-ray experiments. The simulation is done using the same 
process parameters and scanning strategies as for the operando experi-
ments. Simulated temperatures are averaged over the x-ray beam pro-
bed zone, in the same way as the operando x-ray experiment does. During 
the operando experiments, the temperature in the liquid phase cannot be 
calculated using the diffraction data. Therefore, reported experimentally 
measured temperatures correspond to the solid state only, and are 
significantly below the simulated ones for the liquid state. More details 
on the finite element simulation framework are available in a recently 
published paper [61]. 

Fig. 2. 3D schematic of the operando radiography experiments. Two representative cases, i.e. at the beginning (a) and at the end (b) of the printing of a layer, are 
depicted to illustrate the type of features that can be observed: spatters and powder particles, cracks and pores. The volume of material analyzed during the 
experiment is highlighted in green and the corresponding projected 2D image can be seen on the left. Powder particles on the top surface exhibit a darker contrast, 
whereas pores appear brighter. Cracks exhibit a dark contrast, as explained in Supplementary materials S3. At the beginning of the process, (a) during the printing of 
the first tracks at the back of the sample, some spatters appear in the images as a result of the ejection of “cold” powder particles and “hot” molten metal droplets [58] 
in the vicinity of the melt pool. After printing the last tracks near the edge of the sample, i.e. in the green volume, cracks and pores appear in this region and can be 
observed in the 2D images (b). In the last tracks (b), due to denudation effects, a much lower amount of powder particles is present on the top surface compared to the 
first tracks (a). For visibility purposes the different features (melt pool, cracks, pores, X-ray beam) represented in the schematic are not at the right scale. 
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3. Results and discussion 

3.1. Operando observation of crack formation 

During the experiments, two distinct crack-related features could be 
observed: 1) formation, growth, and remelting of cracks after interaction 
with the melt pool, and 2) growth of existing cracks after interaction 
with the heat-affected zone (HAZ). 

Fig. 3 shows five snapshots during the printing of two adjacent 
tracks. The contrast was adjusted to highlight pores and cracks; spatters 
are not visible here. At t = t0 the laser passes position A with the scan-
ning direction to the left. After 2.7 ms, (not shown here, see Supple-
mentary Movie 1) a crack appears and grows towards the top surface. 
The fully-grown crack after 4.4 ms can be seen in Fig. 3c. Similar fea-
tures were found in other samples, as illustrated in Supplementary 
Fig. S7. During printing of the adjacent track, the laser reaches again the 
(2D-projected) position A after 13.5 ms (Fig. 3e). After the laser has 
passed, the top part of the crack disappears, indicating that it was 
remelted (Fig. 3f). However, with a 2.9 ms delay (see Supplementary 
Movie 1), the crack starts growing again towards the top surface 
(Fig. 3g). 

In Fig. 4a, a crack is already present in position B. When the laser 
passes in B (Fig. 4b), no visible change in the morphology and length of 
the crack is observed. Knowing the exact location of the crack with 
respect to the laser along the depth of the sample is not straightforward 
in transmission mode. However, as the crack does not appear to be 
remelted by the laser in Fig. 4b, it can be assumed that the crack in B is 
not located in the laser beam path but rather in an adjacent track, i.e. in 
the HAZ. A similar interaction between an existing crack and the HAZ 
can be seen in Supplementary Fig. S8. After 2.2 ms, the crack starts 
growing towards the surface; the fully grown crack is visible in Fig. 4c. 
During the next laser track, when the laser reaches point B (Figs. 4d and 
e), the top part of the crack disappears, indicating that the crack is now 
located in the laser beam path and is being remelted. After 2.4 ms, the 
crack propagates back to the surface; the fully grown crack is visible in 
Fig. 4f. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.addma.2022.102619. 

3.2. Mechanisms of crack formation 

The operando monitoring experiments reported in Fig. 3 and Fig. 4 

Fig. 3. Radiographs acquired during L-PBF of CM247LC. a) The position of the track (Track 1) observed in b) and c) is shown schematically. b) At t = t0, the laser 
reaches point A. The crack starts appearing at the same location 2.7 ms later. c) The crack is clearly visible at t = t0 + 4.4 ms. d) The position of the track (Track 2) 
observed in e), f) and g) is shown schematically. e), f) During printing of the next line scan, the crack is partially remelted. Track 2 remelts the top part of the crack. 
Considering the overlap between two adjacent tracks, the striped part in d) indicates the zone in which the crack formed. The crack starts growing again towards the 
surface with a 2.9 ms delay. g) A radiograph at t = t0 + 18.2 ms clearly shows the fully regrown crack. See Supplementary Movie 1 for a better observation of the 
crack formation. 
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illustrate the occurrence of crack formation or crack growth. 
In addition to direct observation during the manufacturing process, 

post-mortem SEM analysis and numerical simulations have been used to 
provide a better understanding of the cracking mechanisms at stake. 

SEM analysis of cracks located near the top surface of the sample 
reveals a dendritic morphology, indicative of fracture occurring in the 
presence of a liquid phase [11,14]. As highlighted in Figs. 5a and b, 
crack propagation occurs preferentially along grain boundaries. The 
SEM-EDX analyses reported in Figs. 5c and d indicate local enrichment 

in Ta and Hf at the edge of cracks. It should be noticed that these 
SEM-EDX analyses are obtained after processing. It can be reasonably 
assumed that the successive L-PBF thermal cycles occurring after 
cracking partially homogenize the material chemistry in the crack vi-
cinity, resulting in an underestimation of the micro-segregation that 
actually took place during solidification [14]. 

Fig. 6 displays cumulative disorientation across the grain boundaries 
where cracks formed in the top region of the part during the operando 
experiment. The results confirm that all observed cracks propagated 

Fig. 4. Radiographs acquired during L-PBF of CM247LC. a) At t = t0, a crack is visible in B and b) the laser reaches the B position 0.2 ms later but does not appear to 
alter the crack morphology. 2.2 ms after the laser passes point B, the crack starts growing. The fully-grown crack is visible in c). d), e) During the next laser track, the 
top part of the crack is remelted, and with a 2.4 ms delay the crack starts growing again and reaches the surface. The fully-grown crack is clearly observable in f). See 
Supplementary Movie 2 for a better observation of the crack formation. 

Fig. 5. a, b) SEM secondary electron images of the sample printed during the operando experiment (Y-Z cross section) indicating preferential propagation of cracks 
along grain boundaries (yellow arrows). c, d) SEM-EDX analysis highlighting element distribution in the vicinity of the cracks. 
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along high angle grain boundaries, i.e. the crystallographic misorien-
tation between the neighboring grains was higher than 15º. 

The segregation of Hf and its effect on the solidification behavior of 
CM247LC has been investigated by Griffiths et. al [14]. Their calculated 
liquidus and solidus temperatures suggest that micro-segregation hap-
pens during the L-PBF process and can locally increase the solidification 
range from 150◦ to 525◦C, depending on the chemical composition of 
the segregated area. The solidus temperature can be locally reduced 
from 1249◦ to 858◦C. Therefore, during the last stage of solidification, 
crack formation can result from the entrapment of solute-rich liquid 
between solid interfaces and the tensile residual stresses induced by 
solidification shrinkage and thermal gradients [11]. The misorientations 
measured across the cracks (Fig. 6) are in accordance with the solidifi-
cation cracking mechanism [67,68]. Higher-angle grain boundaries 
remain wetted at lower temperatures (due to increased boundary en-
ergy), which in turn increases the solidification cracking susceptibility 
[69]. 

In order to relate crack formation with the thermal history of the 
material, the temperature evolution during LPBF processing of the 
operando experiment was evaluated using a finite element code 
described in [61,70]. This model takes into account the presence of three 
different material states: bulk solid, powder, and liquid. It is a thermal 
model (i.e. no mechanical computation), and is meant to provide the 
exact thermal history of a given location in the material, with potential 
changes of state depending on the distance to the laser track. The 
simulation set-up is illustrated in Fig. 7a, while simulation results are 
reported in Figs. 7b, c, and d (black curve). Experimental temperatures 
in Fig. 7d are estimated from operando X-ray diffraction measurements 
obtained under the same processing conditions as the operando X-ray 
imaging experiments. They are calculated from the measured change in 
lattice spacing, using the thermal expansion coefficients tabulated in 
[59]; in the solid state (the liquid phase temperature cannot be 
measured), they validate quite accurately the simulated average tem-
perature evolution (in the X-Ray probed zone) during processing. Based 
on this simulated thermal field, the time required for solidification at a 

point A located on the surface, at the center of the melt track, is esti-
mated to 2.65 ms (Fig. 7c, black curve). 

Direct observation of cracking combined with numerical simulations 
and post-mortem chemical and microstructural analyses of the cracks 
confirm that cracks observed in Fig. 3, and Figs. 4e, f (also Fig. S7, and 
point D in Fig. S8 in the supplementary materials), which formed about 
2–3 ms after laser exposure, originate from such a solidification cracking 
mechanism: (i) cracks are first melted (i.e. they are not in the HAZ, but 
correspond to a zone in the melt pool, similar to point A in Fig. 7), and 
(ii) the time for them to reappear is consistent with the end of the 
calculated solidification process. 

Fig. 8.a provides a schematic view of the melt pool formation during 
L-PBF. A few ms after the laser passes a specific point, solidification 
starts (Fig. 8-b). Micro-segregation occurs at the scale of the melt pool 
[14,71] and increases the solidification range, while high tensile stresses 
accumulate in the vicinity [72–74]. These conditions promote solidifi-
cation cracking, illustrated in Fig. 8.c by two examples of solidification 
cracks that were captured during operando experiments, with a delay of 
about 2–3 ms between laser-material interaction and crack formation. 

Micro-segregation of elements during solidification of the alloy re-
sults in grain boundaries having a depressed solidus point due to the 
change in chemical composition. When these boundaries are subjected 
to elevated temperatures in the HAZ, they liquefy and become suscep-
tible to tearing: this is the liquation mechanism. Using Gleeble experi-
ments, Griffiths et. al [14] suggested that cracks in the solid state of 
CM247LC samples form after a liquid film in segregated regions of the 
HAZ has been pulled apart by the tensile residual stresses. Fig. 6c (red 
curve) indicates the temperature evolution at a location B (100 µm 
below the surface, the layer thickness being 40 µm), during the printing 
of three successive line tracks. When considering here a standard 
hatching distance (100 µm), the heat-affected zones in previous layers 
and adjacent tracks both reach sufficiently high temperatures to locally 
melt the segregated zones. A different scanning strategy would influence 
the temperature field and result in a different HAZ volume [75–78].  
Fig. 9.a is a schematic view of the liquation cracking mechanism in the 

Fig. 6. a,b,c) EBSD orientation maps (IPFz) of the printed samples and d) cumulative disorientation across cracked grain boundaries close to the top surface in 
samples built during the operando experiment (Y-Z cross section). (For interpretation of the references to colour in this figure, the reader is referred to the web version 
of this article) 
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HAZ of a laser track, where cracks form as a result of local melting of 
solute-enriched grain boundaries. This cracking mechanism is observed 
in Fig. 4c (as well as at point E in Fig. S8 in the Supplementary materials) 
where a pre-existing crack located in the HAZ grows about 2.2 ms after 
the laser beam passes. 

We conclude that combining operando experiments with numerical 
simulations of LPBF can provide evidence of the exact conditions in 
which either solidification or liquation cracking occurs in CM247LC. 
Once these conditions have been identified, they can be used to test 
criteria for solidification cracking. Previous studies in the fields of 
welding and casting have already proposed formulations, e.g. the grain 
boundary liquid film (GBLF) [79] and the Rappaz-Drezet-Gremaud 
(RDG) criteria [80]. 

According to the above cracking criteria, printing crack-free samples 
would in principle require slower solidification velocities [81]. How-
ever, drastic changes in the laser energy density can lead to other kinds 
of defect such as part delamination, keyhole instability, and 
lack-of-fusion porosities [14,81]. Preheating methods have been used as 
a strategy to reduce thermal gradients, thermal stresses and solidifica-
tion velocities. For example, Ramsperger et al. [82] managed to print 
crack-free CMSX-4 samples using the electron beam bed fusion process 
with high temperature preheating (1040 ◦C). The same approach was 

used in L-PBF by Hagedorn et al. [83], who preheated the build plate at 
1200 ◦C and obtained crack-free CM247LC. However, the majority of 
L-PBF machines does not have the ability to pre-heat at such high 
temperatures. Alternatively, alloy-by-design (ABD), i.e. designing new 
grades of γ/γ′ nickel-based superalloys specifically for AM processes, 
could be a promising approach, considering that most of the γ/γ′

nickel-based alloys currently considered in AM were initially designed 
for conventional processes such as casting [10]. 

4. Summary 

In summary, operando radiography allows the observation of crack 
formation during L-PBF of the CM247LC nickel-based superalloy. 
Together with operando X-Ray diffraction and numerical simulations, 
these experiments provide direct evidence of both solidification and 
liquation cracking mechanisms, with the possibility to distinguish one 
from the other. We expect that a better understanding of cracking ach-
ieved in this study will stimulate the development of more accurate 
numerical simulations of the L-PBF process, cracking criteria, and new 
approaches to achieve crack-free L-PBF nickel-based parts, such as to 
unravel the full industrial potential of AM technologies for these alloys. 
Furthermore, the unique operando experimental setup employed here 

Fig. 7. Finite element simulation indicating the temperature evolution at the melt pool scale in the process conditions corresponding to the operando L-PBF ex-
periments. a) Reference positions A and B with respect to the three laser line tracks considered in the simulation, b) temperature distribution when the laser reaches 
point A, c) temperature evolution at point A and point B, during successive printing of the three adjacent tracks. The solidification time at point A is 2.65 ms after the 
first laser pass, which is comparable to the measured times for crack formation in the operando experiments. In point B (located in the heat affected zone), heat 
transfer to the previously solidified layer is sufficient to locally melt segregated zones (T > 858 ◦C). d) Simulated temperatures averaged over the X-ray probed zone 
compared with the experimental values, from X-Ray diffraction. The spike in the FEM-predicted temperatures corresponds to the first track where a melt pool (liquid 
phase) forms. Measured temperatures only refer to the solid state and are therefore significantly below the simulated peak values of the first track. 
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provides a broad range of information on various critical transient 
events that are beyond the scope of this paper, e.g. pore formation, melt 
pool dynamics, or spatter ejection. Hence, this set-up could be used for 
process optimization of different metals and alloys, validation of ther-
momechanical simulations and/or microstructure evolution models, 
and development of new material compositions better designed for L- 
PBF. 
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