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Single-shot Monitoring of Ultrafast 
Processes via X-ray Streaking at a 
Free Electron Laser
Michele Buzzi1, Mikako Makita1, Ludovic Howald1, Armin Kleibert  1, Boris Vodungbo2,3, 
Pablo Maldonado  4, Jörg Raabe  1, Nicolas Jaouen5, Harald Redlin6, Kai Tiedtke6,  
Peter M. Oppeneer  4, Christian David1, Frithjof Nolting1 & Jan Lüning3,5

The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray 
spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that 
allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few 
discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to 
resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window 
of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement 
we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events 
of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and 
both values are in excellent agreement with previous results and theoretical modelling. More generally, 
this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-
repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.

Ultrashort light pulses enable scientists to interrogate condensed matter on its fundamental time scales. With 
the advent of x-ray free electron lasers (XFELs), which produce extremely bright x-ray pulses as short as a few 
femtoseconds1, 2, the potential of x-ray based techniques has been extended to investigations on ultrafast time 
scale. This allows shining light on phenomena that are difficult to study using optical spectroscopy, as for example 
distinguishing the individual dynamics of different components in complex materials3–6. Typically, experiments 
resolving ultrafast processes rely on repetitive pump-probe techniques that do not allow probing of phenomena 
having a stochastic nature or systems that are difficult to reset repeatedly to the initial state. To overcome these 
limitations, various methods based on spatial and spectral encoding of the pump-probe time delay have been 
developed in optical spectroscopy, which allow for time reconstruction of an ultrafast process from a single opti-
cal laser pulse7–9.

Up to now, experiments employing single x-ray pulses from XFELs succeeded in capturing the transient state 
of a sample at a single time delay10, with the notable exceptions of multiple split and delay setups sampling a few 
discrete time delays at once11, 12. Here, we demonstrate a novel experimental method that makes it possible to 
continuously probe with a single femtosecond x-ray pulse the response of a system to an ultrafast excitation over 
an extended time interval.

Our experimental technique, to which we refer to in the following as x-ray streaking, is based on a basic 
principle of diffractive zone plate optics. Each zone of the zone plate diffracts light to the focal point adding a 
delay of λ/c per zone, where λ is the wavelength of the x-ray pulses and c is the speed of light. This is illustrated 
in Fig. 1(a), the optical path length from a zone plate to its focal point is the shortest for rays diffracted from the 
innermost zone of the zone plate and it increases continuously with the radial distance from the zone plate cen-
tre. When a single probe pulse illuminates the zone plate, it is diffracted into a continuous set of sub-pulses that 
converge at the focus. As each sub-pulse propagates along a different path, each of them reaches the focus at a 
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different time and with a different angle. Their propagation continues after the focus, and the sub-pulses separate 
again, reaching spatially distinct locations, e.g., on an area detector. In this way the arrival time of each sub-pulse 
to the focus is encoded into the spatial coordinates on the detector. When a sample is placed in the zone plate 
focus, these sub-pulses probe the sample at different times, e.g., with respect to the arrival of an external pump 
pulse exciting the sample. The time evolution of the sample properties is thus encoded in the image recorded by 
the area detector. The choice of an off-axis illumination of the zone plate13 is ideal to separate the different diffrac-
tion orders and to maximise the accessible time delay window for a given beam size.

X-ray streaking also overcomes a limitation of conventional pump-probe experiments at unseeded XFELs. The 
stochastic nature of self-amplified spontaneous emission results in strong fluctuations of x-ray pulse parameters 
such as arrival time or spectral composition1, 14. As conventional pump-probe measurements require averaging 
over many XFEL pulses, such fluctuations result, for example, in a deterioration of the achievable energy and time 
resolution. Retrieving the full time evolution of the ultrafast response of the sample using a single x-ray pulse 
avoids the need of averaging over a series of XFEL pulses, and allows approaching the achievable energy and time 
resolution given by the characteristics of a single XFEL pulse.

As the whole dynamics of an ultrafast process is captured in a single pump-probe event, x-ray streaking gives 
access to the ultrafast dynamics of stochastic phenomena and irreversible phase transitions in materials. Note 
that this is even useful when repetitive pump-probe measurements are possible, since capturing the entire trace 
at once allows selecting specific probe pulses, which can improve the data quality.

Results
To demonstrate the capabilities of our novel x-ray streaking technique we investigated the ultrafast demagneti-
sation dynamics occurring in a thin ferromagnetic film upon non-thermal excitation by an intense, femtosecond 
short infrared pulse. This excitation causes the magnetisation of the sample to quench rapidly within the first 
picosecond15, 16. Unravelling the fundamental mechanism of ultrafast magnetization dynamics is expected to have 
strong impact on the understanding of magnetism and to lead possibly to novel technological applications17–20. 
Since up to now, all the experiments on ultrafast demagnetisation have relied on repetitive pump-probe tech-
niques, it remains an open question whether this phenomenon is indeed governed only by a single reproducible 
mechanism, as commonly expected, or whether multiple pathways, characterised by different demagnetisation 
dynamics, are present.

Figure 1. (a) Principle of the x-ray streaking technique, which is based on an off-axis Fresnel zone plate. Light 
travelling on rays closer to the zone plate optical axis probes the excited area on the sample earlier than light 
travelling along rays that are further away from it. After further propagation the rays separate again and each 
of them can be imaged on a slow detector, allowing for reconstruction of the ultrafast dynamics of the sample 
using a single x-ray pulse. (b) Schematic of the experimental setup. Details on the implementation are described 
in the text and in the Methods. (c) Calculation of the optical path length difference (OPLD) as a function of the 
beam coordinates of the reflected beam. (d) Simulation of the image recorded by the reflection detector in case 
of an ultrafast drop of the sample reflectivity caused by the IR pump pulse. The area in yellow (blue) corresponds 
to rays that arrive on the sample earlier (later) than the excitation pulse. The axes in (c) and (d) are rotated by 
90° with respect to those in (a) and (b) such that time evolves primarily horizontally from the left to the right.
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To gain sensitivity to the transient magnetic properties of the sample we employed the resonantly enhanced 
transverse magneto-optic Kerr effect (T-MOKE)21, 22 in reflection geometry. The x-ray photon energy was tuned 
to the cobalt M2,3 edge (~60 eV, corresponding to 20.8 nm in wavelength) and the sample oriented close to its 
Brewster angle. In this experimental configuration a change in the sample magnetisation generates a variation in 
x-ray reflectivity of up to 40%. In Fig. 1(b) we show a sketch of the setup employed to record the transient changes 
in x-ray reflectivity using single x-ray pulses from the free electron laser FLASH. The unfocused FLASH pulse 
is used to illuminate the 4.8 × 4.8 mm2 Fresnel off-axis zone plate. The +1st diffraction order beam is focused on 
the area of the sample excited by the infrared laser pulse. The sample reflects the beam towards a high sensitivity 
two-dimensional detector (reflection detector). The −1st diffraction order beam is divergent and goes directly to 
a second two-dimensional detector (reference detector). We employ the reference detector to account for shot 
to shot fluctuations in the intensity profile of the XFEL beam, as well as inhomogeneities in the illumination and 
diffraction efficiencies of the zone plate.

We performed a ray optics calculation of how the optical path length from the zone plate to the sample varies 
as a function of the x and y coordinates of the 1st order diffracted beam. Figure 1(c) shows the result of the calcula-
tion performed for the experimental geometry and the zone plate parameters used in this work (see the Methods 
section for more details). The maximum optical path difference is close to 470 μm corresponding to a maximum 
difference in arrival time of 1.57 ps. Using the time delay map retrieved from the ray-optics calculation we calcu-
lated how the image collected by the reflection detector would look in case of a sharp drop in reflectivity happen-
ing within 100 fs of the infrared excitation. The result shown in Fig. 1(d) indicates how the time delay between the 
pump pulse and the array of probe sub-pulses varies as a function of the spatial x and y coordinates of the image 
of the 1st order diffracted beam. The expected radial symmetry is distorted due to the finite size (200 × 40 μm2) of 
the focal spot and the 45° incidence angle. This affects the optical path length of the rays and thus alters the spatial 
encoding of the pump-probe time delay in the reflection detector image.

To experimentally quantify the transient magnetisation change induced by the infrared laser pulse, we col-
lected reflectivity measurements using single XFEL pulses with (pumped) and without (unpumped) infrared 
excitation. The x-ray probe intensity was kept low enough not to alter the magnetic properties of the sample  
(<1 mJ/cm2, deposited at the sample over a time window of 1.5 ps), while the fluence of the infrared pump beam 
was set to about 15 mJ/cm2. The raw images acquired by the reflection detector using single x-ray pulses from 
the XFEL in the pumped (left) and un-pumped (right) cases are shown in Fig. 2(a). The expected signature of 
the demagnetization process is clearly visible in the raw image of the pumped measurement as an abrupt colour 
change from light to dark blue along the horizontal direction. This assignment is supported by the absence of this 
feature in the unpumped image. Hence, without the need of any data analysis these raw images already prove that 
the single-shot x-ray streaking method is working as expected.

Figure 2. (a,b) Raw images from the reflection and reference detectors respectively. Both the images for the 
pumped and the un-pumped event are acquired using a single x-ray pulse. (c) Transient reflectivity image (as 
defined in the text) calculated from the images shown in (a,b). (d) Reshaped transient reflectivity image after 
calibration of the time window.
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Correcting for the inhomogeneous illumination and diffraction efficiency of the zone plate enhances the vis-
ibility of the transient change in reflectivity. For this we have derived the transient reflectivity image (TR-image) 
by pixel-wise computation of:
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0 0  are the images collected by the reflection (Fig. 2a) and reference 
(Fig. 2b) detectors both in the pumped and unpumped case. The TR-image shown in Fig. 2(c) demonstrates that 
this procedure removes all illumination related artefacts. The colour scale is now dominated by the change in 
reflectivity due to the ultrafast demagnetization dynamics, which manifests itself along the x-axis as an abrupt 
change from bright yellow to dark blue. The red dashed line in the figure corresponds to a smoothed contour line 
of equal contrast change.

Knowledge of the delay map from the ray optics simulations allows us to extract the time resolved reflectivity 
curve from the transient reflectivity map. To do so, each row of the TR-image is interpolated onto a linearly var-
ying time axis spanning between the earliest and latest time delay value common to all rows. Figure 2(d) shows 
the result of this linearization process. The abrupt contrast change is now a straight line (as highlighted by the 
red dashed line), i.e. time is varying linearly and only along the x-coordinate. By averaging the TR-image along 
the y-coordinate, one obtains the single-shot time resolved reflectivity curve shown in Fig. 3(a). We note that the 
signal-to-noise ratio of these single shot data is excellent, well comparable to what has been obtained so far by 
averaging over a large number of pump-probe events in repetitive pump-probe measurements3.

Upon infrared excitation, the reflectivity of the sample drops by approximately 40%. This corresponds to a 
complete demagnetisation of the cobalt layer as confirmed by static and repetitive pump-probe T-MOKE asym-
metry measurements. The ultrafast drop in reflectivity, which characterizes the ultrafast magnetisation change, 
can be modelled using a double exponential decay from which one can extract the spin relaxation time τs (see 
Methods section for details). Fitting this model to the data yields the red solid line in Fig. 3(a), which determines 
the spin relaxation time τs to be (130 ± 30) fs, a value close to the experimental time resolution of ~120fs only 
given by the convolution of the duration of the pump and probe pulses (see Methods section for details). We 

Figure 3. (a) Time resolved reflectivity curve extracted from the single-shot transient reflectivity image in 
Fig. 2(d). The red line represents a fit with a double exponential decay while the green line is obtained by 
calculations on the basis of super-diffusive transport theory. Error bars are the standard deviation calculated 
throughout the rows of the TR-image. (b) Statistical distribution of the demagnetisation times as extracted from 
the fitting of 193 single-shot measurements of the ultrafast demagnetisation process.
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note that this value is in general agreement with the results obtained on cobalt based alloys in other experiments 
using x-ray probe pulses19, confirming the soundness of this novel experimental approach. To further analyse 
the obtained data, we have theoretically modelled the ultrafast demagnetisation with the super-diffusive trans-
port theory (see the Methods section for more details). The predicted magnetization evolution is represented in 
Fig. 3(a) by the green curve, which is in excellent agreement with the measured data, confirming the accuracy of 
the x-ray streaking method.

Discussion
Being able to record an entire demagnetization curve with a single x-ray pulse opens up the possibility to follow 
the entire time evolution after each excitation event in a longer series of consecutive single shot experiments, thus 
providing novel insight into the underlying physical processes. Figure 3(b) shows the statistical distribution of 
the spin relaxation time τs obtained by fitting the time resolved reflectivity curves recorded for each of 193 con-
secutive events. The measurements follow a unimodal distribution, and the fitting of the experimental histogram 
with a Gaussian distribution shows an excellent agreement leading to a value of <τs> of (113 ± 20) fs, in excellent 
agreement with the value obtained in a single pump-probe event. We note that this value is comparable with our 
experimental time resolution of ~120 fs and that within this limit, we do not observe a multimodal distribution 
peaked around more than one value that could indicate that the magnetic system followed different paths on each 
demagnetisation event. This observation illustrates that, within our time resolution, the evolution of the ultrafast 
demagnetization process is truly deterministic.

In general, the achievable time resolution with this x-ray streaking technique is limited by two factors. The 
first one is the duration of pump and probe pulses as in any other pump-probe experiment. In the data fitting 
in Fig. 3(a), we have set the time resolution to a value 120 fs, which corresponds to the convolution of the inde-
pendently determined duration of pump and probe pulse. The result of the fit thus suggests that the time resolu-
tion in the experiment is essentially limited by the duration of the x-ray and infrared pulses. The second factor is 
related to the bandwidth of the incoming probe pulse, which plays an important role, since zone plates are energy 
dispersive optical elements. We calculated that in the particular geometry employed here, probe pulses with a 
bandwidth of 1.5%, as in our experiment, limits the maximum achievable time resolution to ~50 fs, a value lower 
than the duration of the pump and probe pulses we employed (see Methods section for more details). This shows 
that our x-ray streaking method does not limit the time resolution, and a significantly higher resolution could be 
achieved using significantly shorter pump and probe pulses. Furthermore, (self-)seeded XFELs provide pulses 
with significantly lower bandwidth values, which will enable x-ray streaking experiments with a temporal resolu-
tion down to sub-10 fs resolution. For example, if one employs Fourier transform limited pulses of 4 fs duration, 
the focal spot becomes smaller (20 × 5 μm2) and the calculated best time resolution achievable with the same 
experimental setup becomes ~7 fs.

The maximum achievable time window is determined by the total number of illuminated zones Nmax, the 
wavelength λ of the incoming x-rays, and the speed of light c, according to the relation λ∆ = .t N c/max max  For the 
particular zone plate we used ∆tmax evaluates to approximately 1.6 ps (see Methods section). Typically Nmax is 
limited by the minimum structure size that can be fabricated and by the available beam size at the XFEL beamline 
restricting the number of homogeneously illuminated zones. We envision that the maximum time window could 
be expanded in different ways. For example the use of different fabrication techniques and base materials23 would 
allow tripling the available time window without changing other experimental parameters. An even better figure 
can be expected by replacing the transmission zone plate with a reflective one, increasing the number of illumi-
nated zones without further increased lithographical effort24.

In summary, we have conceived a novel experimental technique that allows for continuous recording of 
the dynamics of an ultrafast process with a single x-ray pulse, yet maintaining a very high time resolution. We 
achieved this by employing an off-axis Fresnel zone plate to generate a continuous array of pulses that probe the 
sample at consecutive, geometrically defined time delays. In a proof-of-principle experiment we recorded the 
transient change in reflectivity due to the ultrafast demagnetisation process triggered by a near infrared pulse in 
a cobalt thin layer, using a single x-ray pulse. The measurements shown here not only demonstrate the power of 
this novel x-ray streaking technique for the investigation of ultrafast processes in single shot experiments, but also 
illustrate that within our time resolution of ~120 fs no significant fluctuations of the demagnetisation time could 
be recorded for subsequent demagnetisation events. It should be emphasized that such measurement would not 
have been possible using traditional repetitive pump probe schemes.

The experimental method demonstrated here paves the way to a series of novel experiments that will bene-
fit from directly recording the transient properties of a sample using a single pump-probe event. For example, 
one can envision different experimental geometries (e.g. in transmission instead of reflection) based on x-ray 
streaking to measure x-ray absorption. This will help shine light on chemical processes such as bond formation 
or charge transfer reactions in crystalline photochemistry, where it is difficult to repeatedly deliver a fresh sam-
ple, prerequisite for repetitive pump-probe measurements. Studies in material science will also benefit from the 
advantages offered by the x-ray streaking method for example in studying the path through irreversible phase 
transitions in phase change materials25. Finally, another field that should benefit from this x-ray streaking tech-
nique is the one of warm dense matter where the required excitation intensities typically lead to permanent 
damage of the sample.

Methods
Experimental setup. The experiments were performed at beamline BL2 of the x-ray free electron laser FLASH26.  
The x-ray wavelength was tuned to 20.8 nm, in order to be resonant to the cobalt M2,3 absorption edges. The aver-
age pulse intensity was (50 ± 12) μJ and the photon energy bandwidth was 1.5% FWHM. FLASH was operated at 
a repetition rate of 10 Hz and a fast shutter was used to select single x-ray pulses. To keep the x-ray fluence at the 



www.nature.com/scientificreports/

6Scientific REPORTS | 7: 7253  | DOI:10.1038/s41598-017-07069-z

sample position low enough to avoid x-ray induced sample modifications, the incoming x-ray pulse was attenuated 
with two 423 nm thick Al films (18% overall measured transmission), which were positioned upstream of the zone 
plate. Due to the bandwidth of the x-ray pulses the focal spot is elliptical and its measured size was 200 × 40 μm2.  
The cobalt sample was excited at normal incidence using 800 nm, linearly polarized pulses delivered by the 
FLASH pump-probe laser. The pump beam was focused on the sample with a spot size of 500 μm in diameter and 
the polarisation was set parallel to the x-ray scattering plane. Both the pump and the probe spot size were deter-
mined by knife-edge scans. The duration of the infrared pump pulse was about 70 fs FWHM, while the probe 
pulse was about 100 fs FWHM. Both the reference and reflected x-ray beams were collected using two CCD cam-
eras (PI-MTE, Princeton Instruments). To prevent any scattered infrared light from reaching the CCD sensors, 
and to match the intensity of the reflected and reference beams, a 150 nm and a 3.2 μm thick aluminium filter 
were installed in front of the respective cameras. The CCD cameras were positioned to match the dimensions of 
the beam image on both CCDs within 5 pixels. The magnetisation of the sample was saturated before each pump-
probe event with a 40 mT magnetic field pulse applied parallel to the sample surface.

Zone plate details. The off-axis Fresnel zone plates were made from single crystalline Si <111> mem-
branes with lateral dimensions of 4.8 mm × 4.8 mm (Norcada Inc.). The zone plate pattern consisted of ~23000 
zone pairs spanning over the full size of the membrane. The outermost zone had a period of 160 nm and a zone 
radius of 10.3 mm resulting in a focal length of 80 mm at 20.8 nm wavelength. The pattern was defined with an 
electron-beam writer (Vistec EBPG-5000+ES) operated at 100 keV and etched into the membrane using reactive 
ion etching. The depth of the zone structures was 400 nm and the remaining thickness of the support membrane 
was 200 nm. Using the tabulated optical constants of silicon27, one can calculate a first order diffraction efficiency 
of 13.4%. A characterisation of the zone plates at the VUV beamline of the Swiss Light Source revealed, that the 
actual diffraction efficiency was about 70% of this value due to imperfection in the zone profile. The horizontal 
line structures in the camera images shown in Fig. 2(a) and (b) are caused by stitching errors of the electron beam 
writer. These slight offsets on the order of some tens of nanometres cause phase discontinuities in the diffracted 
wavefronts, which propagate into substantial intensity variations at the camera positions. However, these struc-
tures were largely cancelled out by the applied normalization procedure and did not affect the measurements.

Sample Fabrication. We employed a Co (20 nm) thin layer that was deposited by magnetron sputtering on 
a 525 μm thick silicon wafer. The cobalt layer is in-plane magnetized and is isotropic in the plane as confirmed 
by magneto-optic Kerr effect measurements. To ensure optimal growth, a 30 nm thick Pd buffer layer was grown 
prior to the Co deposition. The layer stack was terminated with a 3 nm thick Al capping layer to prevent oxidation.

Data Analysis. The ray-optics calculations were performed propagating a set of 247 × 247 rays from the 
zoneplate surface to the focus. The coordinates were then used to calculate the optical path of light travelling 
along each ray using the Euclidean distance. These calculations generated the time-delay maps used for the 
simulation in Fig. 1. The TR-images were extracted from the raw images as described in the text after running 
an image registration algorithm to minimize the effect of drifts and alignment imperfections. Input from the 
ray-optics calculation was used to calibrate the time axis of the image and extract the time-resolved reflectivity 
curve as described in the text. The curves obtained from the TR-images were then fitted by the double exponential 
expression:

∆
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where G(t) is a Gaussian function to take into account the time resolution of the experiment, H(t) is the Heaviside 
function and τs and τ−s ph are, respectively, the thermalization time and relaxation time of the spins to other 
degrees of freedom. This model ignores interaction in the lattice, which are expected to be relevant only on longer 
time scales. For the data fitting the FWHM of G(t) was set to 120 fs, which corresponds to the convolution of 
pump and probe pulse duration. Due to the limited time window probed in our experiment, the value of τ−s ph 
cannot be evaluated reliably from the single shot data. We therefore used a value of 5 ps, which was retrieved from 
repetitive pump-probe measurements.

Effect of x-ray bandwidth on time resolution. To simulate the effect of the incoming beam bandwidth 
on the maximum achievable time resolution we calculated a TR-image generated by a polychromatic beam using 
a 10 fs FWHM Gaussian time profile as a test function. This was obtained as a weighted average of TR-images 
generated by the different photon energies contained in a Gaussian spectrum with a bandwidth of 1.5% FWHM. 
The final TR-image was then processed as the experimental data and the retrieved Gaussian profile showed a 
FWHM of 51 fs indicating that the maximum possible time resolution for 1.5% bandwidth in this experimental 
geometry is approximately 50 fs.

Theoretical modelling. We obtained the time and depth resolved profiles of the transient magnetisation 
M z t( , ) of the sample, by employing the super-diffusive transport model, which treats the propagation of optically 
excited hot electrons as well as secondary excited electrons through the metal film semi-classically28. Since the 
lifetimes and velocities of the excited electrons are energy and spin-dependent in the magnetic metallic layers, 
their overall motion leads to a more efficient transport of majority-spin electrons, generating thus a current with 
a net spin-polarization. The time-dependent dynamics of the spin transport is calculated by numerically solving 
the super-diffusion equation
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where σn E z t( , , , ) is the spin- and energy-dependent density of laser-excited electrons, τ σ E z( , , ) is their lifetime, 
Φ̂ and Î  are the electron flux and identity operators. Ŝ is an integral operator that computes the source term for the 
next-generation of electrons, produced through scattering events which result from elastic, inelastic, as well as 
cascade processes, and σS E z t( , , , )ext  is the source term containing explicitly the 70 fs IR pump pulse. The z coor-
dinate is defined as being normal to the sample surface. The spin- and excitation-energy-dependent lifetimes and 
velocities29, 30 as well as the ratio of excited majority to minority spin electrons, are taken from ab initio calcula-
tions. Partial reflection at the interfaces between two layers has been included in the calculations. The energy- and 
spin-dependent reflectivity has been computed assuming that the electrons cross the interface as classical parti-
cles, with velocities defined by the band structure of each material. All possible multiple reflection paths are taken 
rigorously into account. The simulated system is Al (3 nm)/Co (20 nm)/Pd (30 nm) as specified in the Sample 
Fabrication section.

Transient reflectivity calculation. To extract the change in the sample reflectivity due to the ultrafast 
demagnetisation process and compare it with our experimental results, the depth-resolved transient magneti-
sation profiles were then used as an input to calculate the expected change in reflectivity due to the T-MOKE 
effect using the Zak formalism31. The optical constants needed for this calculation were retrieved from the Henke 
tables27 for aluminium and palladium, while the one for cobalt were measured directly to guarantee higher accu-
racy. The transient reflectivity curve obtained using this method was then convoluted with a Gaussian pulse to 
account for the experimental time resolution.

Data Availability. The datasets generated during the current study are available from the corresponding 
author on reasonable request.
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