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Abstract

The imaging of magneto-dynamical processes has been, so far, mostly a two-dimensional

business, due to the constraints of the available experimental techniques. In this

manuscript, building on the recent developments of soft X-ray magnetic laminography,

we present an experimental setup where magneto-dynamical processes can be resolved

in all three spatial dimensions and in time at arbitrary frequencies. We employ this

setup to investigate two resonant dynamical modes of a CoFeB microstructure, namely

the fundamental vortex gyration mode and a magnetic field-induced domain wall ex-

citation mode. For the former, we observe a large variation of the gyration dynamics
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across the thickness of the core, coexisting with a breathing mode of the core. For the

latter, we observe a uniform displacement of the domain walls across the thickness of the

microstructure. The imaging of these two modes benchmarks the possibility to freely

select the excitation frequency for soft X-ray time-resolved laminography, allowing for

the investigation of resonant magneto-dynamical processes.
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The investigation of three-dimensional magneto-dynamical processes has recently at-

tracted attention thanks to their rich dynamical behavior and novel functionalities1,2.

An example of such dynamical processes is given by the dynamics of magnetic vortex

cores stabilized in thick ferromagnetic microstructures. In these thick microstructures, the

interplay between exchange and magnetostatic energies leads to the stabilization of a "bar-

rel" shaped vortex core, narrow at the top/bottom surfaces of the microstructure, and wider

towards the center of the microstructure3–5. Magnetic vortex dynamics have been extensively

investigated, both theoretically6–10 and experimentally11–15, including in non-trivial geome-

tries16,17. As of now, however, no direct visualization of the three-dimensional dynamics of

magnetic vortices has been performed.

Although, until recently, only indirect characterizations of three-dimensional magneto-

dynamical processes could be performed18,19, significant progress has been made towards

three-dimensional imaging of magnetic systems, driven by the development of three-dimensional

X-ray imaging techniques such as magnetic tomography20 and laminography21,22. Of par-

ticular interest is the work reported in Ref.21, where the dynamics of a 1.2 µm thick GdCo

microstructure were, for the first time, resolved in all three dimensions. However, this

groundbreaking study relied on the intrinsically pulsed structure of synchrotron radiation,

investigating a dynamical process locked to the pulse repetition rate (500 MHz for Ref.21)
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to perform the time-resolved imaging. This is caused by the requirement to utilize a two-

dimensional X-ray detector demanded by the ptychographic imaging technique used to ac-

quire each projection23. Its limited bandwidth allows for the access to only integer multiples

of the pulse repetition rate, directly impacting the ensemble of dynamical processes that can

be investigated, as many such processes (such as e.g. magnetic vortex gyration) are reso-

nant at particular frequencies. As a result, to fully probe magnetization dynamics in three

dimensions, the free control over the frequency is key. In this work, we achieve frequency-

flexible three-dimensional magnetic imaging through the combination of soft X-ray magnetic

laminography with time-resolved scanning transmission X-ray microscopy (STXM) imaging,

and we employ this technique for the investigation of the gyration dynamics of a barrel-like

magnetic vortex structure stabilized in a thick ferromagnetic microstructured element.

In the laminographic imaging geometry, the sample rotation axis is not perpendicular to

the imaging beam axis, but is rather oriented at a defined angle (in our case, 45◦) with respect

to the beam axis, as sketched in Fig. 1(a)21–23. While, in principle, there is no limitation on

the orientation of the sample surface with respect to the laminography axis, in our case the

sample surface is perpendicular to the laminography axis. This is due both to mechanical

constraints (the plane defined by the stage used for the rotation of the sample), and as

scanning the sample along the plane perpendicular to the laminography axis allows us to keep

the sample surface always in the focal spot of the Fresnel zone plate used to focus the X-ray

beam22. For thin film samples, the laminography geometry allows for the probing of a larger

volume of the Fourier space compared to the tomographic imaging geometry (missing cone

artifact against a missing wedge artifact23), improving the quality of the three-dimensional

reconstruction. Furthermore, the rotation geometry is such that no changes in the effective

thickness of the sample occur, simplifying the measurements21–23. Finally, laminography

allows for the imaging of extended sample surfaces, as demonstrated in Ref.23.

Compared to ptychographic imaging21, STXM has the advantage of requiring a point de-

tector. By using an avalanche photodiode (APD) with a bandwidth larger than the repetition
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rate of the synchrotron light source (for the Swiss Light Source, 500 MHz), two consecutive

X-ray pulses generated by the light source (separated by 2 ns) can be resolved by the APD.

This allows for the possibility to sort each recorded photon count by the APD into separate

time channels depending on the relative phase between when the count occurred and the

excitation signal used to trigger the dynamical process, which is synchronized to a rational

multiple of the X-ray pulse repetition rate24. This is achieved through a custom-designed

field-programmable gate array (FPGA) setup. Thanks to this detection protocol, a larger

comb of accessible frequencies, given by rational multiples of the master clock frequency,

is available. Purely arbitrary excitation frequencies are still not accessible, but this final

limitation can be easily lifted if time-of-arrival detection is performed25.

To demonstrate the possibility of performing three-dimensional time-resolved imaging

with freely selectable excitation frequencies, we performed time-resolved laminographic imag-

ing of two spin dynamic modes of a 150 nm thick Co40Fe40B20 (from now on referred to as

CoFeB) 2.5×2.5 µm2 microstructured square, which stabilizes a flux-closure magnetic Lan-

dau state at equilibrium. Before performing the time-resolved imaging, we acquired a static

magnetic laminogram of the CoFeB microstructure. The reconstruction of the magnitude

and orientation of the local magnetization vectors was performed using the algorithm de-

scribed in Ref.26. The reconstructed image is shown in Fig. 2 (a) and (c). Here, the arrows

depict the magnitude and orientation of the local magnetization vector, and are colored

in a blue-white-red scale according to the x component of the vector. In addition to the

reconstructed local magnetization vectors, we also show the vortex core, depicted as an iso-

surface of the z component (cz) of the curl of the magnetization vector c = ∇×m (see the

Methodology section for additional details).

From the static magnetic laminogram, we can observe that the CoFeB microstructured

square exhibits a magnetic uniaxial anisotropy along the x axis, which is evidenced by the

larger area of the magnetic domains along the x axis and by the shape of the vortex core. In

particular, the vortex core exhibits a S-shaped structure (in contrast to the one-dimensional
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columnar barrel structure that would be expected in absence of anisotropy3) elongated along

the anisotropy axis, with the vortex core meeting the top and bottom surfaces of the CoFeB

microstructured square at two spots separated by a lateral distance of about 300 nm.

To qualitatively verify that the reconstructed laminogram resembles the expected mag-

netic configuration, three-dimensional micromagnetic simulations of the CoFeB microstruc-

tured square with anisotropy, the value of which was determined from magneto-optical

Kerr effect measurements, were performed with the finite-differences simulation package

MuMax3 27 (details about the simulations can be found in the Methodology section). The

simulated three-dimensional magnetic configuration is shown in Figs. 2(b) and (d), where

its close resemblance to the experimental data can be observed.

Having determined the static magnetic configuration of the CoFeB microstructure, we

next investigate its dynamics by performing time-resolved magnetic laminography. Specif-

ically, by injecting a microwave signal across a Cu microantenna fabricated on top of the

CoFeB microstructure, a set of different magneto-dynamical modes can be excited, ranging

from the gyration of the vortex core to the excitation of the magnetic domain walls, and to

the emission and propagation of spin waves. For this work, we performed three-dimensional

time-resolved imaging of the fundamental vortex gyration mode (frequency of 326 MHz)

and of a magnetic field-induced domain wall excitation mode (frequency of 913 MHz). The

experimental setup employed for the time-resolved measurements is sketched in Fig. 1(b)

and described in more detail in the Methodology section.

Figure 3 shows snapshots of the reconstructed magnetization profile for the domain wall

excitation and vortex core gyration modes. As for the static laminogram presented in Fig. 2,

we again show the reconstructed magnitude and orientation of the local magnetic moments

and the isosurfaces of the z component of the curl of the magnetization, cz. For the domain

wall excitation mode (Fig. 3(a)), we show a set of isosurfaces of cz, which allow us to delineate

the magnetic domain walls of the CoFeB microstructure while, for the vortex gyration mode,

we show the isosurface delineating the vortex core. Furthermore, for each of the snapshots
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depicted in Figs. 3(a-b), we show the change in cz with respect to its average value across

one cycle of excitation, which allows us to visualize the motion of the magnetic domain walls

in Fig. 3(a) and of the vortex core in Fig. 3(b).

In addition, by determining the magnitude of the change in the in-plane angle of the

magnetization across one cycle of excitation for each voxel of the time-resolved laminogram,

the spatial localization of the two modes can be determined. This is depicted in Fig. 3(c) for

an excitation frequency of 913 MHz, where it can be observed that the mode is localized in

the domain walls of the CoFeB square, allowing it to be identified as a domain wall excitation

mode. For the excitation at 326 MHz, shown in Fig. 3(d), the mode is primarily localized

in the vortex core, allowing it to be identified as a vortex gyration mode.

One of the main advantages of time-resolved laminographic imaging is that it allows us

to resolve differences in the dynamics through the depth of a structure, and this can be well

observed comparing the two magneto-dynamical modes shown in Fig. 3. In particular, the

vortex core gyration mode exhibits a strong variation of its dynamics across its thickness,

while the domain wall excitation mode exhibits a practically uniform motion along the

thickness of the CoFeB microstructure. For the domain wall excitation mode (Fig. 3(a)), a

precession of the magnetization within the domain wall can be observed. This precession,

visible by the changes in the position of the cz isosurfaces across one cycle of excitation,

is predominantly uniform along the thickness of the microstructure. Therefore, while the

possibility to measure this domain wall excitation mode provides a demonstration of the

free selection of the excitation frequency, for the remainder of this work we will concentrate

on the vortex gyration mode (Fig. 3(b)), where the laminographic imaging allows for the

unraveling of the three-dimensional vortex core dynamics.

The injection of the 326 MHz RF signal excites the gyration of the vortex core, as shown

in Fig. 3(b). A strong variation of its dynamical behavior across the thickness of the CoFeB

microstructure can be observed.

To obtain more insight into the three-dimensional dynamics of the vortex core, we tracked
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the position of its center of mass across each slice of the time-resolved image, as shown in

Fig. 4(a). We then calculated the amplitude of the core’s gyration in the x − y plane at

each slice, as shown in Fig. 4(b). The highest amplitude in the x− y core’s gyration occurs

at the top and bottom surfaces of the CoFeB square, where the core is perpendicular to the

x − y plane, and the motion of the center of mass of the vortex core is elliptical, with its

major axis along the easy axis of the uniaxial anisotropy (i.e. along x). At the top and

bottom surfaces of the microstructure, the major axis of the ellipse fitting the vortex core

motion is of about 30 nm, while the minor axis is of about 10 nm. Towards the center of

the core, the eccentricity of its motion reduces, as shown by the reduction of the major axis

of the ellipse to about 20 nm. These measurements show that the technique can resolve

nanometric dynamics. Furthermore, the experimental results are also be well-reproduced by

micromagnetic simulations, as shown in Figs. 4(c) and (d).

The gyrotropic motion of the vortex core is also paired with a breathing mode of the core,

i.e. an expansion and contraction of the vortex core volume. The breathing of the vortex

core can be visualized by determining the volume enclosed by a given isosurface of cz for each

time step. The specific isosurface has been selected to be equal to 90% of the maximum of

cz, and allows for the determination of the relative change in the vortex core volume across

one cycle of excitation. Such time dependence is shown in Fig. 5(a), and the corresponding

micromagnetic simulations qualitatively confirming the experimental data are shown in Fig.

5(b). Note here that the discretization grid utilized in the micromagnetic simulations affects

the magnitude of the calculated curl, which can affect the quantitative agreement between

the simulations and the experimental data.

The coexistence of gyration and breathing, coupled with the three-dimensional structure

of the vortex core at its equilibrium configuration provides an additional energy reservoir

if compared to two dimensional vortex cores. For such three-dimensional vortex cores, this

additional energy reservoir requires a generalization of the Thiele model, where a magnetic

inertial mass term has to be included12,28,29. Through time-resolved laminographic imaging,
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the three-dimensional dynamical deformation of topological objects such as magnetic vortex

cores can therefore be directly imaged, providing a direct experimental verification of predic-

tions e.g. from micromagnetic simulations. This imaging protocol will also allow to reduce

the exclusive reliance on micromagnetics for insights into three-dimensional dynamics, and

offer the possibility to directly observe dynamical behaviors not predicted by micromagnetic

simulations.

In conclusion, we have presented a time-resolved setup based on X-ray laminography

combined with time-resolved STXM imaging that allows for the investigation of three-

dimensional magneto-dynamical processes with the possibility to freely select the excitation

frequency. This will allow for the possibility to resolve a range of resonant magnetiza-

tion dynamic processes in three-dimensions, such as e.g. the generation, propagation, and

localization of spin waves, domain wall motion dynamics, dynamics of three-dimensional

topological objects such as hopfions, and the investigation of three-dimensional magnetic

nanostructures. In particular, we have demonstrated here the three-dimensional mapping

of two different dynamic modes of a microstructured CoFeB square stabilizing a Landau

flux closure state. The two modes are the gyration of the vortex core, excited at 326 MHz,

and the motion of the domain walls of the Landau pattern, excited at 913 MHz. The two

investigated modes show a substantially different behavior along the thickness of the CoFeB

square, with the domain wall excitation mode displacing uniformly along the thickness, and

the vortex core gyration mode exhibiting a strongly non-uniform behavior along its thick-

ness, which is further enhanced by the uniaxial anisotropy of the CoFeB microstructure. For

this mode, the gyration of the vortex core is coexisting with a breathing of the vortex core,

indicating that energy can be stored in the deformation of the core itself.

As a final note, it should be considered that, for time-resolved laminography imaging, a set

of projections has to be acquired in order to reconstruct the three-dimensional magnetization

configuration. Due to the large number of projections, a time-resolved laminography image

currently requires a considerable investment in measurement time. Nonetheless, thanks to
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the planned upgrades of several synchrotrons towards diffraction limited sources, the future

of time-resolved laminography imaging is bright: improvements in the intensity, brilliance,

and coherence of the X-ray beam produced by diffraction limited source will allow for the

reduction of integration times of several factors.

Methodology

In this section, a summary of the methodology utilized for the work presented in this

manuscript will be presented. Detailed methodology information is presented in the sup-

porting information.

Sample fabrication

Microstructured CoFeB squares (2.5 µm wide, 150 nm thick) were patterned on top of a

200 nm thick, 1×1 mm2 wide Si3N4 membrane on a 5×5 mm2, 250 µm thick, intrinsic Si

frame by electron beam lithography followed by liftoff. The CoFeB film was deposited by

DC magnetron sputtering. On top of the CoFeB microstructure, a 5 µm wide, 300 nm thick,

Cu stripline was fabricated by electron beam lithography followed by liftoff. The Cu film

was deposited by thermal evaporation.

Time-resolved soft X-ray laminography

The three-dimensional time-resolved images were acquired through laminographic imaging23,

where each two-dimensional projection was acquired by STXM imaging. The X-ray energy

was tuned to the L2 edge of Cobalt (ca. 793 eV). The laminography angle was selected

to be 45◦. A total of 50 projections were acquired for each time-resolved image, yielding

a theoretical z resolution of 10 nm23. For each projection, three time-resolved STXM im-

ages were acquired, two with circular polarization of opposite helicities and the third with

linear polarization. This allows for the correction of discrepancies in the degree of circular
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polarization between the two helicities22,30.

Each time-resolved STXM image is composed of 7 binned frames. The dynamics are

excited by injecting a RF current across the Cu stripline, generating an oscillating magnetic

field along the x axis. The electrical circuit is schematically depicted in Fig. 1(b).

The reconstruction of the three-dimensional magnetic configuration was performed for

each of the 7 frames according to the process described in21,22. The final three-dimensional

time-resolved images were rendered using the free software Paraview31. To visualize the

vortex core, we show the magnitude of the z component, cz, of the curl of the magnetization

c = ∇×m21. The position and volume of the vortex core was determined by calculating the

center of mass and the volume of the region enclosed by the cz = 0.9 × max(cz) isosurface

for each z slice of the time-resolved laminography image.

Micromagnetic simulations

Micromagnetic simulations of the CoFeB microstructured square presented here were per-

formed using the finite differences MuMax3 framework27. A three-dimensional simulation

grid was considered, consisting of a 512 × 512 × 32 px3 lattice with a 4.88 × 4.88 × 4.68 nm3

cell. A saturation magnetization of Ms = 106 A m−1, an exchange stiffness of Aex = 10−11 J

m−1, a Gilbert damping constant of α = 0.05, and a uniaxial anisotropy of 5 kJ m−3 along

the x axis were used. A sinusoidal magnetic field of 5 mT along the x direction was then

applied, reproducing the experimental configuration. Note here that the parameters for the

micromagnetic simulations were not fine tuned, as the aim of the micromagnetic simulations

was to show their qualitative agreement with the experimental data.
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- DomainWallExcitation_Isosurfaces.avi - Video displaying the change in the spin

configuration and the motion of the magnetic domain walls for the domain wall exci-

tation mode (913 MHz). The video is shown in the same perspective as for Fig. 3(a).

Here, the isosurfaces marking the position of the domain wall are shown.

- DomainWallExcitation_CurlDifference.avi - Video displaying the change in the

spin configuration and the motion of the magnetic domain walls for the domain wall

excitation mode (913 MHz). The video is shown in the same perspective as for Fig.

3(a). Here, the changes in the cz component are shown.

- VortexGyration_Isosurfaces.avi - Video displaying the change in the spin con-

figuration and the deformation of the vortex core for the vortex core gyration mode

(326 MHz). The video is shown in the same perspective as for Fig. 3(b). Here, the

isosurface marking the position of the vortex core is shown.

- VortexGyration_CurlDifference.avi - Video displaying the change in the spin

configuration and the deformation of the vortex core for the vortex core gyration mode

(326 MHz). The video is shown in the same perspective as for Fig. 3(b). Here, the

changes in the cz component are shown.
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Figure 1: (a) Sketch of the laminography imaging setup. The sample is mounted under an
angle of 45◦ (corresponding to the laminography rotation axis) with respect to the X-ray
beam. (b) Electrical configuration utilized for the excitation of the dynamical processes
presented here. An arbitrary waveform generator (AWG), frequency locked to the 500 MHz
master clock of the synchrotron light source, is used to inject a RF current across a stripline
fabricated above a Co40Fe40B20 microstructured square, giving rise to an oscillating magnetic
field along the x axis. The red signals indicate synchronization and timing signals.
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Figure 2: Static magnetic configuration of the CoFeB microstructure. (a) Top view of the
reconstructed magnetic configuration, and (b) corresponding micromagnetic simulation. (c)
Section of the measured laminogram along the the sectioning plane depicted below the image,
and (d) corresponding micromagnetic simulation.
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Figure 3: Three-dimensional single-frame renderings of the time-resolved magnetic lamino-
grams at excitation frequencies of (a) 913 MHz and (b) 326 MHz. Φ indicates the phase
of the excitation signal probed by each snapshot. For (a), the red isosurfaces of cz follow
the domain walls. For the snapshots pictured in (b), the vortex core is shown by the red
isosurface of cz. For both the (a) and (b) panels, the change in cz with respect to its average
value across one cycle of excitation is shown. Panels (c) and (d) visualize the areas, where
the two modes (913 MHz for (c) and 326 MHz for (d)) are localized.
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Figure 4: Experimental (a) and simulated (b) x−y position of the vortex core’s center of mass
along the thickness of the CoFeB microstructured square. The fitted amplitude (sinusoidal
fitting) of the x− y vortex core gyration along the thickness of the CoFeB microstructured
square is shown in (c) for the experimental data, and in (d) for the corresponding micro-
magnetic simulations.
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Figure 5: Temporal dependence of the vortex core volume, normalized to the maximum
volume across an excitation cycle. (a) Experimental data. (b) Corresponding micromagnetic
simulation.
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