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Spin glasses, generally defined as disordered systems with randomized competing 

interactions1, 2, are a widely investigated complex system. Theoretical models describing 

spin glasses are broadly used in other complex systems, such as those describing brain 

function3, 4, error-correcting codes5, or stock-market dynamics6. This wide interest in spin 

glasses provides strong motivation to generate an artificial spin glass within the 

framework of artificial spin ice systems7-9. Here, we present the first experimental 

realization of an artificial spin glass, consisting of dipolar coupled single-domain Ising-

type nanomagnets arranged onto an interaction network that replicates the aspects of a 

Hopfield neural network10. Using cryogenic x-ray photoemission electron microscopy 

(XPEEM), we performed temperature-dependent imaging of thermally driven moment 

fluctuations within these networks and observed characteristic features of a two-

dimensional Ising spin glass. Specifically, the temperature dependence of the spin glass 
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correlation function follows a power law trend predicted from theoretical models on two-

dimensional spin glasses11. Furthermore, we observe clear signatures of the hard to 

observe rugged spin glass free energy1 in the form of sub-aging, out of equilibrium 

autocorrelations12 and a transition from stable to unstable dynamics1, 13. 

Artificial spin ice simulates the geometric frustration of molecular spin ice through patterned 

magnetic thin films14, 15, 16. Each nanomagnet in the pattern acts as a single Ising spin, and the 

collective behavior of these magnets leads to phenomena such as emergent, interacting 

magnetic charges17, 18, topologically constrained order19, and a variable effective dimension8, 

20. Despite this long list of success stories of artificial spin ice systems, the realization of an 

artificial spin glass system remained elusive. The main challenge remained to design arrays of 

nanomagnets with a dipolar interaction network that leads to spin glass behavior. Using a 

Gaussian-type disorder in arranging Ising-type nanomagnets onto a two-dimensional plane9 

determined that, despite a balancing competition between ferro- and antiferromagnetic 

interactions, a spin glass phase is inaccessible at finite temperatures9. Employing the concept 

of effective dimensionality in interacting networks21 and theoretical predictions that a spin 

glass phase could only be stabilized at finite temperatures when a critical effective dimension 

of 2.52 is surpassed22, it was shown that tree-like nanomagnetic patterns with elevated effective 

dimensionality are a successful strategy to increase the effective dimension well above this 

critical value7. However, fabricating extended and quasi-infinite tree-like structures remains a 

currently unsurpassable challenge.  

Here, we seek to realize characteristics of an artificial spin glass by implementing a proof-of-

principle Hopfield neural network10, a model of associative memory with ties to the Ising 

model, to guide the disorder of artificial spin systems. Conceptually, associative memory does 

not require a perfectly identical scenario to identify a memory. Hopfield networks are 

dynamical systems that evolve toward memories when their inputs are within a neighborhood 
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of those memories. The memories of these networks correspond to ground states of a spin 

system and are robust to noise (see Figure 1a-b and Supplementary Figure 1). This robustness 

corresponds to a broad basin of attraction surrounding the spin system’s ground state, allowing 

the system, in theory, to relax towards the ground state at non-zero temperatures.  

We fabricated nanomagnetic Hopfield networks (see methods) consisting of Permalloy 

(Ni80Fe20), stadium-shaped, Ising-type nanomagnets with lengths 𝐿 = 300 nm, widths 𝑊 = 100 

nm, and thicknesses 𝑡 = 2.7 nm (see Figure 1c). The dimension of the nanomagnets was chosen 

to ensure thermally driven moment reorientations to occur at the timescale of a few seconds at 

a blocking temperature 𝑇𝐵 = 110 K. The sample was kept in vacuum at room temperature for 

several weeks to allow the Hopfield networks to relax towards equilibrium low-energy 

states8,9,23 before it was transferred into the photoemission electron microscope (PEEM) for 

magnetic imaging, employing x-ray magnetic circular dichroism (XMCD) at the Fe L3 edge24. 

In PEEM, the sample was cooled down to 105 K (below the blocking temperature) and imaged, 

to observe the frozen-in low-energy state achieved after thermal annealing (see Figure 2a). 

Then, the sample was heated up to 120 K, to start our real-time temperature-dependent 

observations of thermal fluctuations (see Supplementary Movies 1 and 2).  

As a first characterization step, we extracted the temperature-dependent dimensionless 

magnetic susceptibility 
𝑘𝐵

𝑚
𝜒(𝑇)  (see methods) and plotted its inverse as a function of 

temperature (see Figure 3a). Extracting this directly from the spin orientations allows us to 

filter out the bulk properties of the constituent Permalloy and directly analyze the emergent 

properties of the nanomagnet network. Fitting this temperature dependence to a Curie-Weiss 

law, 
𝑚

𝑘𝐵

1

𝜒(𝑇)
=

(𝑇−𝑇𝐶)

𝐴
, (see the green dashed line in Figure 3a) revealed a system-related Curie 

temperature 𝑇𝐶
𝐻𝑜𝑝𝑓𝑖𝑒𝑙𝑑

= 27.6 ± 15.7 K, which is far below the blocking temperature 𝑇𝐵= 110 

K of the patterned nanomagnets and their material-based Curie temperature 𝑇𝐶 (see methods 

and Supplementary Figure 4). It confirms that competing interactions are well randomized in 
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these Hopfield networks. Despite the large error, a non-zero transition temperature suggests 

the effective dimension may be above 2 owing to the long-range interactions in the system, 

making the interaction graph non-planar8.  

In bulk experimental spin glass, a comparison between field cooled and zero field cooled 

systems typically shows signatures of a spin glass. Here, we provide a more direct 

characterization of the thermodynamics to explore spin glass behavior in these artificial 

Hopfield networks. We extracted both the standard spin correlation function [𝐶′(𝑟)]𝑎𝑣 and the 

unbiased spin glass correlation function25 [𝐶𝑆𝐺(𝑟)]𝑎𝑣  (see methods) and plotted them as a 

function of distance (see Figure 3b). We then fit these correlation functions with a spatial decay 

function in the form of 𝑒
−

𝑟

𝐿(𝑇)  and 𝑒
−

𝑟

𝐿𝑆𝐺(𝑇) , with 𝐿(𝑇)  and 𝐿𝑆𝐺(𝑇)  being the temperature-

dependent standard (blue squares in Figure 3b) and spin glass correlation lengths (red asterisks 

in Figure 3b), respectively. We fit the temperature dependence of these correlation lengths to 

a power law of the form 𝑓(𝑇) = 𝐵(𝑇 − 𝑇𝑐)−𝜈 by performing the linear least squares fit of the 

linearized form of the equation, log10 𝑓(𝑇) = −𝜈 log10(𝑇 − 𝑇𝑐) + log10 𝐵, (see blue and red 

dashed lines in Figure 3b), we calculate a standard critical exponent 𝜈 = 0.143 ± 0.482 and a 

spin glass critical exponent 𝜈𝑆𝐺 = 3.72 ± 1.04, where the errors are calculated through the 

standard error of the regression. The latter value comes close to the critical exponent 𝜈𝑆𝐺 =

3.559 ± 0.025 predicted for a two-dimensional Ising spin glass11, indicating that our artificial 

Hopfield networks are ordering towards a spin glass transition.  

The dynamics of spin glasses vary significantly when two factors are changed: whether the 

system is in or out of equilibrium and above or below the glass transition. To complicate 

matters further, evidence suggests that there is not simply a single, fixed glass transition1, 2. 

Often, there is a second dynamical transition temperature. This usually exceeds the “static” 

critical temperature and is characterized by shifting peaks of AC susceptibility in experiments1, 

which occurs in part because of an increasingly prominent “memory” of previous states 
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resulting from the slow exploration of phase space. Computational studies observe this 

transition through how different initial states maintain a finite overlap with one another over 

time26, settling into distinct regions in phase space. Others characterize this as a transition from 

high temperature chaotic dynamics to low temperature stable dynamics. Here we employ an 

analysis of the system’s autocorrelation function, its imperfect power law decay, and the 

Lyapunov exponent13 (see methods), all as a function of temperature. 

Signatures of the system’s state may be found directly from the two-point autocorrelation 

function (see Methods). Both the general shape of the function and the critical exponent 

resulting from a power law fit can help categorize the system. The log-log plots of the 

autocorrelation function (Fig. 4a) all decrease in slope over time, indicating a variable critical 

exponent and, by extension, that the system has not yet relaxed to equilibrium. The critical 

exponent itself (Fig. 4b) reinforces this conclusion, as it is significantly lower than the 

minimum values predicted in equilibrium, ν(𝑇) = 0.395 27 or ν(𝑇) = 0.5 2. Notably, non-

equilibrium autocorrelations are often flatter with less time elapsed1. 

To extract more information about the chaoticity of the system, we studied the Lyapunov 

exponent from the spin dynamics. Transitions from stable to chaotic behavior begin when 

similar trajectories through phase space diverge exponentially and continue to diverge despite 

the phase space being bound. The time rate of the exponential behavior, the Lyapunov 

exponent, is positive when the system is unstable, potentially chaotic, and negative when the 

system is stable. Using a data driven method28, we find similar initial paths and use their 

average distance over time to extract the Lyapunov exponent for each temperature. The 

exponents transition from negative values at low temperatures to positive values at high 

temperatures (Fig. 4c), which is consistent with a dynamical transition.  

Assessing the system’s statics holistically, the dominance of the spin glass correlation length 

over the standard correlation length and its temperature dependence are hallmarks of a system 
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with a glass ground state. Despite the system ordering as indicated by the increasing magnetic 

susceptibility with decreasing temperature (Fig. 3a), the standard correlation lengths (Fig. 3b, 

blue squares) are essentially noise. The power law fit determines that 𝜈 = 0.143 ± 0.482, 

confirming that the standard correlation function can no longer determine the order parameter. 

On the other hand, the spin glass correlation length grows rapidly as the system is cooled (Fig. 

3b, red asterisks). Its power law fit produces a critical exponent of 𝜈 = 3.72 ± 1.04 which, 

within the uncertainty range, matches the theoretically known value for a two-dimensional spin 

glass, 𝜈𝑆𝐺 = 3.559 ± 0.02511. 

A dynamical analysis indicates a non-equilibrium temporal correlation and a dynamical 

transition, which supports the hypothesis of a rough free energy landscape. The exact 

temperature dependence is non-universal, but the autocorrelation function of many spin glasses 

decays with a power law with an exponent v(𝑇) = 0.5  at the Alameda-Thouless line in 

equilibrium2 and v(𝑇) = 0.395 for the Edwards-Anderson model27. Experimental results and 

out-of-equilibrium simulations find that the critical exponent varies over long periods of spin 

glass aging1. It is common for v(𝑇) to start small as the system initially explores the phase 

space (sub-aging) and then increases as a path towards lower energy states is found (aging)12. 

The exponent v(𝑇) varies earlier when the temperature is higher. Combining this observation 

with the fact that all v(𝑇) values (Fig. 4b) are far below anything predicted by equilibrium 

theory suggests that our system is out of equilibrium at all temperatures and relaxing in the 

sub-aging regime. Further, the faster relaxation of the higher temperature systems allows the 

systems to leave the sub-aging regime faster, resulting in more variable slopes and increasing 

the 𝑣 determined by the fit as it increases over time. Aside from this continuous evolution 

towards faster relaxation from sub-aging, there is another prominent trend in the 

autocorrelation functions. At 157 K and above, the values of the autocorrelation function 

remain relatively similar despite a decreasing slope. However, as the temperature drops 
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between 157 K and 147 K, systems more rapidly diminish in their average autocorrelation, then 

slowly increase in their average autocorrelation after this initial decrease in temperature. The 

secondary increase in autocorrelation is likely due to lower fluctuation rates of the magnetic 

moments, but the initial dramatic decrease between 157 K and 147 K seems to arise from a 

dynamic transition. The Lyapunov exponents and the rough free energy landscape of spin 

glasses further solidify this conclusion29.  

The Lyapunov exponents increase with increasing temperature (Fig. 4c), showing a tendency 

for similar initial states to diverge, as the system heats up. The system transitions from stable 

dynamics (𝜆 < 0) to unstable dynamics (𝜆 > 0) around 157 K, the same temperature where 

average autocorrelation jumps dramatically. This is consistent with the system settling into 

deeper free energy minima, after losing enough energy to no longer traverse a broader section 

of phase space (See Supplementary Movie 3), increasing the rate of relaxation and grouping 

together similar trajectories in the same basin. This convergence of trajectories explains the 

energetic origins of both dynamic transition and memory in spin glass, especially when 

considering that the basin is likely centered around a state encoded into the underlying Hopfield 

network. Overall, the varying relaxation over time and a rough free energy landscape are 

consistent with the behavior of spin glasses. 

As annealing for these systems is further improved, direct real-space studies and investigation 

of the spin glass ground state will be accessible and assist in our understanding of equivalent 

NP-hard problems30 and brain science models3. Further experiments on artificial Hopfield 

networks may directly confirm the ability of artificial spin systems to directly anneal towards, 

or “recall,” encoded memories, as well as uncover the long-term glassy ageing through 

experiments on the timescale of multiple days. Recently emerging three-dimensional 

fabrication approaches of artificial spin systems23,31,32,33,34 might provide a route towards the 

realization of three-dimensional artificial spin glasses and more faithful representation of 
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annealing based Ising model problems, such as determining graph isomorphism and optimal 

binary linear programming30. It has already been shown that nanomagnetic systems may 

potentially approach the Landauer limit at room temperature35 and make excellent candidates 

for low-energy computing. 

 

Methods 

Designing a nanomagnetic Hopfield network. Both Hopfield networks and Ising spin 

systems evolve as governed by their “interaction” networks. Here we describe how those 

networks are defined and how they may be modified computationally to match one another 

prior to fabrication. 

A Hopfield neural network of size 𝑁 is represented by a vector 𝑆𝑖
′𝑚 of binary states (-1 and 1) 

at iteration 𝑚. A connectivity matrix 𝑤𝑖𝑗 governs its dynamics via the rule 

𝑆𝑖
′𝑚+1 = 𝑓 (∑ 𝑤𝑖𝑗𝑆𝑗

′𝑚
𝑁

𝑗=1
). 

To maintain a binary range, the activation function is defined as 𝑓(𝑥) =
|𝑥|

𝑥
, the “sign” function. 

The connectivity matrix is created from a set of 𝑛 patterns, 𝜉𝑖
𝜈, each labeled by 𝜈, that 𝑆𝑖

′𝑚 

intends to “recall,” or grow closer to, over several iterations. The storage is encoded in the 

connection or weight matrix by the Hebbian learning rule: 

𝑤𝑖𝑗 =
1

𝑛
∑ 𝜉𝑖

𝜈𝜉𝑗
𝜈

𝑛

𝜈=1
. 

Here we consider 𝜉𝑖
𝜈 to be a random vector whose entries are independently drawn from the 

probability distribution 𝑝(𝜉𝑖
𝜈 = 1) = 𝑝(𝜉𝑖

𝜈 = −1) = 0.5 . Practically speaking, patterns of 

interest may not take on this form, but a mapping of all bits from a set of patterns 𝜉
~

𝑖
𝜈 onto 𝜉𝑖

𝜈 

is possible if 𝑛 < 𝑁 . The attractors of this dynamical system are 𝜉𝑖
𝜈 , making them the 

“memorized” patterns of the system.  
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Hopfield showed that the iterative evolution described in equation (1) always decreases an 

effective Hamiltonian, 

𝐻𝑒𝑓𝑓 = −
1

2
∑ 𝑤𝑖𝑗𝑆𝑖

′𝑆𝑗
′

𝑖𝑗
. 

The Ising Hamiltonian in zero field has a similar form: 

𝐻𝐼 = −
1

2
∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗

𝑖𝑗
. 

𝐽𝑖𝑗 is here determined by magnetic interactions and is analogous to the connectivity matrix 𝑤𝑖𝑗. 

How the distributions of these two matrices differ can wildly influence what states minimize 

the system’s Hamiltonian. In artificial nanomagnets, dipolar interaction strength is determined 

by the distribution of magnetization and positions and orientations of the nanomagnets for 

patterned nanomagnetic systems and 𝑆𝑖 is the binary Ising variable indicating the orientation 

of the magnetization. To model the exact interaction strength for a collection of nanomagnets 

with positions 𝒓𝑖and orientations 𝜃𝑖, we implement the compass needle model: 

𝐽𝑖𝑗 = − (
1

|𝒓𝑎𝑖 − 𝒓𝑎𝑗|
−

1

|𝒓𝑎𝑖 − 𝒓𝑏𝑗|
−

1

|𝒓𝑏𝑖 − 𝒓𝑎𝑗|
+

1

|𝒓𝑏𝑖 − 𝒓𝑏𝑗|
). 

Since this model assumes interactions occur between magnetic charges at the ends of the 

nanomagnets, 𝒓𝑎𝑖 and 𝒓𝑏𝑖 are the positions of the positive and negative charge belonging to 

spin 𝑖 as determined by the lengths, positions, and orientations of the magnets. 

To fabricate an Ising system equivalent to a Hopfield network, one must first reduce the 

difference between 𝑤𝑖𝑗  and 𝐽𝑖𝑗  as much as possible (see Fig. 1a-b). The scale of each is 

irrelevant, so they are both normalized by the average absolute interaction strength per neuron 

or spin. Specifically, 𝑤𝑖𝑗
′ = 𝑤𝑖𝑗𝑁/ ∑ |𝑤𝑖𝑗|𝑖𝑗  and 𝐽𝑖𝑗

′ = 𝐽𝑖𝑗𝑁/ ∑ |𝐽𝑖𝑗|𝑖𝑗 . We then use machine 

learning methods to change 𝜉𝑖
𝜈  and the positions and angles of a nanomagnetic design to 

minimize a cost function 𝐶 = ∑ (𝑤𝑖𝑗
′ − 𝐽𝑖𝑗

′ )
2

𝑖𝑗 . We determine this through gradient descent of 

the continuous variables, 𝒓𝑖  and 𝜃𝑖 , and relatively quickly reach local minima. The cost 



10 

function may be further reduced through modification of the discrete pattern states, 𝜉𝑖
𝜈, as any 

states of interest may be mapped onto arbitrary stored patterns. A Monte Carlo Metropolis 

annealing of “energy” 𝐶 with “spins” 𝜉𝑖
𝜈 is an appropriate method of further reducing the cost 

function. This is carried out with parallel tempering at 100 separate temperatures, the lowest 

temperature of which is used for the new 𝜉𝑖
𝜈. The overall process of matching the systems 

progresses by alternating gradient descent and annealing until 𝐶 converges. The positions and 

orientations are then used to fabricate our nanomagnetic system (Fig. 1c) 

 

Sample fabrication. Lift-off assisted electron beam lithography was used to generate 

nanomagnetic Hopfield networks. A 1×1 cm2 Silicon (100) substrate is first spin-coated with 

a 70 nm thick layer of polymethylmethacrylate (PMMA) resist. Then, a VISTEC VB300 e-

beam writer is used to define the Hopfield patterns with stadium-shaped nanomagnets onto the 

substrate. Following the development of the exposed resist layer, a 2.7 nm thin Permalloy 

(Ni80Fe20) film is deposited on the substrate at a base pressure of 1.4×10-7 torr, together with 

an Aluminum capping layer of 2 nm, to avoid fast oxidation. Then, the substrate is placed into 

Acetone for lift-off. The resulting nanomagnetic artificial Hopfield networks consisted of 

nanomagnets with lengths L = 300 nm and widths W = 100 nm. Considering the strong 

dependence of the magnetization on the film thickness and tempearture36, we performed 

thickness-dependent SQUID magnetometry (see Supplementary Figures 3 and 4, to extract 

relevant properties such as the saturation magnetization 𝑀𝑆  and blocking temperatures for 

various Permalloy thicknesses. For accurate determination of deposited film thicknesses, a 

continuous film was deposited in parallel and analyzed through x-ray reflectometry (see 

Supplementary Figure 5).  
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Photoemission electron microscopy (PEEM). Magnetic imaging was performed at the PEEM 

endstation of the SIM beamline at the Swiss Light Source (SLS)37 employing x-ray magnetic 

circular dichroism (XMCD) at the Fe L3 edge24. An XMCD image is a result of pixelwise 

division of images obtained with circular left and circular right polarized light. The typical dark 

and bright contrast is a direct measure of the orientation of a magnetic moment with respect to 

the incoming x-ray propagation vector. Moments with a non-zero component towards the 

incoming x-rays will appear dark, while moments pointing in the opposite direction will appear 

bright (Fig. 2a). 70 XMCD images were recorded every 14 seconds at 120 K, 130 K, 147 K, 

157 K, 168 K, 181 K, and 196 K. Systemwide time evolution occurred on the order of seconds 

as indicated by Fig. 2b. 

 

Spin-spin correlations and magnetic susceptibility. Temperature-dependent spatial spin 

correlations are extracted using our previously employed method8. The spatial correlation 

function was calculated: 

𝐶(𝒓𝑖𝑗) = ⟨𝑆𝑖𝑆𝑗⟩
𝑇
 

where 𝑆𝑖 = ±1 to represent the Ising state of spin i, 𝒓𝑖𝑗 is the distance between spins i and j, 

and ⟨⋯ ⟩𝑇 denotes a thermal average. The absolute value of this, 𝐶′(𝒓𝑖𝑗) = |𝐶(𝒓𝑖𝑗)|, was used 

for correlation function calculations. All correlation function values corresponding to 𝑟 −

Δ/2 < 𝑟𝑖𝑗 < 𝑟 + Δ/2 where Δ is the distance between consecutive 𝑟𝑘 , were averaged to a 

single value,  

[𝐶′(𝑟)]𝑎𝑣 =
1

𝑁𝑝𝑎𝑖𝑟
∑ 𝐶′(𝒓𝑖𝑗).

𝑖𝑗

 

The decay of the correlation function is expected to follow an exponential function [𝐶′(𝑟)]𝑎𝑣 =

𝑒
−

𝑟

𝐿(𝑇) , where 𝐿(𝑇) is the standard correlation length, which can also be plotted as function of 

temperature. 
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The dimensionless magnetic susceptibility 𝜒 was calculated from this correlation using the 

fluctuation dissipation theorem. This susceptibility 𝜒 was returned to appropriate dimensions 

by an additional factor, 𝑚, the magnetic moment of a single Ising macrospin: 

𝜒(𝑇) =
𝑚

𝑘𝐵𝑇

1

𝑁
 ∑ 𝐶(𝒓𝑖𝑗)

𝑖𝑗

. 

For the nanomagnets discussed here, the magnetic moment 𝑚 is measured using SQUID-

VSM measurements of Permalloy structures, finding a magnetization at saturation, M = 800 

(±21) kA/m (See SM Fig. 4), and its magnetic moment m = 7.3e-17 (±1.8e-17) Am2. 

 

Unbiased spin glass spin-spin correlation and correlation length. The measurements 

determine 𝐶𝑖𝑗, an estimate for the spin-spin correlation ⟨𝑆𝑖𝑆𝑗⟩, between all pairs of spins 𝑖 and 

𝑗. Naturally, there is an uncertainty in the experimental results. Let us write  

𝐶𝑖𝑗 = ⟨𝑆𝑖𝑆𝑗⟩ + 𝜖𝑖𝑗. (1) 

Assuming that the system is equilibrated, the error 𝜖𝑖𝑗 is a random variable with zero mean. 

We say that 𝐶𝑖𝑗 is an unbiased estimator for ⟨𝑆𝑖𝑆𝑗⟩. Unbiased means that if one repeats the set 

of measurements many times, then the average gets arbitrarily close to the exact answer. 

However, for spin glass correlations we need the square of the correlation function (see 

equation 1.3 of Binder and Young, 19832). In this case, 𝐶𝑖𝑗
2  is a biased estimator for the spin 

glass correlation function1,2 ⟨𝑆𝑖𝑆𝑗⟩
2
 because  

𝐶𝑖𝑗
2 = ⟨𝑆𝑖𝑆𝑗⟩

2
+ 2⟨𝑆𝑖𝑆𝑗⟩𝜖𝑖𝑗 + 𝜖𝑖𝑗

2  

and the term 𝜖𝑖𝑗
2  has a non-zero mean. As a simple example, suppose that 𝐶𝑖𝑗 is obtained from 

just one spin configuration. Then 𝐶𝑖𝑗
2 = ⟨𝑆𝑖𝑆𝑗⟩

2
= 1, for all pairs. Hence summing over all pairs 

to give the spin glass susceptibility gives a completely wrong result. However, even if 𝐶𝑖𝑗 is 

obtained from just one spin configuration, summing 𝐶𝑖𝑗 over all pairs to get the ferromagnetic 
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susceptibility gives a result which, though having quite large error bars, is nonetheless 

unbiased. From the spin configurations, we can calculate: 

⟨𝑆𝑖𝑆𝑗⟩ estimated from 𝐶𝑖𝑗 =
1

𝑛𝑡
∑ 𝑆𝑖(𝑡𝛼)𝑆𝑗(𝑡𝛼).

𝑛𝑡
𝛼=1  

⟨𝑆𝑖𝑆𝑗⟩
2
 estimated from 𝐶𝑖𝑗

2 = [
1

𝑛𝑡
∑ 𝑆𝑖(𝑡𝛼)𝑆𝑗(𝑡𝛼)𝑛𝑡

𝛼=1 ]
2

. 

We formulate an average that eliminates the bias in the above estimate for ⟨𝑆𝑖𝑆𝑗⟩
2
 by dividing 

the 𝑛𝑡 measurement times into two equal halves, and correlating the spin product ⟨𝑆𝑖𝑆𝑗⟩ at a 

time 𝑡𝛼 in the first half with the same spin product at the corresponding time in the second half, 

i.e. estimate ⟨𝑆𝑖𝑆𝑗⟩
2
 from 𝐶𝑖𝑗

𝑆𝐺 =
1

𝑛𝑡 2⁄
∑ 𝑆𝑖(𝑡𝛼)𝑆𝑗(𝑡𝛼)𝑆𝑖(𝑡𝛼+𝑛𝑡/2)𝑆𝑗(𝑡𝛼+𝑛2/2)

𝑛𝑡 2⁄
𝛼=1 . 

If 𝑡𝑛𝑡
 is greater than the relaxation time of the spins there is no correlation between the spins 

at the earlier and later times and so, on average, this expression for 𝐶𝑖𝑗
𝑆𝐺  is equal to the desired 

quantity ⟨𝑆𝑖𝑆𝑗⟩
2

without any bias. This estimate of 𝐶𝑖𝑗
𝑆𝐺  was mapped to 𝐶𝑆𝐺(𝒓𝑖𝑗)  for the 

nanomagnets and was spatially averaged to extract a spin glass correlation length:  

[𝐶𝑆𝐺(𝑟)]𝑎𝑣 =
1

𝑁𝑝𝑎𝑖𝑟
∑ 𝐶𝑖𝑗

𝑆𝐺(𝒓𝑖𝑗).

𝑖𝑗

 

This and the standard correlation are plotted in Fig. 3b. 

 

Dynamical Analysis Now, we turn our attention to temperature-dependent observations of 

thermal fluctuations in our artificial Ising spin glass structures. Spin glass is observed and 

theorized to relax in different ways depending on whether the spin is equilibrated and below 

the critical temperature1, 2. The equilibrium behavior of more ideal spin glasses is thoroughly 

cataloged through early theories on spin glasses. The two-point autocorrelation function, 

𝐶(𝑡1, 𝑡2) = ⟨𝑆𝑗(𝑡2)𝑆𝑗(𝑡1)⟩
𝑗
, 
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where ⟨… ⟩𝑗 is an average over all spin indices, relaxes in many different forms depending on 

the whether or not the system is above the Alameda-Thouless line, a dynamical transition 

temperature depending on external field, and the precise model being used2. A power law 

relaxation best fit our system: 

𝐶(|t2 − 𝑡1| ) = |𝑡2 − 𝑡1|−v(𝑇). 

v(𝑇) is an exponent that varies with temperature. The two-point autocorrelation function is 

extracted from our time-dependent data at each temperature and fit to the power law decay to 

extract v(𝑇) (Fig. 4a-b).  

One can help assess whether a dynamic series is chaotic through the computation of the 

Lyapunov exponent. The notion of the Lyapunov exponent considers a system and a near 

identical duplicate with a small offset in initial conditions. The systems evolve in parallel and 

an appropriate measure of distance, 𝐷(𝑡), between the two systems is analyzed. If a system is 

chaotic, 𝐷(𝑡) should grow exponentially. If not, 𝐷(𝑡) will diminish. This mathematical form, 

𝐷(𝑡) = 𝐷0𝑒𝜆𝑡, is fit by a variety of methods to determine the sign of 𝜆, deemed the Lyapunov 

exponent, a positive value indicating chaos. Note that the metric 𝐷(𝑡) may exist in higher 

dimensions and yield a variety of Lyapunov exponents, a Lyapunov spectrum, where the sign 

of the largest exponent is used to evaluate whether or not the system is chaotic. The method 

employed here uses one average measure of distance to estimate this largest Lyapunov 

exponent. 

We begin by considering a series of spin data, 𝑆𝑗(𝑡𝑖), as a dynamical sequence. The sequence 

is processed as follows: 

1. The mean period, 𝑇, of the system is estimated from the peak of the power spectrum of 

the sum over all spins. That is, from the spectrum 𝑃(𝑓) = |ℱ(∑ 𝑆𝑘(𝑡𝑖)
𝑁
𝑘=1 )|2, where 

ℱ(⋯ ) is the 1-D Fourier transform, one can determine the frequency that corresponds 

to the maximum power, 𝑓𝑚𝑎𝑥 , and then 𝑇 = 1/𝑓𝑚𝑎𝑥. 
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2. For each time 𝑡𝑖, this mean period was used to find a “nearest neighbor” state at time 

𝑡
^

𝑖 . That is, 𝑡
^

𝑖  is the time where ∑ (𝑆𝑘(𝑡𝑗) − 𝑆𝑘 (𝑡
^

𝑗))

2

𝑘 is minimized under the 

condition that |𝑡𝑗 − 𝑡
^

𝑗| > 𝑇 to prevent just picking a temporally correlated state. This 

comparison between similar, but temporally disparate states is assumed to be close to 

an experiment where two separate states with similar initial conditions are evolved in 

parallel. 

3. Compute the distances, 𝑑𝑗(𝑡𝑖) = ∑ (𝑆𝑘(𝑡𝑗) − 𝑆𝑘 (𝑡
^

𝑗 + 𝑡𝑖))

2

𝑘 , between these two 

states over all possible times (that is, cease computation when either 𝑡𝑗 or 𝑡
^

𝑗 + 𝑡𝑖 grows 

beyond the size of the data set). 

4. Average the logarithm of the distances over every starting point, 𝑗:  

𝑦(𝑡𝑖) =
1

Δt
⟨log (𝑑𝑗(𝑡𝑖))⟩

𝑗
. Given the base hypothesis that similar states exponentially 

grow or shrink in distance, the slope of the linear fit to this data is the estimate of the 

largest Lyapunov exponent, 𝜆. 

These exponents were calculated at every temperature and plotted in Fig. 4c. The exponents 

increase with temperature, transitioning from negative to positive values between 157 K and 

168 K. This indicates a leap into chaotic or unstable behavior. 

 

Magnetometry measurements. In order to obtain quantitative information of the magnetic 

moments of nanomagnets, we pattern five large area samples (4 x 4 mm2) with thicknesses 1.9 

nm, 2.0 nm, 2.5 nm, 3.3 nm, and 13 nm (measured by X-ray reflectivity measurements, see 

Supplementary Figure 5). We then measure hysteresis loops, extracting quantitative 

information about the magnetic moments as a function of temperature for the various 
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thicknesses. The blocking temperature is extracted from temperature-dependent DC 

magnetization curves using a superconducting quantum interference device – vibrating sample 

magnetometer (SQUID-VSM). Each sample is cooled to 30 K and the magnetic moment 

𝑀(𝑇, 𝐻) is measured using a sweeping field H from -750 Oe to 750 Oe at a rate of 50 Oe/s, 

applied along the nanomagnets’ long axis. This is repeated at an interval step size of 10 K till 

400 K, see Supplementary Figure 3 for a few typical loops, and from each hysteresis loop we 

extract the magnetization at saturation MS(T) and coercivity HC(T), both as a function of 

temperature. These measurement series are repeated for all thicknesses of the patterned 

samples, as well as a thin film equivalent of the 1.9 nm patterned film indicating that patterning 

does not alter the magnetic properties (see Supplementary Figure 3a and 3b respectively). The 

blocking temperature TB of each patterned sample can be estimated using two methods. Either 

the coercivity measurements can be fitted using 𝐻𝐶 = 𝐻0 [1 − (
𝑇

𝑇𝐵
)

1

2
], to obtain an estimate of 

the blocking temperature38, or alternatively we take the blocking temperature of the 

nanomagnets when HC(T = TB) = 0 (see Supplementary Figure 4b and 4c respectively). The 

blocking temperature is dependent on the measurement technique and its characteristic 

timescale, and the PEEM blocking temperature is within the range coming from the two 

methods, usually close to the one obtained by fitting Hc(T). An assessment of deposited 

Permalloy film thickness via X-ray reflectivity (XRR), together with thorough thickness-

dependent magnetometry provides an accurate determination of MS(T) and the coercivity HC 

as a function of thickness. It should be noted that the saturation magnetization MS reported in 

our current study significantly differs from previously reported values15 and can therefore be 

seen as a parameter that can differ depending on which deposition facilities and fabrication 

processes are employed. 
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Figures 

 

Figure 1. Nanomagnetic artificial Hopfield networks. a, An artificial spin glass with the 

coupling between spins represented as red (𝐽𝑖𝑗 > 0  or ferromagnetic) and blue (𝐽𝑖𝑗 < 0  or 

antiferromagnetic) lines, their thickness proportional to strength. b, A Hopfield neural network 

to which the spin glass was matched. The dots represent the neurons and the lines the dominant 

connections, drawn red if 𝑤𝑖𝑗 < 0 and blue if 𝑤𝑖𝑗 > 0. Further optimization will correct for 

mismatched features of these graphs, such as the higher proportion of non-local interactions in 

(b) and a larger number of extraordinarily strong interactions in (a). c, Scanning electron 

microscopy (SEM) image of a portion of an artificial Hopfield network consisting of Ising-

type nanomagnets with lengths L = 300 nm, widths W = 100 nm and thickness t = 2.7 nm. The 

red scale bar indicates a length of 600 nm.  
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Figure 2. Imaging low-energy moment configurations in a nanomagnetic artificial 

Hopfield network. a, XMCD image recorded at 105 K of a frozen-in low-energy state 

achieved after thermal annealing. The yellow arrow indicates the direction of the incoming x-

rays. Moments pointing to the incoming x-rays appear dark, while moments in the opposite 

direction will appear bright. The red scale bar indicates a length of 2 μm. b, Cropped XMCD 

image sequence covering a total timeframe of 63 seconds. Moment reorientations occurring 

from frame to frame are indicated with different colors.  

 



20 

 

Figure 3. Temperature-dependent inverse susceptibility and correlation length derived 

from real-space observations. a, The dimensionless, inverse susceptibility, 
𝑚

𝑘𝐵
𝜒−1, of the 

annealed spin glass is plotted as green circles and fit to the Curie law, 
𝑘𝐵

𝑚
𝜒(𝑇) =

𝐴

𝑇−𝑇𝑐
, green 

dashed line, yielding 𝑇𝐶
𝐻𝑜𝑝𝑓𝑖𝑒𝑙𝑑

= 27.6 ± 15.7 K and 𝐴 = 0.125 ± 0.011. b, The standard and 

spin glass correlation lengths extracted from their respective correlation functions (see 

Supplementary Figure 2) are plotted as blue squares and red asterisks, respectively. Fitting their 

critical behavior, 𝑓(𝑇) = 𝐵(𝑇 − 𝑇𝑐)−𝜈, yields a standard exponent and scale of 𝜈 = 0.143 ±

0.482 and 𝐵 = 100.0489±0.992 𝜇𝑚

𝐾𝜈 , and spin glass parameters of 𝜈𝑆𝐺 = 3.72 ± 1.04 and 𝐵 =

107.52±2.14 𝜇𝑚

𝐾𝜈
. 
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Figure 4. Dynamical behavior of a nanomagnetic Hopfield network. a, The two-point 

autocorrelation function plotted on a log-log plot for all lattice temperatures. If the anticipated 

power law decay is observed, the plots will be linear. b, The decay power v(T) fit from the 

autocorrelation function of the form 𝐶(|𝑡2 − 𝑡1|) = 𝐶0|𝑡2 − 𝑡1|−v(T) . c, The Lyapunov 

exponent of moment dynamics plotted versus temperature.  
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