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Conical spin order with chiral quadrupole helix in CsCuCl3
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Here we report a resonant x-ray diffraction (RXD) study at the Cu L3 edge on the multichiral system CsCuCl3,
exhibiting helical magnetic order in a chiral crystal structure. RXD is a powerful technique to disentangle
electronic degrees of freedom due to its sensitivity to electric monopoles (charge), magnetic dipoles (spin),
and electric quadrupoles (orbital). We characterize electric quadrupole moments around Cu ascribed to the
unoccupied Cu 3d orbital, whose quantization axis is off the basal plane. Detailed investigation of magnetic
reflections reveals additional sinusoidal modulations along the principal axis superimposed on the reported
helical structure, i.e., a longitudinal conical (helical-butterfly) structure. The out-of-plane modulations imply
significant spin-orbit interaction despite S = 1/2 of Cu2+.
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I. INTRODUCTION

Magnetism and associated functionalities in noncen-
trosymmetric materials have attracted significant interest in
the field of condensed matter physics. These interests lie,
for example, in symmetry-protected spin textures, such as
skyrmion lattices [1] and chiral soliton lattices [2], and in
nonreciprocal responses of quantum (quasi-) particles [3]. The
low crystal symmetry is essential to stabilize a complex mag-
netic ground state with enriched properties due to additional
interactions absent in centrosymmetric materials [4,5]. On the
other hand, the low symmetry adds complexity in solving the
magnetic ground state.

Resonant x-ray diffraction (RXD) has been used to explore
complex electronic ordered states, e.g., charge, magnetic, or
orbital modulations, of which some show chiral orders [6–9].
RXD is based on the anisotropic scattering of x rays at
an atomic resonance, with contributions that are described
by tensors up to the second-rank multipole moments 〈T K

Q 〉
(–K � Q � K ), electric monopole (K = 0), magnetic dipole
(K = 1), and electric quadrupole (K = 2) [10]. Here we re-
strict our interpretation to the electric dipole–electric dipole
channel of scatterings, generally most relevant in RXD. An
electric monopole corresponds to a charge (spherical electron
density), a magnetic dipole corresponds to a magnetic mo-
ment, and an electric quadrupole corresponds to an aspheric
electron density due to partial electron occupancy of orbital(s)
and/or covalency. Therefore, RXD is a powerful technique
for investigating an electronic ordered state of charges, spins,
and/or orbitals. Furthermore, the magnetic scattering cross
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section can be significant even for materials with small mag-
netic moments.

Through direct measurements of orbitals and magnetic
moments by RXD, we investigated the correlation between
the two electronic degrees of freedom in a hexagonal chiral
crystal CsCuCl3 with S = 1/2. We observed an out-of-plane
component of spins in addition to the reported in-plane
spin-spiral structure by neutron diffraction [11], indicating
magnetic anisotropy via spin-orbit interaction. Although S =
1/2 systems have basically negligible magnetic anisotropy via
spin-orbit coupling to their ground state [12], a recent theo-
retical study revealed the importance of single-ion anisotropy
in some Cu2+ based compounds [13]. The here obtained
magnetic structure is consistent with those allowed by a sym-
metry analysis based on group theory. Our results show the
powerful potential of RXD for noncentrosymmetric materi-
als with a complex electronic order and a strong correlation
between magnetic moments and orbitals even in S = 1/2
systems.

CsCuCl3 possesses a distorted hexagonal perovskite struc-
ture because of the cooperative Jahn-Teller effect. The
room-temperature structure belongs to a chiral space group,
either P6522 [left-handed, Fig. 1(a)] or P6122 [right-handed,
Fig. 1(b)], that appears below a phase transition temperature
of ∼423 K [14]. Cu2+ with S = 1/2 and the Wyckoff position
6a forms a chiral chain along the principal axis and a triangu-
lar lattice in the basal plane, stabilizing a 120° antiferromag-
netic (AFM) structure below TN (= 10.7 K). Intrachain fer-
romagnetic exchange interaction and antisymmetric exchange
(Dzyaloshinskii-Moriya) interaction, allowed by the low sym-
metry, twist the 120° AFM structure along [001] with a
periodicity of ∼21 nm. The magnetic propagation vector k of
the helical structure is (1/3, 1/3, δ), where δ ≈ 0.085. This
magnetic structure reported by neutron diffraction [11] resem-
bles those of chiral langasite Ba3(Nb,Ta)Fe3Si2O14 [15] and
double molybdate RbFe(MoO4)2 [16]. The former possesses
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FIG. 1. Crystal structures of CsCuCl3 [(a) left-handed (P6522) and (b) right-handed (P6122)] and (e) its longitudinal conical (or helical-
butterfly) magnetic structure with two components, (c) a helical one parallel to the basal plane, and (d) a sinusoidal one parallel to the principal
axis. Red and green helices are guides for the eyes for the chiral arrangements of Cu2+ along the [001] axis.

additional sinusoidal modulations of spins along [001], a so-
called longitudinal conical (or helical-butterfly) structure [17].

As a result of the twofold (C2) symmetry breaking along
〈110〉 reflected by the small z component of k, two propaga-
tion vectors of k1 = (1/3, 1/3, δ) and k2 = (1/3, 1/3, –δ)
do not coexist in a single magnetic domain, shown in Fig. 2.
Such domains characterized by the star of k are called con-
figuration domains [18]. Since the helical component gives
chirality domains, there are four possible magnetic domains

FIG. 2. The reported magnetic structure of CsCuCl3, and pos-
sible four domains. A blue sphere, red arrow, and orange arrow
represent Cu2+, spin moment, and magnetic propagation vector k,
respectively. There are six equivalent k for respective domains, the
star of k1 (1/3, 1/3, +δ) or k2 (1/3, 1/3, –δ). A gray plane rep-
resents the pseudo-lattice-plane normal to [001] at a different height
(z).

in the reported magnetic structure of CsCuCl3, as shown in
Fig. 2.

RXD on CsCuCl3 was previously performed at the Cu
K edge (1s → 4p), and the chiral crystal structure was
characterized through the observation of electric quadrupole
moments of Cu 4p [19]. As a result of RXD combined with
polarized neutron diffraction, a strong correlation between
crystal chirality and magnetic chirality was reported [20].
However, RXD at the Cu L3 edge (2p → 3d ) is directly
sensitive to 3d states, the fundamental orbitals that closely
relate to the electronic degrees of freedom of the material,
i.e., both magnetism and unoccupied Cu 3d orbital (3dx2−y2 ),
namely, a hole [21]. Here the quantization axis z is along the
elongated direction of the CuCl6 octahedron [see Fig. 3(d)].
Such an experiment enables us to investigate the two different
orders simultaneously and directly with similar penetration
depths, providing ideal comparison conditions.

II. EXPERIMENTAL

Our RXD experiments were performed on monochiral sin-
gle crystals probing different surfaces, sample 1: parallel to
(001), sample 2: parallel to (119), and sample 3: parallel to
(110). These samples were grown from aqueous solution by a
method slightly different from Ref. [22]. To ensure monochi-
rality, crystallization was finely controlled, not by evaporation
but by a slow temperature lowering of the solution from 40 ◦C
to about 25 ◦C. We mounted the samples on a diffractometer
installed at the RESOXS end station [23]. The photon energy
was chosen around the Cu L3 edge (∼930 eV), and the polar-
ization of x-ray beams, linear π and circular C+/C−, was set
by the twin Apple II type undulators of the X11MA beamline
at the Swiss Light Source (Switzerland) [24]. Here C+ (C–) is
defined by the Stokes parameter P2 = +1 (–1) [25].
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FIG. 3. Resonant diffraction profiles; (a), (c) around the (002) reflection, where (a) was measured for the left-handed crystal (P6522) while
(c) was measured for the right-handed crystal (P6122), and (b) around the (001) reflection. Note that (a), (b) were taken from sample 1 with
the (001) surface, whereas (c) was taken from sample 2 with the (119) surface. Solid or broken curves are pseudo-Voigt-peak fits. (d) A
distorted CuCl6 octahedron, observed quadrupole moments, Qξ2−η2 (upper) and Qηζ (lower), and a chiral quadrupole helix along [001] as a
linear combination of the quadrupole moments. The helix is mirrored between two enantiomers (left: P6522; and right: P6122). Two colors of
the quadrupole moments show the sign of the poles, red (+) and blue (–). The local Cartesian coordinate system ξηζ is defined so that ξ is
along the twofold axis (// 〈110〉), ζ is along [001], and η is normal to both of them. The quadrupole moment Q3ζ 2−r2 , which is not observed
in our experiment, is omitted here.

III. RESULTS AND DISCUSSION

Let us first formulate RXD structure factors to obtain the
intensities of the (001) and (002) forbidden reflections, I(001)

and I(002), using electric quadrupole moments, Qξη, Qηζ , Qζ ξ ,
Qξ 2−η2 , and Q3ζ 2−r2 (see Appendix A for detailed calculation).
Here we use a local Cartesian coordinate system ξηζ shown
in Fig. 3(d). Because of the C2 symmetry along ξ , Qξη and
Qζ ξ are constrained to be zero. Q3ζ 2−r2 contributes to allowed
Bragg reflections, none of which, however, are accessible at
the Cu L3 edge. Then I(001) and I(002) are obtained as

Iπ
(001) = IC+

(001) = IC−
(001) = 27

4 |Qηζ |2cos2θ, (1)

I(002)(χ, P2) = 27
8 |Qξ 2−η2 |2(1 + sin2θ )(1 − χP2 sin θ )2, (2)

where θ is the Bragg angle [∼21.7◦ for (001) and ∼47.8◦ for
(002)] and χ is the crystal chirality [–1 (+1) for left- (right-)
handed structure]. Hence, we expect that the (002) reflection
exhibits circular dichroism corresponding to the handedness
of the crystal structure, whereas the (001) reflection does not.
These two reflections probe different quadrupole moments
shown in Fig. 3(d), in contrast to trigonal chiral crystals
[26,27], where two quadrupole moments contribute to a for-
bidden reflection.

Figures 3(a)–3(c) show the RXD profiles taken around
the two reflections at the Cu L3 edge, nicely matching with
Eqs. (1) and (2). Their resonant enhancement is confirmed by
photon-energy scans while fixing the reflection condition, as
seen in Figs. 4(a) and 4(b). Here a dip structure significant
for (001) around 930.3 eV is due to self-absorption [28,29]. A
minor effect is observed for the (002) reflection implying that
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FIG. 4. Photon-energy dependence of the resonantly-allowed reflections around the Cu L3 edge while maintaining a given diffraction
condition; (a) (001) and (b) (002) forbidden reflections due to electric quadrupole moments from a left-handed (P6522) crystal (sample 1) with
the (001) surface, and (c) (1/3 1/3 +δ) and (d) (1/3 1/3 1+δ) magnetic reflections from sample 3 with the (110) surface. (c), (d) were taken
below TN. A green curve in (a) is a Lorentzian fit to correct the self-absorption (see main text).

the “self-absorption” is more significant close to the surface
as the (001) is more surface sensitive due to the shallower
incident and exit angles than for the (002) reflection. There
is enormous circular dichroism on (002) with an intensity
ratio of ∼50, close to the expected ratio of ∼45 obtained
by evaluating Eq. (2). The dichroism is indeed negligible on
(001), as expected. The relative magnitude of Qξ 2−η2 and Qηζ

is derived by fitting the experimental results using Eqs. (1) and
(2). The self-absorption effect was thereby accounted for and
determined by fitting the photon-energy scan. The obtained
ratio is |Qξ 2−η2 |:|Qηζ | ≈ 0.8 : 1.0. A linear combination of
Qξ 2−η2 and Qηζ with the obtained ratio provides the exact
aspheric electron density due to the presence of a hole in
3dx2−y2 as reported in Ref. [21]. Since left-handed and right-
handed structures are connected by a mirror operation in the
ξζ plane, Qηζ flips its sign while Qξ 2−η2 does not, as sketched
in Fig. 3(d). As a result, the local electric quadrupole moments
form a chiral helix along [001] and are mirrored between
the two structures, as observed in a trigonal chiral crystal,
DyFe3(BO3)4 [27].

Figures 5(a) and 5(b) show RXD profiles of the
(1/3 1/3 ±δ) magnetic reflections from sample 3 with the
(110) surface, whose resonant enhancement is shown in
Fig. 4(c). The RXD intensities of magnetic reflections from
the reported magnetic structure when using circularly polar-
ized x-ray beams can be expressed as

I (h, P2) = IG

8
{[sin2ω + sin22θ + sin2(2θ − ω)]

× (δτ,G+k + δτ,G−k ) + 2hP2 sin (2θ − ω)

× sin 2θ (δτ,G+k − δτ,G−k )}, (3)

where ω is the incident angle of x-ray beams to the (110)
surface [see the inset of Fig. 5(a)], G represents a reciprocal
lattice vector, τ is the scattering vector, and h = –1 (+1)
indicates spin helicity for the left- (right-) handed magnetic

structure (corresponding to Figs. 2(c) and 2(d) [Figs. 2(a)
and 2(b)]) (See Appendix B for details). IG = F ∗

GFG is the
diffraction intensity of a fundamental reflection at G. Here, FG
= (3/4πq)(F 1

−1−F 1
+1)

∑
j exp(iG · r j ) is the structure factor,

where q is the modulus of the wave vector of incident x rays,
F 1

±1 is the atomic scattering properties of the electric-dipole
transition, and r j is the positional vector of the jth Cu2+.
Equation (3) relates the circular dichroism to the spin helicity.
As the two propagation vectors k1 and k2 do not coexist in
a single magnetic domain, the observation of two distinct
magnetic reflections indicates the presence of configuration
domains. A monochiral crystal exhibits a monochiral spin he-
lix since the helical modulation results from the antisymmetric
exchange interaction mediated through spin-orbit coupling
[20]. Thus, we obtain only two magnetic domains with a
right-handed spin helix [Figs. 2(a) and 2(b)].

In addition to the observed (1/3 1/3 ±δ) reflections,
which are satellite reflections around G = (0, 0, 0), we ob-
served the resonantly-allowed (1/3 1/3 1±δ) reflections [see
Figs. 4(d), 5(c), and 5(d)], exhibiting clear circular dichroism
as well. These reflections are satellites around G = (0, 0, 1),
which are absent for the reported magnetic structure because
the (001) reflection is space group forbidden, i.e., I(001) = 0
in Eq. (3). This is consistent with the absence of intensity off
the resonance [Fig. 4(a)]. Nevertheless, their magnetic origin
is evident because of the temperature dependence shown in
Fig. 5(f) as they vanish above TN.

To clarify their origin, we collected RXD data along (00L)
and found a broad peak at (0 0 1/2), existing only below TN

[see Fig. 5(e)], whereas there were no measurable intensi-
ties at (0 0 3/2). The (0 0 1/2) reflection shows negligible
circular dichroism and, therefore, probes a magnetic com-
ponent other than the helical component. The broad peak
width indicates the small correlation length of this component
that is ∼4.5 nm, supporting that the component is indepen-
dent of the helical one. Here the correlation length p was
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FIG. 5. Resonant diffraction profiles of magnetic reflections measured below TN: (a) (1/3 1/3 +δ) [G = 0 + k1], (b) (1/3 1/3 –δ)
[G = 0 + k2], (c) (1/3 1/3 1+δ) [G = 0 + 2k3 + k1], (d) (1/3 1/3 1–δ) [G = 0 + 2k3 + k2], and (e) (0 0 1/2) [G = 0 + k3]. For com-
parison, a profile measured above TN with the π polarization is shown in (e) by a black broken line. The inset of (a) shows the diffraction
geometry, where q (q′) is the wave vector of an incident (scattered) x-ray beam and τ is the scattering vector. (f) Temperature dependence
of the (1/3 1/3 1–δ) reflection from sample 2 with the (119) surface. Red curve in (f) represents the power-law fit [∝ (TN –T )α], where α

(= 0.48 ± 0.03) is the critical exponent and TN is fixed to 10.7 K.

obtained as p = c/2π�l , where �l is the fitted half width
at half maximum of the reflection. Note that the penetra-
tion depth of the x-ray beams at the incidence angle for
(0 0 1/2) estimated in the same way for (001) is ∼52 nm.
Considering (i) the resemblance to the reported magnetic
signals in chiral langasite Ba3(Nb,Ta)Fe3Si2O14, (ii) the ab-
sence of circular dichroism, and (iii) no expected cycloidal
component because of no electric polarization in the ground
state [30], the additional component can be described by sinu-
soidal modulations along [001], as drawn in Fig. 1(d). Thus,
this observation supports a longitudinal conical (or helical-
butterfly) structure shown in Fig. 1(e). Indeed, the symmetry
analysis using “K-SUBGROUPSMAG” from the Bilbao Crystal-

lographic Server [31] gives such a magnetic structure as a
possible magnetic subgroup of the space group of the para-
magnetic phase with the given two magnetic propagation
vectors k1(2) and k3 = (0, 0, 1/2). Since the (001) and (002)
reflections are forbidden, the sinusoidal modulation with k3

gives the (0 0 1/2) reflection but does not for (0 0 3/2), con-
sistent with the experimental results.

In the presence of out-of-plane sinusoidal modulations
with a propagation vector k3, the amplitude of the in-plane
component modulates along [001] with a propagation vec-
tor twice as large as k3. This allows magnetic reflections
at τ = (0, 0, 0) + k1(2) + 2k3, appearing at (1/3 1/3 1±δ).
Therefore, the RXD intensities of the family of (1/3 1/3 1±δ)
reflections can be written as

I (h, P2) = IG

32
A2

1{[sin2ω + sin22θ + sin2(2θ − ω)](δτ,G+k1+2k3 + δτ,G+k1−2k3 + δτ,G+k2+2k3 + δτ,G+k2−2k3 )

+ 2hP2 sin (2θ − ω) sin 2θ (−δτ,G+k1+2k3 − δτ,G+k1−2k3 + δτ,G+k2+2k3 + δτ,G+k2−2k3 )}, (4)

where A1 is a series expansion coefficient (see Appendix C for
details). This matches well with the experimental observation,
i.e., the emergence of the reflections with circular dichroism
corresponding to spin helicity.

Whereas the antisymmetric exchange interaction was pro-
posed to create the sinusoidal modulation in a helically twisted

120° AFM structure for langasite Ba3NbFe3Si2O14 [17], this
mechanism is unlikely applicable for CsCuCl3 because the
sinusoidal modulation has a different propagation vector than
the helical component. The commensurate propagation vector
implies its origin in local spin-orbit interaction, i.e., single-
ion anisotropy. Although single-ion anisotropy has long been
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believed not to be relevant in S = 1/2 systems [12], its im-
portance for such systems was pointed out by Liu et al. [13].
Taking the quantization axis z along the elongated direction of
the CuCl6 octahedron, a hole populates 3dx2−y2 [21]. Our RXD
results support this picture as the negative poles (electron)
of the electric quadrupole moment of Cu 3d point to the z
axis while the positive poles (hole) point to the orthogonal
directions, as shown in Fig. 3(d). The z axis lies not in the
basal plane, implying that single-ion anisotropy favors spins to
point off the basal plane. This additional term in the magnetic
Hamiltonian may stabilize the longitudinal conical structure.

It might be worth comparing the longitudinal conical struc-
ture also with double molybdate RbFe(MoO4)2 because of
similarity and difference, which exhibits a 120° AFM struc-
ture with helical modulation along [001] without a sinusoidal
component [15]. While there is orbital angular momentum
L in Fe3+ for Ba3NbFe3Si2O14 due to strong hybridization
between Fe 3d and O 2p orbitals [17] and in Cu2+ for
CsCuCl3 as here discussed, L may be negligible in Fe3+ for
RbFe(MoO4)2 as the bond length between Fe and O is much
larger in RbFe(MoO4)2 than in Ba3NbFe3Si2O14 (more than
1 pm) [32]. A negligibly small L results in a minor single-ion
anisotropy insufficient to stabilize the longitudinal conical
structure.

IV. CONCLUSION

We performed resonant soft x-ray diffraction on a chiral
crystal CsCuCl3 and characterized its multichiral structures,
i.e., the orbital chirality in the crystal structure and the mag-
netic structure. Two quadrupole moment components of the
Cu2+ 3d states, determined by the distorted CuCl6 octahe-
dron, were quantified by measuring two independent forbid-
den reflections. The result agrees with the presence of a hole in
a specific 3d state and a chiral arrangement of the orbitals. In
addition to the magnetic satellite reflections already observed
by neutron diffraction originating from the 120° antiferromag-
netic structure in the basal plane with a helical modulation
along the principal axis, we found additional magnetic reflec-
tions implying the presence of sinusoidal modulations along
the principal axis in the magnetic structure, i.e., a longitudinal
conical (or helical-butterfly) structure. The out-of-plane sinu-
soidal modulations might be caused by a single-ion anisotropy
with its local quantization axis of Cu 3d states being off the
basal plane. Our results suggest a strong correlation between
orbital and magnetism even in S = 1/2 systems and its impor-
tance to understanding the magnetic ground state.

Experimental data are accessible from the PSI Public Data
Repository [33].
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APPENDIX A: SYMMETRY ANALYSIS AND RXD
INTENSITIES OF FORBIDDEN REFLECTIONS

Here, we calculate RXD intensities of the forbidden re-
flections, referring to Refs. [26,34]. The electron density ρ(r)
around an ion can be expressed by electric multipoles ρlm(r)
as ρ(r) = ∑

l,m ρlm(r)Y m
l (r̂), where r̂ is a radial unit vector

and Y m
l (r̂) is the spherical harmonics with –l � m � l . We

get ρlm(r) as ρlm(r) = ∫ ρ(r)Y m
l (r̂)∗d r̂. The multipole mo-

ments are generally expressed as an expectation value of the
spherical tensor T K

Q , which relates to Y m
l (r̂) as T K

Q = Y m
l (r̂)

with m = Q and l = K . Here, K is the rank of the tensor and
Q is its projection, holding the relation –K � Q � K . 〈T K

Q 〉
is a complex number, 〈T K

Q 〉 = 〈T K
Q 〉′ + i〈T K

Q 〉′′, with 〈T K
Q 〉∗ =

(−1)Q〈T K
−Q〉. There are five independent real-number com-

ponents for quadrupole moments with K = 2, 〈T 2
0 〉′, 〈T 2

+1〉
′
,

〈T 2
+1〉′′, 〈T 2

+2〉
′
, and 〈T 2

+2〉′′, which corresponds to Q3z2−r2 , Qzx,
Qyz, Qx2−y2 , and Qxy for a general Cartesian coordinate system
xyz, respectively.

There are six Cu2+ located at r1 ∼ r6 in a single unit cell
with the Wyckoff position 6a, as listed in Table I. Using
〈T K

Q 〉 of Cu2+ at r1, those of the remaining five Cu2+ can be
obtained by rotating 〈T K

Q 〉 by χπ/3 (r2), 2χπ/3 (r3), χπ/2
(r4), −2χπ/3 (r5), and −χπ/3 (r6), where χ = –1 (+1)
corresponds to a left- (right-) handed crystal structure. The
RXD structure factor 
K

Q of a (00L) reflection is


K
Q = 〈

T K
Q

〉(
1 + e2πχ i Q

6 e2π i L
6 + e2πχ i Q

3 e2π i L
3 + e2πχ i Q

2 e2π i L
2

+ e−2πχ i Q
3 e−2π i L

3 + e−2πχ i Q
6 e−2π i L

6
)
. (A1)

It is evident that a left- (right-) handed structure gives forbid-
den reflections when L–Q = 6n (L+Q = 6n), where n is an
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integer. Note that 〈T K
0 〉 does not contribute to the space group

forbidden reflections but to allowed reflections. We take the
local Cartesian coordinate system ξηζ shown in Fig. 3(d),
where ξ is along the twofold axis 〈110〉, ζ is along [001],
and η is normal to both directions. The twofold (C2) sym-
metry constrains 〈T 2

+1〉′ and 〈T 2
+2〉′′ to be zero, corresponding

to ζ ξ and ξη, respectively. As a short summary, only one
quadrupole moment contributes to respective forbidden (00L)
reflections: 〈T 2

+1〉′′ (ηζ ) for (001) and 〈T 2
+2〉

′
(ξ 2–η2) for (002).

The x-ray scattering at an atomic resonance is sensitive to
the polarization of incident x rays ε and that of scattered x rays
ε′. The resonant scattering is then sensitive to anisotropic elec-
tron density characterized by electric quadrupole moments.
An x-ray susceptibility tensor

f̂ =
⎛
⎝ fξξ fξη fξζ

fξη fηη fηζ

fξζ fηζ fζ ζ

⎞
⎠, (A2)

defined by the local symmetry of a resonant atom, de-
scribes the scattering. We here take the local Cartesian
coordinate system ξηζ . Note that the tensor components
and electric quadrupole moments are related as Q3ζ 2−r2 =
1
2 (2 fζ ζ − fξξ − fηη ), Qξζ = 2√

3
fξζ , Qηζ = 2√

3
fηζ , Qξ 2−η2 =

1√
3
( fξξ − fηη ), and Qξη = 2√

3
fξη [35]. The local C2 symmetry

along the ξ axis requires the relation f̂ = C2 f̂ C−1
2 , which

results in fξη = fξζ = 0,

f̂ =
⎛
⎝ fξξ 0 0

0 fηη fηζ

0 fηζ fζ ζ

⎞
⎠. (A3)

Each Cu2+ position is connected by the sixfold screw symme-
try along ζ , whose f̂ is thus obtained as shown in Table I. The
RXD form factor F̂ from a single unit cell at the scattering
vector τ = (0, 0, L) is calculated as

F̂(00L) = f̂ + Cχ

6 f̂ C−χ

6 e2π i L
6 + C2χ

6 f̂ C−2χ

6 e2π i L
3 + C1

2 f̂ C−1
2 e2π i L

2

+C−2χ

6 f̂ C2χ

6 e−2π i L
3 + C−χ

6 f̂ Cχ

6 e−2π i L
6 . (A4)

By using resonant scattering amplitude in the respective
polarization channel ε′ε (F̂ ε′ε

(00L)) described as

F̂ ε′ε
(00L) = ε′F̂(00L)ε, (A5)

the RXD intensity I(00L) using circular polarization with the
Stokes parameter P2 is obtained as

I(00L)(P2) = 1
2

(∣∣F̂ σ ′σ
(00L)

∣∣2 + ∣∣F̂π ′σ
(00L)

∣∣2 + ∣∣F̂ σ ′π
(00L)

∣∣2 + ∣∣F̂π ′π
(00L)

∣∣2)
+ P2Im

(
F̂ σ ′π

(00L)
∗
F̂ σ ′σ

(00L) + F̂π ′π
(00L)

∗
F̂π ′σ

(00L)

)
, (A6)

while I(00L) using linear polarization with the Stokes parame-
ter P3 (+1 for σ and −1 for π ) is

I(00L)(P3) = 1
2 (1 + P3)

(∣∣F̂ σ ′σ
(00L)

∣∣2 + ∣∣F̂π ′σ
(00L)

∣∣2)
+ 1

2 (1 − P3)
(∣∣F̂ σ ′π

(00L)

∣∣2 + ∣∣F̂π ′π
(00L)

∣∣2)
. (A7)

We obtain

I(001)(P3 = ±1) = I(001)(P2 = ±1) = 9 fηζ
2cos2θ

= 27
4 |Qηζ |2cos2θ, (A8)

I(002)(χ, P2) = 9
8 ( fξξ − fηη )2(1 + sin2θ )(1 − χP2 sin θ )2

= 27
8 |Qξ 2−η2 |2(1 + sin2θ )(1 − χP2 sin θ )2,

(A9)

I(002)(P3 = +1) = 9
8 ( fξξ − fηη )2(1 + sin2θ )

= 27
8 |Qξ 2−η2 |2(1 + sin2θ ), (A10)

and

I(002)(P3 = +1) = 9
8 ( fξξ − fηη )2(1 + sin2θ )sin2θ

= 27
8 |Qξ 2−η2 |2(1 + sin2θ )sin2θ, (A11)

where θ is the Bragg angle. We find (002) shows circular
dichroism correlating to crystal chirality while (001) does
not. Unlike trigonal systems [9,27], there is no azimuthal
angle dependence on the RXD intensities because such depen-
dence appears due to a coupled term between two quadrupole
moments.

APPENDIX B: RXD INTENSITIES OF MAGNETIC
REFLECTIONS FROM THE HELICAL STRUCTURE

The magnetic scattering term in the resonant scattering
length from a single atom is

fm = −
(

3

4πq

)
i(ε′ × ε) · m

(
F 1

−1 − F 1
+1

)
, (B1)

where m is the unit vector along a magnetic moment, q is the
modulus of the wave vector of incident x-ray beams, and F 1

±1
represents the atomic scattering properties of the dipole tran-
sition [36]. We here use the Cartesian coordinate system xyz,
where x is along [110], y is along [–210], and z is along [001]
[see Fig. 5(a) for the diffraction geometry, an incident angle
of ω and a scattering angle of 2θ ]. The photon polarization
dependence (ε′ × ε) is given by

ε′ × ε =
(
σ′ × σ σ′ × π
π′ × σ π′ × π

)
=

(
0 q̂

−q̂′ q̂′ × q̂

)
, (B2)

where q̂ = (− sin ω, 0, − cos ω) (q̂′ = [sin(2θ−ω), 0,

− cos(2θ−ω)]) is the unit vector along the wave vector of
incident [scattered] x-ray beams and q̂′ × q̂ = (0, sin 2θ, 0).
Total scattering amplitude F is described by using a magnetic
form factor Fm = ∑

j m jeiτ·r j and b = −( 3
4πq )i(F 1

−1−F 1
+1) as

F = b

(
0 q̂ · Fm

−q̂′ · Fm
(
q̂′ × q̂

) · Fm

)
. (B3)

The jth Cu2+ in the helical magnetic structure of CsCuCl3

has the magnetic moment

m j =
⎛
⎝cos (ik · r j )

sin (ik · r j )
0

⎞
⎠ = 1

2

⎛
⎝ eik·r j + e−ik·r j

−ih(eik·r j − e−ik·r j )
0

⎞
⎠. (B4)

Here rj is the positional vector of the jth Cu2+; k is the
magnetic propagation vector, either k1 or k2; and h = –1 (+1)
describes the spin helicity of a left- (right-) handed helical
magnetic structure. Fm is calculated by summing up m j at all
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positions in a crystal with a phase factor,

Fm =
∑

j

m je
iτ·r j = FG

2

⎛
⎝ δτ,G−k + δτ,G+k

ih(δτ,G−k − δτ,G+k )
0

⎞
⎠, (B5)

where G is a reciprocal lattice vector and FG = ∑
j eiG·r j is the

crystal structure factor for the scattering vector τ = G. Using
Eqs. (A6), (B3), and (B5), the RXD intensity of magnetic
reflections from the helical magnetic structure when using
circular polarization is obtained as

I (h, P2) = IG

8
{[sin2ω + sin22θ + sin2(2θ − ω)]

× (δτ,G+k + δτ,G−k ) + 2hP2 sin (2θ − ω)

× sin 2θ (δτ,G+k − δτ,G−k )}. (B6)

Here, IG = FG
∗FG gives the intensity of the fundamental

reflection at the scattering vector τ = G. Equation (B6) ex-
plains the magnetic satellite reflections around G = (0, 0, 0)
with circular dichroism correlating to h, i.e., (1/3 1/3 ±δ),
while it does not for those around G = (0, 0, 1), i.e.,
(1/3 1/3 1±δ), as (001) is a forbidden reflection.

APPENDIX C: RXD INTENSITIES OF MAGNETIC
REFLECTIONS WITH SINUSOIDAL MODULATIONS

With the presence of the sinusoidal modulations along
[001] described by k3, the in-plane amplitude of the helical
component modulates along [001] with a wave vector twice
as large as k3. The in-plane amplitude for the jth Cu2+ can be
expanded as A0 + A1 cos(2k3 · r j ) + · · · , where Ai is the ith
coefficient of series expansion. Hence, mj is written as

m j = A0

⎛
⎝cos (ik · r j )

sin (ik · r j )
0

⎞
⎠ + A1

⎛
⎝cos (2k3 · r j ) cos (ik · r j )

cos (2k3 · r j ) sin (ik · r j )
0

⎞
⎠ + · · · +

⎛
⎝ 0

0
� sin (k3 · r j )

⎞
⎠

= A0

2

⎛
⎝ eik·r j + e−ik·r j

−ih(eik·r j − e−ik·r j )
0

⎞
⎠ + A1

4

⎛
⎝ ei(2k3+k)·r j + e−i(2k3+k)·r j + ei(2k3−k)·r j + e−i(2k3−k)·r j

−ih
[
ei(2k3+k)·r j − e−i(2k3+k)·r j − ei(2k3−k)·r j + e−i(2k3−k)·r j

]
0

⎞
⎠

+ · · · − i
�

2

⎛
⎝ 0

0
eik3·r j − e−ik3·r j

⎞
⎠, (C1)

where � is the relative amplitude of the sinusoidal component with respect to the helical component without the modulations.
Note that the coefficients, Ai and �, keep |m j | = 1. Fm is calculated as

Fm = A0

2
FG

⎛
⎝ δτ,G−k + δτ,G+k

−ih(δτ,G−k − δτ,G+k )
0

⎞
⎠ + A1

4
FG

⎛
⎝ δτ,G−2k3−k + δτ,G+2k3+k + δτ,G−2k3+k + δτ,G+2k3−k

−ih[δτ,G−2k3−k − δτ,G+2k3+k − δτ,G−2k3+k + δτ,G+2k3−k]
0

⎞
⎠

+ · · · − i
�

2
FG

⎛
⎝ 0

0
δτ,G−k3 − δτ,G+k3

⎞
⎠. (C2)

RXD intensities for the magnetic satellite reflections observed in our experiment are obtained as

I (h, P2) = IG

8

{
[sin2ω + sin22θ + sin2(2θ − ω)]

×
[

A2
0(δτ,G−k + δτ,G+k ) + A2

1

4
(δτ,G−2k3−k + δτ,G+2k3+k + δτ,G−2k3+k + δτ,G+2k3−k )

]
+ 2�2[cos2(2θ − ω) + cos2ω](δτ,G−k3 + δτ,G+k3 ) + 2hP2 sin (2θ − ω) sin 2θ

×
[

A2
0(δτ,G−k − δτ,G+k ) + A2

1

4
(δτ,G−2k3−k − δτ,G+2k3+k − δτ,G−2k3+k + δτ,G+2k3−k )

]}
. (C3)

Equation (C3) explains the appearance of magnetic satellite reflections around (001), i.e., (1/3 1/3 1±δ)
[τ = (0, 0, 1) + 2k3 + k], and those due to the sinusoidal modulations (0 0 ±1/2) [τ = (0, 0, 0) + k3], in addition
to those around (000), i.e., (1/3 1/3 ±δ). (1/3 1/3 1±δ) show circular dichroism correlating to h as similar to (1/3 1/3 ±δ),
whereas (0 0 ±1/2) does not.
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