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A B S T R A C T   

Aqueous organic redox-flow batteries are an emerging technological solution in the field of grid-scale energy 
storage, owing to their long lifetime, safety, chemical flexibility, potential for low cost and environmental 
friendliness. In this work we present a physics-based dimensionality reduced model for the performance pre
diction of aqueous organic redox flow batteries. The model allows for fast evaluations of the cell voltage and 
power density, which are expressed explicitly in terms of the electric current density and state of charge. The 
model takes into consideration important phenomena, such as the activation and concentration overpotentials in 
the electrodes as well as the non-negligible electro-osmotic drag of water through the membrane. A sensitivity 
analysis of the model indicates the influence of various model parameters at different current densities on the 
predicted cell voltage. In this work we found the formal potentials and ohmic cell resistance to be the most 
critical parameters for performance prediction. Experimental parameterization and validation on cycling and 
polarization experiments revealed good agreement with the experiments within a predicted range of validity due 
to the different simplifying assumptions.   

1. Introduction 

The rise of intermittent energy generation sources in the last decade 
has increased the need for peak shifting and frequency regulation on the 
European grid, resulting in a push for research and development in grid- 
scale energy storage technologies. Redox-flow batteries (RFB) are a 
promising emerging technology for this application as they allow for an 
independent scaling of energy capacity and power enabling a flexible 
adaptation to the local energy grid requirements, see e.g. [1]. In 
particular, aqueous organic redox flow batteries (AORFB) have attracted 
increasing interest from researchers and industry, owing to their long 
lifetime, low electrolyte cost, safety (non-flammability) and lower 
supply-chain risks compared to metal-based materials [2,3]. 

Modelling physico-chemical processes within a battery is important 
as it allows optimizing the battery operating parameters, the electrolyte 
formulations, or battery components such as the flow frame and the 
membrane. However, developing accurate models involves an interplay 

between a plethora of different scientific disciplines and typically relies 
on mathematical description of more than one physical phenomenon at 
the same time. A wide variety of approaches can therefore be favored, 
depending on the aim of the required accuracy and predictive power of 
the model, as well as the number of input parameters and validation 
experiments available. Most cell-scale models can be broadly catego
rized according to three approaches: Equivalent-Circuit (EC) models, 
lumped continuum models and spatially-resolved models. 

Equivalent circuit models [4,5] typically describe the battery system 
as a sum of components (resistances, capacitance, inductance) with 
varying levels of complexity, which are typically fitted to experimental 
measurements, yielding e.g. current-voltage-temperature relationships. 
These models are relatively simple to design and fast to compute, but 
may lack in accuracy and/or predictive power upon changing compo
nents of the battery. They are often favored in field control applications 
at the stack level [6]. 

Spatially-resolved models range from simplified 1D [7] to fully 3D 
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resolved models [8–11]. These models provide more insight into the 
physical processes occurring in a redox-flow battery, and make up the 
majority of the literature on cell-scale modelling [12]. Possible issues 
with these models include their high computational cost and the large 
number of ex-situ input parameters required to reach better predictive 
power than EC models. Also, the impact of simplifying assumptions, 
such as the dilute solution hypothesis is rarely quantified, but a growing 
number of authors [13,14] advocate for more rigorous modelling of the 
thermodynamics of concentrated aqueous solutions reacting in flow 
batteries. 

Finally, lumped physics-based continuum models, as presented in 
[15,16], neglect spatial variations of the electrolyte flow and composi
tion within the electrodes. As shown by [15] this is a valid approxima
tion within a certain window of operation, allowing for a dimensional 
reduction of the model to 0D. These models allow simulating (averaged) 
cell voltage for as wide range of conditions [15,16], enabling cell life
time studies [17], investigations on oxygen and hydrogen reduction at 
the electrodes [18] and more importantly allow for extensive parameter 
studies, sensitivity analyses and thermodynamic modelling thanks to 
their reduced computational cost [19]. 

In this paper, we present a novel physics-based single-cell model for 
aqueous organic redox flow batteries (referred to as 0D-U-I-SoC model in 
the following). The model allows evaluating the cell voltage and power 
density as steady-state solutions in terms of the applied operating con
ditions. As such, the 0D-U-I-SoC model provides predictions of the cell 
performance over time spans much shorter than the characteristic time 
scales of non-negligible irreversible processes, such as cross-over of 
electro-active species. The simplifying model assumptions allow estab
lishing a one-to-one mapping between the SoC and electrolyte compo
sition. Furthermore, an explicit mapping from the current operating 
conditions, such as the SoC and the electric current density to the cell 
voltage can be derived, allowing for a run time on the order of only 1ms 
for a single voltage evaluation. Thus, the 0D-U-I-SoC model enables 
rapid explorations of the cell performance landscape in terms of critical 
cell parameters, such as the ohmic cell resistance, the mass transfer 
coefficient or the volumetric flow rate. 

The model is applied to an all-organic aqueous electrolyte system 
first introduced in 2016 [1] and described in more details in Section 3. 

In contrast to dimensionality-reduced models available in the liter
ature [15,16,18], the present model considers also the electro-osmotic 
drag of water through the membrane, as well as density changes dur
ing the charge-discharge cycling, which cause SoC-dependent changes 
of the electrolyte volume. Furthermore, a sensitivity analysis of the 
model shows the impact of the operating conditions on the cell 

performance and allows for a ranking of the model parameters in terms 
of sensitivity. 

The presented model aims at being a building block towards fully 
physics-based models with a minimum amount of fitted parameters and 
is implemented in Mathematica, published as open-source software 
under a 3-clause BSD license allowing for full code inspection and reuse 
of the model in other works. 

After stating the geometry and assumptions of the model based on 
the experimental setup, a one-to-one mapping between the SoC and 
composition is given in Section 4, which accounts for density changes 
and the electro-osmotic drag effect. An explicit expression of the cell 
voltage is derived as a function of the state of charge and the current 
density in Section 5. The validity range of the model is discussed in 
Section 6 and results and experimental validation are shown in Section 
7. 

2. Model geometry and simplifying assumptions 

We consider the simplified cell geometry of a flow battery shown in 
Fig. 1, which is composed of a negative and a positive electrode com
partments, separated by a membrane. The electrode compartments are 
fitted with porous electrode material through which electrolyte flows by 
forced convection. 

We are interested in predicting the overall cell voltage and power 
density in terms of the applied electric current and state of charge of the 
battery for a range of typical operating conditions over time scales that 
are much shorter than diffusive and osmotic fluxes through the mem
brane and irreversible degradation processes of the electrolyte material 
or cell components. Furthermore, we assume the electric current density 
to be small enough for spatial concentration variations of the electro- 
active species to be negligible in the electrode compartments. The 
operating conditions and cell properties are assumed to generate 
negligible spatial and temporal temperature variations allowing the 
usage of an isothermal model. 

Clearly, these assumptions are only satisfied within a specific range 
of operating conditions and observation time scales. We discuss the 
impact of the above assumptions on the model validity range in Section 
6. 

3. Experimental section 

3.1. Electrolytes 

Experiments were carried out on the aqueous organic TEMPTMA (N, 

Fig. 1. Illustration of simplified cell geometry and transport through porous electrode and Nernst layer.  
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N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride) / 
Methyl Viologen (N,NÂ’- dimethyl-4,4-bipyridinium dichloride) system, 
first introduced in 2016 [1]. Electrolytes were used as received, and only 
diluted in deionized water to reach the desired concentrations. 

Figure 2 shows a graphical representation of the half-cell redox re
action of the chemical system. The electrochemical half-cell reactions in 
the negative and positive half-cells are given by 

MV2+ + e− [discharge]chargeMV+, T2+ + e− [charge]dischargeT+, (1)  

where T denotes the TEMPTMA species and MV is the Methyl Viologen 
species. To allow for a more succinct notation we write the half-cell 
reactions (1) in the following as 

Aox,− + e− [discharge]chargeAred,− , Aox,+ + e− [charge]dischargeAred,+ (2)  

with the corresponding stoichiometric coefficients given by νox,± = − 1,
νred,± = 1, where the subscripts {− ,+} refer to the negative and positive 
half-cell, respectively. 

3.2. Test cells 

Test cells with an active surface area of 5cm2 and flow fields in flow- 
through configuration were provided by JenaBatteries GmbH. Two GFD 
4.6 EA carbon felt electrodes from SGL Carbon were sandwiched around 
a Fumasep FAA-3-50 anion-exchange membrane, immersed for at least 
24h in a 0.5M NaCl solution to ensure both proper wetting (swelling) 
and the presence of chloride counter-ions in the membrane phase. 
Relevant dimensions are presented in Table 1. These comparatively 
small test cells were chosen to minimize the amount of electrolyte and 
ion-exchange membrane material required in the experiments. 

3.3. Charge/discharge experiments 

In a typical charge/discharge experiment, reservoirs of volume V =
10 mL were connected to the test cells with Tygon S3 L-EFL 1.6 mm ×
4.8 mm tubing passing through a Heidolph Pumpdrive 5201, MAS
TERFLEX peristaltic pump. After a few minutes of electrolyte circula
tion, the cell resistance was measured through Electrochemical 
Impedance Spectroscopy (EIS), and the cell was charged/discharged 
once at a low electric current density of ±20 mA cm− 2 to assess a correct 
depth-of-discharge. We used cut-off voltage values of 1.5 V and 0.9 V, to 
ensure the absence of water electrolysis while maximizing the practical 
state of charge (SoC) window. Relevant operational parameters to the 
rest of the cycling protocol are shown in Table 1. 

3.4. Solvent transfer experiment 

To measure the solvent transfer during one cycle, a single charge was 
performed and the carbon felt electrodes, tubes and reservoirs 
(composition indicated in Table 1) were weighed before and after the 
experiment. In order to have a better control over the flow rate and 
avoid important pressure gradients, the peristaltic pumps were replaced 
with SIMDOS 10 diaphragm liquid dosing pumps. 

The mass of chloride ions transferred between the reservoirs during 

charge was calculated according to the charging time, the charging 
current and the molar mass of chloride ions, and the remaining mass was 
attributed to water, assuming a perfectly perm-selective membrane, 
which allowed to calculate the experimental electro-osmotic coefficient 
of chloride ions. 

3.5. Polarisation experiments 

In a typical polarisation experiment, the cell was first charged to the 
desired SoC at constant current density of 20 mA cm− 2, then discharged 
for 30 s at the desired current density. The average value of the obtained 
voltage was reported on the polarisation plots (Fig. 9 in Section 7) 
showing cell voltage as a function of current density. 

In a second experiment, we attempted to limit several sources of 
experimental uncertainties: we used bigger reservoirs (100 mL) placed 
in 1 L water baths to limit both uncertainties on the SoC due to fast 
charging and on the cell temperature due to Joule heating at high cur
rents, and the peristaltic pumps were replaced with SIMDOS 10 dia
phragm liquid dosing pumps to limit uncertainties on the flow rate. 
Results are presented for SoC 20 on Fig. 9b. 

3.6. Experimental parameters  

4. Relationship between state of charge and composition 

The state of charge (SoC) of a battery is a function of the available 
capacity Q given by 

Fig. 2. Reduced and oxidized forms of TEMPTMA (left) and Methyl Viologen (right) salts in chloride form.  

Table 1 
Operating conditions for different experiments.  

Parameter Description Symbol Value 

Cell geometry 
Electrode thickness (through-plane direction) Lel 0.4 cm 
Electrode width (in-plane) Lw 2.236 cm 
Electrode height (in-plane) Lh 2.236 cm 
Membrane thickness (dry) Lm 50 µm 
Membrane thickness (wet) Lm 80 µm 

General 
Room temperature T 298.15 K 
Cut-off voltage (high) Uh 1.5 V 
Cut-off voltage (low) Ul 0.9 V 
Initial molar concentration of MV2+Cl−2 cox,− 1.49 mol L− 1 

Initial molar concentration of T+Cl− cred,+ 1.12 mol L− 1 

Electrolyte flow rate V̇ 16 ml/min 
Charge/discharge experiment 

Electrolyte volume V 10 mL 
Current I 400 mA 

Solvent transfer experiment 
Electrolyte volume V 50 mL 
Current I 100 mA 

Polarisation experiment 
Electrolyte volume V 100 mL 
Supporting water bath volume LT 1 L  
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SoC(Q) =
Q

Qmax
, (3)  

where Qmax denotes the theoretical maximal capacity. For the one- 
electron electrochemical reactions considered here, the maximum 
amount of substance being consumed or produced is related to the 
maximum capacity by 

Δnmax =
Qmax

F
, (4)  

where F denotes Faraday’s constant. The amount of substances of the 
reduced and oxidized species in the negolyte and posolyte can be 
expressed in terms of the state of charge as 

nred,− (SoC) = SoC⋅Δnmax,

nox,− (SoC) = nox,− (0) − SoC⋅Δnmax,

nred,+(SoC) = nred,+(0) − SoC⋅Δnmax,

nox,+(SoC) = SoC⋅Δnmax.

(5)  

In this study, the initial amount of electroactive species nox,− (0) and 
nred,+(0) satisfy nox,− (0) > nred,+(0), so that Δnmax = nred,+ and the 
maximum capacity is limited by the amount of the reduced species in the 
posolyte 

Qmax = Fnred,+. (6)  

The amount of electroactive substances are thus linearly depending on 
the SoC as shown in Fig. 4. This does not, however, imply a linear 
dependence of the molar concentrations on the SoC as shown in the 
same figure, due to a variety of effects leading to volumetric changes, 
such as osmosis and electro-osmotic flow across the membrane or 
changes in the partial molar volumes. 

4.1. Bulk concentrations in electrodes 

Due to the consumption or production of electroactive species within 
the electrode compartments, the species bulk concentrations vary be
tween the inflow and outflow boundaries. Since the membrane is 
assumed to be perfectly impermeable to the electroactive species, the 
conservation of mass allows to express the outflow species concentration 
in terms of the inflow concentration and the electric current as 

cout
α,± = cin

α,± ∓
ναI
FV̇

, (7)  

where V̇ denotes the volumetric mass flow rate. In the current model, the 
species bulk concentration, cb

α,±, is approximated by the arithmetic 
average between the inflow and outflow concentrations 

cb
α,± ≡ cavg

α,± = cin
α,± ∓

ναI
2FV̇

. (8)  

For the model to be physically sound we require that the electrolyte 
concentrations remain non-negative throughout the porous electrode. 
As shown in Appendix G this requirement is fulfilled for the system 
parameters studied in this paper. 

4.2. Density changes due to chemical reactions 

Differences in the molar mass, see Table 2, and solvation shell of the 
charged and discharged forms lead to macroscopic variations in the 
density of electrolytes in the battery. 

Figure 3 shows experimentally determined mass densities for the 
binary TEMPTMA and Methyl Viologen electrolyte solutions in terms of 
the molar concentration, together with linear least-square model ap
proximations. For the discharged forms only the mass density of pure 
water and a single experimental value, at a higher molar concentration 
than shown in the plot, are used to define the linear model fit. This 
approximation is justified by the very linear behaviour of the mass 
density of uncharged aqueous solutions in this concentration range. 

4.3. Water transfer 

The transport of charged particles through the membrane is 
accompanied by the transfer of solvent molecules in the solvation shell 
of the exchanged ions. The electro-osmotic drag coefficient κs refers to 
the number of transported solvent molecules per chloride ion, which is 
related to the size of their solvation shell ξCl− = 6, see e.g. [20]. The 
amount of solvent molecules in moles, denoted by n0,± in the posolyte 
and negolyte respectively, can then be expressed in terms of the state of 
charge as 

n0,±(SoC) = n0,±(0) ± κs⋅Δnmax⋅SoC. (9)  

To verify this value experimentally, a 50 mL 1.12M TEMPTMA / 1.49M 
MV cell was charged at 20 mA cm− 2 for 20 h and 33 min. The carbon felt 
electrodes, tubing and reservoirs were weighed before and after 
charging, and the experiment was repeated twice. 

The posolyte side, gained [7.54, 7.94]g, while the negolyte side lost 
[8.04, 9.15]g. The small discrepancy can be explained by a net mass loss 
between cell disassembling and weighing, due to evaporation or drop
lets spattering. Using the molar masses in Table 2, this can be converted 
to 2.72 g of chloride ions and, consequently, [5.37, 5.71] g of water 
transferred between the reservoirs during cycling. 

These results indicate that on average [3.83, 4.19] water molecules 
per chloride ions are carried across the membrane, which is below the 
expected size of the hydration shell of chloride ions. The experimental 
discrepancy can be explained by an imperfectly permselective mem
brane and/or a small influence of osmosis over the timescale of the 
experiment. As demonstrated in Section 8, the electro-osmotic coeffi
cient has a relatively minor impact on the model, and to remain 
consistent with the model hypothesis we approximated the electro- 
osmotic coefficient with its theoretical value κs = ξCl− = 6. In Fig. 5 
the resulting change of the total electrolyte volume in the negative and 
positive compartments is shown as a function of SoC. 

5. Cell voltage model 

The cell voltage model we consider in this work is inspired by the 
works of Heintz and Illenberger [21], Pavelka et al. [13], Murthy et al. 
[16] and del Olmo et al. [22]. It is not spatially-resolved, as we make the 
hypothesis that concentration can be assumed constant between elec
trode inlet and outlet (and by extension, in the reservoirs, a hypothesis 
which is discussed in Section 6). 

As such, the cell voltage can be expressed as 

Ucell = UOCV + Uohmic + ηtot, (10)  

where UOCV denotes the open-circuit voltage, Uohmic is the overall ohmic 
term due to the electric resistance of the cell, and ηtot = ηact + ηconc is the 
total overpotential including the activation and mass transfer over
potentials. 

Table 2 
Molar masses of the electrolyte species.  

Parameter Description Symbol Value 

Molar mass of water MH2O 18.02 g mol− 1 

Molar mass of chloride MCl− 35.45 g mol− 1 

Molar mass of TEMPTMA-Chloride MTCl 249.8 g mol− 1 

Molar mass of Methyl Viologen-Dichloride MMVCl2 257.16 g mol− 1  
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5.1. Open-circuit voltage 

The open circuit cell voltage is determined by 

UOCV = Ueq,+ − Ueq,− + Ueq,m, (11)  

where Ueq,+ and Ueq,− denote the reversible half-cell potentials of the 
positive and negative half-cell, respectively, and Ueq,m is the membrane 
potential that results from a gradient of concentration of ionic species 
across the membrane. 

The half-cell potentials can be expressed in terms of the bulk con
centrations cb

α,± by the Nernst relation 

Ueq,± = U∘′

eq,± + U′

eq,± (12)  

with 

U∘′

eq,± = U∘
eq,± −

RT
F

ln

(
γb

red,±

γb
ox,±

)

, U ′

eq,± = −
RT
F

ln

(
cb

red,±

cb
ox,±

)

, (13)  

where U∘
eq,± and U∘′

eq,± denote the reference thermodynamic potential 
and the formal potential, respectively, see e.g. [23] or [24]. The bulk 

(molar) activity coefficient γb
α,± of species α is related to the bulk activity 

coefficient ab
α,± by ab

α,± = cb
α,±γb

α,±/c∘, where c∘ denotes a reference molar 
concentration at which the electrolytes are assumed to follow an ideal 
behavior, usually taken as c∘ = 1 mol L− 1 for convenience. 

As shown in Appendix C, the membrane potential is given by 

Ueq,m = U∘′

eq,m + U
′

eq,m (14)  

with 

U∘′

eq,m =
RT
F

ln

(
γb

Cl−+

γb
Cl−−

)

and U′

eq,m =
RT
F

ln

(
cb

red,+ + 2cb
ox,+

cb
red,− + 2cb

ox,−

)

. (15)  

Collecting the formal potentials allows to rewrite the open circuit po
tential as 

UOCV = U∘′

eq +
(

U′

eq,+ − U′

eq,−

)
+ U ′

eq,m, (16)  

where (U′

eq,+ − U′

eq,− ) can be written in terms of the stoichiometric re
action quotient of the overall cell (discharging) reaction as 

(
U

′

eq,+ − U
′

eq,−

)
= −

RT
F

ln(QR), with QR =
cb

red,+cb
ox,−

cb
ox,+cb

red,−
, (17)  

where QR denotes the reaction quotient of the overall cell reaction and 
the total formal potential U∘′

eq can be expressed in terms of measurable 
mean activity coefficients 

γb,±
red,± =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γb
red,±γb

Cl− ,±

√

, γb,±
ox,± =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γb
ox,±

(
γb

Cl− ,±

)
23

√

, (18)  

yielding 

U∘′

eq =
RT
F

ln

⎛

⎝

(
γb,±

red,+

)
2
(

γb,±
ox,−

)
3

(
γb,±

ox,+
)

3
(

γb,±
red,−

)
2

⎞

⎠. (19)  

In the current study, the formal potentials are assumed to be constant 

Fig. 3. Mass density measurements of binary electrolyte solutions, together with a linear fit.  

Fig. 4. Amount of substance and molar concentration as a function of state of charge.  

Fig. 5. Total electrolyte volume as a function of state of charge.  
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and thus independent of the state of charge value as in the cell models 
studied in [16] and [25], a hypothesis discussed in Section 6. 

5.2. Ohmic cell resistance 

The overall Ohmic losses are given by 

Uohmic = I⋅Rohmic (20)  

where Rohmic denotes the cell resistance, subsuming the electronic, ionic 
and membrane resistances and I = imemAmem is the total current at the 
electrode-membrane interface, where Amem = LhLw denotes the cross- 
sectional membrane area and imem is the corresponding current density. 

5.3. Kinetic and concentration overpotentials 

We model the electron transfer at the electrode with the semi- 
empirical Butler-Volmer expression [23,26]. The geometric current 
density in units of A cm− 2 is then given by 

i± = i0,±

(
gc

red,±e(1− β±)f ηtot,± − gc
ox,±e− β± f ηtot,±

)
, (21)  

where i0,± is the exchange current density, β± is the symmetry factor and 
f − 1 = RT/F ≈ 25 mV denotes the thermal voltage [27]. The exchange 
current density is given by 

i0,± = i0,ref,±

(
cb

red,±

cb
ref,±

)

β±

(
cb

ox,±

cb
ref,±

)

(1− β±) with i0,ref,± = Fk0,±cb
ref,±, (22)  

where k0,± is a reaction constant in units of ms− 1 and cb
ref,± denotes an 

arbitrary reference molar concentration in the electrolyte bulk. These 
reference values can be chosen conveniently as cb

ref,± = 1 mol L− 1. 
Furthermore, 

gc
α,± =

cs
α,±

cb
α,±

= 1 −
Δcα,±

cb
α,±

with cb
α,± = cs

α,± + Δcα,± (23)  

describes the dependence of the forward and backward reaction rates on 
the concentration variation between the electrode surface and electro
lyte bulk. The symmetry factor, β±, satisfies 0 ≤ β± ≤ 1. Finally, 

ηtot,± = U± − Ueq,± (24)  

is the total overpotential in the half-cells. 
The geometric electric current density, i±, is assumed to be constant 

within each electrode, so that i± related to the total cell current I by the 
simple relation 

i± = ±
I

As
= ±

I
asVel

, (25)  

where As = asVel denotes the total electrode surface in each of the 
electrode compartments and as = As/Vel is the specific electrode surface, 
defined as the ratio of the total electrode surface, As, and the electrode 
volume, Vel. 

In the following we assume the symmetry factor in the Butler-Volmer 
Eq. (21) to be given by β± = 1/2. In this case the exchange current 
density simplifies to 

i0,± = Fk0,±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

cb
red,±cb

ox,±

√

(26)  

and the total overpotential ηtot can be expressed explicitly in terms of the 
current density as 

ηtot,± =
2
f

ln

⎛

⎝
i± +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

i2
± + 4gc

ox,±gc
red,±
(
i0,±
)

2
√

2gc
red,±i0,±

⎞

⎠. (27)  

5.4. Mass transport model 

In the proximity of the electrode surface, a thin boundary layer is 
formed, in which steep concentration variations of the electroactive 
species can occur. By Faraday’s law, the electric current density is 
balanced by a species mass flux density in the electrolyte, which is often 
assumed to be dominated by diffusion in the boundary layer [16]. As the 
current density is increased, the concentration of the reactant decreases 
at the electrode surface. In the limiting case of large electric current 
densities, the reactant concentration vanishes at the electrode surface 
and the electric current density reaches a limiting current density. 

However, even well before reaching the limiting current, taking into 
consideration mass transport limitations of the species through the 
boundary layer is important as it directly affects the so-called concen
tration overpotential that occurs when the electrochemical reactions 
become limited by slow transport processes. 

Assuming pure diffusive transport of the electrolyte within the vi
cinity of the electrode surface (a hypothesis discussed in Section 6) leads 
to the mass conservation equation  

να,±
i±
F

= − Dα,±
(
n⋅∇cα,±

)
, (28)  

where n denotes a unit vector pointing from the electrolyte into the 
electrode domain. 

The mass transfer coefficient, km,α,±, relates the difference in the bulk 
and surface electrolyte concentrations to the mass transfer at the surface 
by 

km,α,±Δcα,± = − Dα,±
(
n⋅∇cα,±

)
, (29)  

so that 

Δcα,± =
να,±i±
Fkm,α,±

= ±
να,±I

asVelFkm,α,±
. (30)  

In the extreme case of a complete depletion of reactants at the electrode 
surface we have Δcα,± = cb

α,±, so that the limiting current is given by 

iα,lim,± = να,±Fkm,±cb
α,±, (31)  

where we used |να,±| = 1. 
The mass transfer coefficient km encodes the pore-scale transport of 

the electrode active species between the electrolyte bulk and the elec
trode surface. Typically, km is fitted to mass transport experiments. A 
simple model for the mass transfer coefficient is given by 

km = amvbm , (32)  

where v is the superficial velocity and am, bm denote experimentally 
determined fitting parameters [28–30]. 

5.5. Nondimensionalization 

To nondimensionalize the above relations we introduce the dimen
sionless variables 

cα =
cα

c0, η = f η, ı =
i
i0, ı0 =

i0

i0, (33)  

where c0 is a reference (bulk) molar concentration and i0 denotes a 
characteristic current density given by 

i0 =
FD0c0

l0 , (34)  

where D0 is a reference diffusivity and l0 a characteristic pore length 
scale in the porous electrode. 

The dynamics of the mass transfer and reaction kinetics are deter
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mined by the dimensionless scaling parameters 

Sh =
kml0

D0 , Ki =
k0l0

D0 , (35)  

where Sh denotes the Sherwood number and Ki is a kinetic number. The 
dimensionless limiting current and the exchange current density are 
then given by 

ıα,lim = ναcb
αSh, ı0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅

cb
oxcb

red

√

Ki =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|ıox,limıred,lim|

√ Ki
Sh

. (36)  

The total overpotential (27) is then given in nondimensional form by 

ηtot = 2ln

(
ı +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ı2 + 4gc
oxgc

red(ı0)2
√

2gc
redı0

)

= 2arsinh

(
ı

2ı0
̅̅̅̅̅̅̅̅̅̅̅̅̅
gc

oxgc
red

√

)

− ln
(

gc
red

gc
ox

)

(37)  

= 2arsinh

⎛

⎜
⎝

ı⋅Sh

2Ki
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ı + cb

oxSh
)
(cb

redSh − ı)
√

⎞

⎟
⎠ − ln

(
cb

ox

cb
red

⋅
cb

redSh − ı
ı + cb

oxSh

)

, (38)  

where we have used 

gc
α = 1 −

ναı
cb

αSh
= 1 −

ı
ıα,lim

. (39)  

In the limiting case of small electric current densities Eq. (38) reduces to 

ηtot =

(
1

cb
redSh

+
1

cb
oxSh

+
1

̅̅̅̅̅̅̅̅̅̅̅̅̅

cb
oxcb

red

√

Ki

)

ı + O
(
ı2)

=

(
1

ıred,lim
−

1
ıox,lim

+
1
ı0

)

ı + O
(
ı2), (40)  

see e.g. Bard and Faulkner [23] on p. 106. 

5.6. Activation and concentration overpotentials 

Let us consider the case of fast mass transport, i.e. Sh→∞. Then Eq. 
(39) reduces to gc

α = 1 so that concentration variations between bulk and 
surface vanish and the total overpotential (38) simplifies to the activa
tion overpotential 

ηact = 2ln

(
ı +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ı2 + 4ı2
0

√

2ı0

)

= 2arsinh
(

ı
2ı0

)

, (41)  

see e.g. [16,31]. The concentration overpotential is then determined by 

ηconc = η − ηact. (42)  

In the limit of large exchange current densities, i.e. Ki→∞, we find that 
the total overpotential converges to the concentration overpotential as 
expected, as 

η = ηconc + O
(
Ki− 1) = ln

(
gc

ox

gc
red

)

+ O
(
Ki− 1), (43)  

whereas in the limit of small exchange current densities, i.e. Ki→0, the 
concentration overpotential simplifies to 

ηconc =

⎧
⎨

⎩

− 2ln
(
gc

red

)
+ O

(
Ki2), ı > 0,

2ln
(
gc

ox

)
+ O

(
Ki2), ı < 0.

(44)  

The expression in Eq. (44) was used in [16] to define the concentration 
overpotential. 

5.7. Discussion 

The assumption of the symmetry factor to be given by β = 0.5 allows 
for an explicit formulation of the total overpotential and thus the cell 
voltage in terms of SoC and current density. To gain insight into the 
general form of the total overpotential we have performed a dimensional 
analysis, which reveals the dependency of the overpotential on the mass 
transfer and kinetic reaction rates and allows recovering activation and 
concentration overpotentials as limiting cases. 

The analysis presented in the previous section is based on the Butler- 
Volmer equation formulated in terms of bulk concentrations. An alter
native representation of the Butler-Volmer equation expressed in terms 
of surface quantities given by 

i± = is
0,±

(
e(1− β±)f ηtot,± − e− β± f ηtot,±

)
with is

0,± = k0,±

(
cs

red,±

)
β±
(

cs
ox,±

)
(1− β±)

(45)  

yields instead a surface overpotential ηs
±. The total overpotential ηtot,±

with respect to bulk quantities is then related to the surface over
potential ηs

± by 

ηtot,± = ηs
± + ηref,±, (46)  

where ηref,± denotes the polarization with respect to bulk quantities, as 
shown in Appendix D. 

6. Model validity range 

The range of validity of the 0D-U-I-SoC model is impacted by the 
modelling assumptions, such as the assumption of negligible spatial 
concentration variations of electroactive species along the forced con
vection direction through the porous electrodes. In this section we 
discuss the implications of the most crucial assumptions on the range of 
model validity. 

6.1. Spatial concentration variations 

Let cin
α and cout

α denote the bulk molar concentrations of species α at 
the electrode inflow and outflow boundaries within a half-cell. For the 
macroscopic spatial concentration variations of species α through the 
porous electrode to be negligible we require 

|cin
α − cout

α |≪cavg
α , (47)  

where cavg
α is the arithmetic average concentration defined in Eq. (8). As 

shown in [15], the relative spatial concentration variation between 
inflow and outflow boundaries is given by the dimensionless parameter 

Λcα ≡

⃒
⃒cin

α − cout
α
⃒
⃒

cavg
α

=
|imem|Amem

FV̇cavg
α

, (48)  

where imem denotes the electric current density with respect to the 
membrane cross-sectional area and V̇ is the volumetric flow rate. The 
requirement (47) is thus equivalent to Λcα ≪1. 

At large absolute current densities, the supply of reactants to the 
electrode surface becomes the limiting factor. The active validity 
constraint is then given by the reactant species with the smallest average 
molar concentration in the two electrode compartments. Thus, the 
overall constraint is Λc≪1 with 

Λc =

{
max

{
Λcox,− ,Λcred,+

}
for imem ≥ 0,

max
{

Λcox,+ ,Λcred,−

}
else.

(49)  

Clearly, the requirement Λc≪1 can be formulated in terms of the electric 
current density as 
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|imem| = Λc
FV̇cavg

Amem
≪FV̇cavg

Amem
, (50)  

where cavg is average concentration of the species that maximizes Λc in 
Eq. (49). Therefore, the model validity requires the electric current 
density, |imem|, to be small enough, depending on the volumetric flow 
rate, V̇, the average species concentration, cavg, and the membrane area, 
Amem. 

6.2. Formal potential 

As discussed in Section 5, the formal potentials are defined as 

U∘′

eq,± = U∘
eq,± −

RT
F

ln

(
γb

red,±

γb
ox,±

)

. (51)  

In most of the literature and textbooks, see e.g. [23], the experimental 
conditions are often assumed to be comparable to classical Cyclic Vol
tammetry (CV) or Rotating Disk Electrodes (RDE) experiments, where 
dilute solutions of active materials ([10− 4,10− 3] mol/L) are present in a 
large excess of supporting electrolyte. 

In this concentration range, it is reasonable to make the dilute so
lution hypothesis, such that the relationship between activity and con
centration follows the Debye-Hückel limiting law [32] and the ratio 
γb

red,±/γb
ox,± remains close to 1. However, in flow batteries, the active 

material concentrations vary greatly during battery cycling (up to 
several moles per liter), rendering the dilute solution hypothesis and the 
Debye-Hückel limiting law invalid. 

While it is common practice to consider a constant value for the 
formal potential [16], the activity coefficients of the oxidised and 
reduced species are in general different and their values will depend on 
the concentration of each specie, such that the formal potential should 
formally be given as a function of the SoC. As demonstrated in Section 8, 
the formal potential is one of the most important parameters in cell 
voltage predictions, and more rigorous modelling of concentrated so
lution behaviour may be required in future flow battery models. 

6.3. Temperature variations 

All experiments were conducted in a small thermostated room, 
however temperature increases are possible in the reservoirs due to 
Joule heating of the membrane, particularly at high current densities 
during the polarisation experiment. For this reason, we report in Fig. 9b 
the results of the same polarisation experiment (at 20% SoC) as in Fig. 9a 
with larger reservoirs (100 mL instead of 10 mL) placed in 1 L sup
porting water baths, in order to increase the total heat capacity of the 
system and reduce potential temperature variations. As expected, the 
discrepancy between model and experiment was lower at higher current 
in the case of Fig. 9b, indicating that a small increase in temperature 
affects the cell voltage. 

The sensitivity analysis conducted in Section 8 confirmed that the 
model is indeed sensitive to temperature variations, and the experi
mental setup should be chosen carefully when greater accuracy is 
required, especially at higher currents. 

6.4. Cell resistance 

In the present model, the ohmic cell resistance was assumed constant 
within a range of uncertainty determined by EIS measurements con
ducted before and after the experiments. 

The main ohmic contribution coming from the ion-exchange mem
brane, which conductivity is a function of the temperature and the 
external electrolyte, the cell resistance should formally be measured as a 
function of the temperature and the SoC for greater accuracy. 

6.5. Membrane permselectivity 

To allow for a simpler coupling between state of charge and con
centration, the membrane permselectivity was assumed equal to one, i.e. 
only chloride ions were considered to cross the membrane. This hy
pothesis was justified by the absence of supporting electrolyte (implying 
the absence of small co-ions travelling through the membrane due to 
migration) and the typically higher permselectivity of anion-exchange 
membranes compared to cation-exchange membranes. Membrane 
permselectivity has, however, an impact on Faradaic efficiency, since 
active cations crossing the membrane may lead to a discrepancy be
tween the measured electronic current density and the effective ionic 
current density, defined as the flux of chloride ions through the mem
brane times the Faraday constant. 

An imperfectly permselective membrane could partly explain the 
asymmetry observed on the charge/discharge plots of Fig. 7, which seem 
to suggest that the cell resistance is higher during discharge (or, 
equivalently, that the effective current is lower during discharge). It 
could also explain the discrepancies observed on the polarisation plots of 
Fig. 9 at high current densities or on the voltage efficiency plots of Fig. 8, 
which seem to indicate that the model under-estimates the cell resis
tance in this region (or, equivalently, that it over-estimates the effective 
current density). 

The transfer of hydrated cations through the membrane could also 
have an impact on the experimentally measured electro-osmotic coef
ficient, although (as justified in Section 8) this parameter has a relatively 
small impact on the time scales considered in the present work. 

6.6. Mass transfer 

In classical electrochemistry textbooks, such as [23], the transport in 
the Nernst layer is frequently assumed to be diffusion-dominated. While 
this is likely to be the case in experiments where the supporting elec
trolyte is greatly in excess with respect to the active materials, in flow 
batteries the ratio between supporting electrolyte and active material 
concentrations rarely exceeds 3 (in the system considered in this work, 
there is no supporting electrolyte). 

This leads to transport equations in the Nernst layer that are likely to 
be more complex in practice than a simple Fick’s law, as migration and 
other driving forces may not be negligible. As shown in Section 8, two 
parameters correlated to transport in the diffusion layer (namely mass 
transport coefficient am and flow rate V̇) contribute significantly to the 
model predictions, implying that greater accuracy could be achieved by 
revisiting equations of transport in the Nernst diffusion layer. 

7. Experimental model validation 

Cell voltage and power density predictions are presented for the 
TEMPTMA/MV system over a range of electric current density and state 
of charge values, as well as model validation results of charge-discharge 
and polarization experiments. 

Table 3 shows the chemical and material properties that we used in 
the model evaluations. 

Literature values were taken for the specific electrode surface area 
and the reaction constants for the TEMPTMA/MV system reported by 
Janoschka et al. [1]. The electro-osmotic drag coefficient was taken as 
the size of the solvation shell of Chloride ions [20], as justified in Sec
tion 4. 

Due to large experimental uncertainties in the estimation of the 
formal half-cell potential of Methyl Viologen, we have fitted E∘′

MV to OCV 
measurements. 

Mass transfer coefficients reported in literature show great vari
ability [28,29,33], which can be attributed to the experimental design, 
as well as the variability of the electrolyte transport properties and the 
pore-scale structures of the examined porous electrodes. For this reason 
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we have fitted the mass transfer coefficient am used in the empirical 
mass-transfer coefficient model Eq. (32) to polarization experiments of 
the TEMPTMA/MV system. 

7.1. Model evaluation 

Figure 6 shows model predictions of the cell voltage and power 
density 

pmem = imem⋅Ucell, (52)  

where imem = I/Amem denotes the current density, over a wide range of 
current density and state of charge values using the test cell parameters 
given in Table 3. Thanks to the fast evaluation of the model, these plots 
can be generated quickly and provide insight in the cell performance in 
terms of operating conditions. 

In the plot of Fig. 6, we have indicated the isocurves of the dimen
sionless numbers Λc = 10− 2 and Λc = 10− 1 by a dotted and dashed 
curve, respectively. Generally, we expect the model validity to break 
down for Λc ∼ 1 due to non-negligible spatial concentration variations 
as discussed in Section 6.1. 

7.2. Charge-discharge experiments 

Figure 7 shows the experimentally measured voltage for charge- 
discharge cycling experiments at constant charging and discharging 

currents of 80 mA cm− 2 and 120 mA cm− 2, together with the model 
predictions. 

EIS measurements were performed before and after cycling, yielding 
an initial cell resistance of 348 mΩ, and 360 mΩ after cycling. The model 
was evaluated at both resistance values to estimate the resulting un
certainty in the model predictions as shown in Fig. 7. 

A comparison of the model predictions with the experimental values 
shows that the model slightly underestimates the voltage for a charging 
current and overestimates the voltage for a discharging current, but 
allows for a good approximation of the voltage for both considered 
electric current densities. 

The model allows predicting the voltage efficiency 

VE =

∮
Udischarge

cell dt
∮

Ucharge
cell dt

, (53)  

where the integration is performed over a whole charge-discharge cycle 
and 

Udischarge
cell =

{
Ucell, I < 0
0, I ≥ 0

, Ucharge
cell =

{ 0, I < 0
Ucell, I ≥ 0

(54)  

denote the discharging and charging voltages, respectively. Figure 8 
shows the predicted voltage efficiencies as a function of the electric 
current density, where the cutoff voltages have been set to 0.9 V and 1.5 
V, respectively. The predicted voltage efficiencies are plotted for both 
values of the measured cell resistance values to indicate the implied 
uncertainty. A comparison with the voltage efficiencies obtained from 
the charge-discharge cycling curves included in Fig. 7 reveals that the 
model slightly overestimates the voltage efficiency. 

7.3. Polarization experiments 

Several polarization experiments were performed at different values 
of the SoC for model validation. Figure 9 shows both the measured cell 
voltage and power density as a function of the current density for several 
polarization experiments performed at SoC 20%, 50% and 100%, 
respectively. 

Cell resistance values were measured by EIS experiments before and 
after cycling, see Table 4. To account for the uncertainty in the cell 
resistance the model was evaluated both at the minimum and maximum 
value of the cell resistance to give uncertainty intervals on both the cell 
voltage and the power density. 

The usage of a finite electrolyte volume results in non-negligible 

Table 3 
Chemical and material properties.  

Parameter Description Symbol Value Source 

Specific electrode surface area as 2 × 105m− 1 Murthy et al.  
[16] 

Formal half-cell potential of 
MV 

Δϕ∘′
eq,−

− 0.66 V Fitted 

Formal half-cell potential of 
TEMPTMA 

Δϕ∘′
eq,+

0.62 V Measured 

Reaction constant in neg. 
electrode 

k0,− 3.3× 10− 5 m/s Janoschka et al.  
[1] 

Reaction constant in pos. 
electrode 

k0,+ 4.2× 10− 5 m/s Janoschka et al.  
[1] 

Mass transport coefficient 1 am 3.5 ×

10− 5(m /s)0.1 
Fitted 

Mass transport coefficient 2 bm 0.9 Murthy et al.  
[16] 

Electro-osmotic drag κs 6 Ge et al. [20]  

Fig. 6. Model predictions of the cell voltage (left) and power density (right) as a function of the SoC and current density.  
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changes of the SoC during the discharging periods over which the 
voltage is sampled. To account for the change in the SoC, the model is 
evaluated both at the initial target SoC and the lowest expected SoC 
resulting from the discharging of the electrolyte. The lowest and highest 
predicted cell voltage and power density values for a given current 
density found over the range of possible cell resistance and SoC values 
yield uncertainty ranges that are shown by the orange shaded regions in 
Fig. 9. 

Similarly, we account for the uncertainty in the voltage measure
ments by assuming normally distributed voltage sample values, from 
which we evaluate 95% confidence intervals, which are indicated by the 
blue shaded regions in Fig. 9. 

A comparison with the experimental values shows promising 
agreement of the model predictions up to the model validity threshold 
value of Λc = 10− 1 beyond which the predicted voltage and power 
density start to deviate more strongly and the assumption of negligible 
concentration variations breaks down. For higher values of the SoC the 
model validity extends to larger (negative) current densities due to 
higher molar concentrations of the reactants. This allows the model to 
accurately predict the voltage and power density at SoC = 100% up to 
|imem| = 500 mA cm− 2, whereas the model prediction at SoC = 20% 
starts to deviate significantly from the experimental measurements 
beyond |imem| = 115 mA cm− 2. 

8. Sensitivity analysis 

A sensitivity analysis was carried out to assess the impact of different 

input parameters on the model, which is useful not only to detect 
possible limitations of the model hypothesis, but also to quantify which 
material parameters or design choices have the greatest influence on 
battery performance. 

A local sensitivity analysis was carried out on the model using the 
Morris method [34], chosen for its efficiency and simplicity regarding 
input distributions. The elementary effects d(j)

i of each input parameter 
on the cell voltage Ucell are approximated as a finite difference 

d(j)
i ≈

Ucell

(
x(j)1 ,…, x(j)i (1 + δ/2),…, x(j)n

)
− Ucell

(
x(j)1 ,…x(j)i (1 − δ/2),…, x(j)n

)

δ⋅x(j)i

,

(55)  

where δ is a perturbation parameter and the x(j)
i are samples of input 

parameters, obtained from Monte-Carlo sampling in a 7-dimensional 
space of uniformly distributed variables. Reasonable ranges for the 
sampling of the different parameters were gathered in Table 5 and 
determined as follows: the resistance values were the extreme values 
reported in the previous tables of the manuscript (rounded). The formal 
potentials were measured experimentally (see acknowledgements) and 
observed to vary drastically for the MV electrolyte. Values reported on 
Table 5 were the extreme measured values (rounded). The flow rate was 
measured in dedicated tests with our peristaltic pumps. The reaction 
rate k0 variation range was taken as two orders of magnitude such that 
uncertainties arising from experimental measurement, as well as 
possible electrode pre-treatments were accounted for. The electro- 
osmotic coefficient was taken between 0 (no transfer) and 6 (size of 
the hydration shell of chloride ions [20]). 

As the different input parameters vary greatly in terms of units and 
values, non-dimensional elasticities were defined from elementary ef
fects as 

s(j)i =

⃒
⃒
⃒
⃒
⃒

d(j)
i xref

i

Uref
cell

⃒
⃒
⃒
⃒
⃒
, (56)  

from which the Morris parameters 

μi =
1
n
∑n

j=1
s(j)i , σ2

i =
1

n − 1
∑n

j=1

(
s(j)i − μi

)
2 (57)  

were calculated as the mean and variance of the elasticity distribution 
using n = 103 samples. 

All calculations were carried out at a state of charge of 50% for 
different current densities. Results of the Morris parameters plotted in 
the (μi, σi) plane are presented in Fig. 10 and yield the following result in 
terms of parameter influence on the cell voltage, at a current density of 
80 mA cm− 2: 

Fig. 7. Charge-discharge experiments at 80 mA cm− 2 and 120 mA cm− 2.  

Fig. 8. Voltage efficiencies over a range of current densities predicted by the 
model, together with experimental measurements. 

G. Mourouga et al.                                                                                                                                                                                                                             



Electrochimica Acta 415 (2022) 140185

11

k0 < κs < V̇ ≈ T < Rohmic < U∘′

eq,+. (58) 

The dominant term appears to be the formal potential U∘′
eq,+, which 

was expected due to its direct influence on the cell voltage. This further 
illustrates how activity coefficients and concentrated solution behavior 

may have an impact on cell parameters, and should rigorously be 
modeled as a function of the SoC. The cell resistance Rohmic also has a 
high influence on the model, and becomes more important as the current 
density becomes higher, which is expected due to its direct influence on 
the ohmic term. The cell resistance being dominated by the membrane 
contribution, it illustrates the importance of the ion-exchange 

Fig. 9. Measured voltage and power densities of polarization experiments, together with the model predictions.  
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membrane conductivity in flow battery performance. 
The flow rate V̇ and the mass transfer coefficient am seem to have a 

significant influence on the model and a rather high variance, indicating 
higher interactions or nonlinearities, which increase as the current 
density is increased. As mentioned in Section 6, Fickean diffusion may 
be insufficient to correctly characterise transport phenomena in the 
Nernst layer, and future extensions of the model will put the emphasis on 
improving transport equations in this region. 

The temperature T also has a significant impact on the model, as 
mentioned in Section 6 and experimentally observed in Fig. 9b and a. 
This further illustrates that rigorous non-isothermal models are required 
to correctly predict battery behavior in real-life applications. 

The electro-osmotic drag coefficient κs has a relatively minor impact 
on the model, which makes sense since it only weakly affects the con
centrations of active materials on each side. The reaction constant k0 has 
the smallest impact on the model, despite a range of variation spanning 
two orders of magnitude. 

9. Code availability 

The 0D-U-I-SoC model has been implemented in Mathematica 12 and 
published as open-source software under the 3-clause BSD license, 
allowing for a full inspection of the model. The software is maintained 
on the GitHub account ISOMORPH-Electrochemical Cells, from where it 
can be obtained. The open-source model implementation can serve as a 
point of departure for further specific model adaptations and extensions. 
Furthermore, being published under the 3-clause BSD license also allows 
the model to be used commercially. 

10. Conclusions 

The physics-based 0D-U-I-SoC model presented in this paper allows 
for efficient single-cell performance predictions of aqueous organic flow 
batteries. Thanks to the low computational cost of the model, parameter 
studies and optimizations can be readily performed, even with limited 
computational resources. 

The fundamental assumption of negligible spatial variations of the 
electrolyte bulk composition within each electrode compartment allows 
for a dimensionality reduction to 0D. As shown by Sharma et al. [15], 
this assumption is valid for typical cell geometries and operating con
ditions reported in the literature. However, it requires the electric cur
rent to be small, depending on the cell geometry, electrolyte 
concentration, and flow rate as discussed in Section 6. 

Similar to Murthy et al. [16] we assume the symmetry factor in the 
Butler-Volmer equation for single-step reactions to be given by β = 0.5. 
This simplifying assumption allows for an explicit expression of the 
overpotential in terms of the applied current density. An extension to 
general symmetry coefficients is possible, but would result in an implicit 
formulation of the overpotential. 

The performed experimental model validations on the TEMPTMA/ 
MV system show that the model allows for quantitatively accurate 
performance predictions within its range of validity. Based on a sensi
tivity study with 2000 evaluations, the estimated run time of a single 
voltage evaluation is 1.3× 10− 3ms on a 2019 MacBook Pro laptop with a 
2.4 GHz 8-Core Intel Core i9 processor. The model accuracy, together 
with its low computational cost are, to the best of our knowledge, re
ported for the first time in the aqueous organic flow battery literature. 

Table 4 
Measured cell resistance values before and after the polarization experiments.  

State of Charge Cell Resistance Before Cell Resistance After 

20% 398 mΩ 437 mΩ 
50% 443 mΩ 409 mΩ 
100% 409 mΩ 399 mΩ  

Table 5 
Input parameters and reasonable ranges of variation for the sensitivity analysis.  

Input parameter Symbol Unit Reference Range 

Formal potential U∘′
eq,+

V 0.62 [0.6, 0.7] 

Cell resistance Rohmic mΩ 286 [250, 450] 
Reaction constant k0 m/s 3.3⋅10− 5 [3.3⋅10− 6, 

3.3⋅10− 4] 
Electro-osmotic 

coefficient 
κ - 6 [0, 6] 

Flow rate V̇ mL/ 
min 

16 [15, 17] 

Temperature T K 298.15 [298, 302]  

Fig. 10. Representation of the sensitivity analysis in the Morris plane. High values on the x-axis indicate parameters with high influence, high values on the y-axis 
indicate parameters with high interaction and/or nonlinearities. 
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As expected, the model predictions deviate from the experimental 
values for large absolute current densities, since several assumptions of 
the model discussed in Section 6 may break down in these conditions. 
Other disregarded processes, such as possible temporal temperature 
variations, diffusion of electroactive species through the membrane, or 
non-negligible side reactions could further contribute to the observed 
discrepancy between the model predictions and the experimentally 
determined voltage and power densities. 

We intend to extend the range of validity of the presented model in 

future works by including concentration-dependent formal potentials 
based on experimental measurements of activity coefficients, improved 
modelling of the coupled process of flow and mass transport in the 
porous electrodes and consideration of additional transport phenomena 
through ion-exchange membranes. 

Table of Symbols   

Table 6 
List of symbols used in the publication.  

Symbol Description Unit 

aα Activity of species α −

as Specific electrode surface area m− 1 

Amem Cross-sectional membrane area (Amem = LwLh) m2 

As Total electrode surface area (As = Velas) m2 

cα Molar concentration of species α mol L− 1 

Dα Diffusion coefficient of species α m2s− 1 

D0 Characteristic (or reference) diffusion coefficient m2s− 1 

i Geometric electric current density (I/As) A m− 1 

ı Dimensionless geometric electric current density (ı = i/i0) −

i0 Characteristic geometric electric current density A m− 2 

i0 Exchange current density A m− 2 

ı0 Dimensionless exchange current density (ı0 = i0/i0) −

imem Electric current density with respect to the membrane cross-sectional area (I/Amem) A m− 2 

I Total electric current A 
nα Number of moles of species α mol 
f Inverse thermal voltage (f = F/(RT)) V− 1 

F Faraday constant C mol1−

Ki Kinetic number (Ki = k0l0/D0) −

l0 Characteristic length scale at the pore-scale m 
Lel Thickness of electrode compartment (in through-plane direction) m 
Lm Thickness of the membrane (in through-plane direction) m 
Lh Height of the electrochemical cell m 
Lw Width of the electrochemical cell m 
n Normal vector −

Q Total available charge A h 
QR Reaction quotient of the overall cell reaction −

R Universal gas constant JK− 1 mol− 1 

Rohmic Overall cell resistance Ω 
SoC State of charge of the battery −

Sh Sherwood number (Sh = kml0/D0) −

T Temperature K 
U∘′ Formal potential V 
UOCV Open circuit voltage V 
Uohmic Total cell voltage V 
V̇ Volumetric flow rate m3 s− 1 

VE Voltage efficiency −

Vel Total electrode compartment volume (Vel = LelLwLh) m3 

Ṽm,α Apparent molar volume of species α L mol− 1 

v Superficial velocity m s− 1 

Greek symbols Description Unit 
β Butler-Volmer symmetry coefficient −

γα Activity coefficient of species α −

ϵp Porosity of the electrode −

ηtot Total overpotential V 
η Dimensionless overpotential (η = ηf) −

ηact Activation overpotential V 
ηconc Concentration overpotential V 
κs Electro-osmotic drag coefficient −

Λc Model validity parameter indicating relative concentration variations −

μα Chemical potential of species α J mol1−

Subscripts Description Unit 
α Refers to specific species, where α = 0 denotes the solvent −

± Refers to positive (+ ) and negative (− ) half-cell, respectively −

Superscripts Description Unit 
b Refers to bulk quantity −

s Refers to surface quantity −
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Appendix A. Determination of molar volumes 

Let us first consider a binary mixture of one dissolved salt in water. The molar volume of the pure solvent is given by 

V∗
m,0 =

M0

ρ∗
0
, (A.1)  

where ρ∗
0 is the mass density of the solvent. The volume of the binary mixture can be stated as 

Vmix = n0V∗
m,0 + nαṼm,α, (A.2)  

where Ṽm,α denotes the apparent molar volume of species α. Dividing this relation by the volume yields the constraint 

1 = c0V∗
m,0 + cαṼm,α. (A.3)  

Analogously, the mixture density satisfies 

ρmix = M0c0 + Mαcα. (A.4)  

Solving the above relation for c0 and plugging the result into the constraint (A.3) allows evaluating Ṽm,α in terms of the measured mixture density 
shown in Fig. 3. Here we model the binary mixture mass density as a linear function in terms of the molar species concentration, which implies that the 
resulting apparent molar volumes are constant with respect to the salt concentration. 

For simplicity, we assume that the apparent molar volumes determined for binary mixtures well approximate the molar volumes in the battery, 
where we have in each half-cell a ternary mixture of solvent and two dissolved salts. The total electrolyte volume in the half-cells is then modelled as 

Vmix,± = n0,±V∗
m,0 + nred,±Ṽ red,± + nox,±Ṽox,±. (A.5)  

Appendix B. Initial molar concentrations 

The initial state of the electrolyte is given by the total electrolyte volume V± and the molar concentrations cox,− and cred,+ of the dissolved elec
troactive species in the negolyte and posolyte, respectively. The initial molar concentrations of the solvent in the two half-cells are determined by the 
given molar concentrations of the electroactive species and estimations of the molar and apparent molar volumes as 

c0,− =
1 − cox,− Ṽm,ox,−

V∗
m,0

, c0,+ =
1 − cred,+Ṽm,red,+

V∗
m,0

. (B.1)  

Appendix C. Derivation of open-circuit membrane potential 

The electrochemical potential of a species α in the electrolyte is given by 

μ̃α,± = μα,± + zα,±Fϕ±, (C.1)  

where μα,± denotes the chemical potential and ϕ± is the electrostatic potential. Similarly, the electrochemical potential of electrons in the solid 
electrodes can be defined by del Olmo et al. [22] 

μ̃e,± = − FΦ±, (C.2)  

where Φ± denotes the electric potential in the solid phase. In thermodynamic equilibrium, the electrochemical potential gradients vanish, so that we 
have 

μ̃red,± = μ̃ox,± − FΦ± (C.3) 
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at the electrode surfaces. Additionally, for an anion-exchange membrane considered here, the negatively charged Chloride ions equilibrate across the 
membrane, so that 

μ̃Cl− ,− = μ̃Cl− ,+. (C.4)  

The open circuit potential is then given by 

UOCV = Φ+ − Φ− =
1
F
( (

μ̃ox,+ − μ̃red,+
)
−
(
μ̃ox,− − μ̃red,−

))
, (C.5)  

= Ueq,+ − Ueq,− + Ueq,m, (C.6)  

where the membrane potential can be expressed as 

Ueq,m = U∘′

m + U′

eq,m (C.7)  

with 

U∘′

m =
RT
F

ln

(
γb

Cl− ,+

γb
Cl− ,−

)

and U′

eq,m =
RT
F

ln

(
cb

Cl− ,+

cb
Cl− ,−

)

. (C.8)  

Finally, the macroscopic electroneutrality conditions 

cb
red,± + 2cb

ox,± − cb
Cl− ,± = 0 (C.9)  

allow expressing U′

eq,m in terms of the electro-active bulk ion concentrations as 

U ′

eq,m =
RT
F

ln

(
cb

red,+ + 2cb
ox,+

cb
red,− + 2cb

ox,+

)

. (C.10)  

Appendix D. Alternative formulation of overpotentials 

In thermodynamic equilibrium the thermodynamic driving forces vanish and the electrolyte composition at the electrode surface (just outside the 
electrochemical double layer) and the bulk is homogeneous, so that ab

α = as
α. Thus, the equilibrium voltage can be formulated either in terms of the 

bulk or surface quantities. The choice of the quantities used in the Nernst relation impacts the form of the Butler-Volmer equation, since the predicted 
total half-cell voltage must be the same, regardless of which reference quantities are used. 

The half-cell voltage can be written as 

U± = Ub
eq,± + ηb

± = Us
eq,± + ηs

±, (D.1)  

where Ub
eq,± and Us

eq,± refer to the equilibria with respect to the bulk and surface quantities. Analogously, the terms ηb
± and ηs

± denote the total 
overpotential with respect to bulk and surface quantities, respectively. 

In the following we formulate both the Nernst equation and the Butler-Volmer model in terms of the surface quantities and show the equivalence 
with respect to the overpotential defined in terms of the bulk quantities. 

Appendix E. Polarisation with respect to bulk quantities 

The equilibrium half-cell potentials can be written in terms of surface quantities as 

Us
eq,± = Us,∘′

eq,± + Us′

eq,±, (E.1)  

where 

Us′

eq,± = −
RT
F

ln

(
cs

red,±

cs
ox,±

)

. (E.2)  

The superscript s underlines that the corresponding quantity is evaluated at the electrode surface. To connect the unknown surface species activities to 
the activities in the bulk of the electrolyte, we proceed similarly to Murthy et al. [16] by expressing the surface quantities in terms of the known bulk 
quantities using relation (23), which allows writing Eq. (E.1) as 

Us
eq,± = Ub,∘′

eq,± + Ub′

eq,± + ηref,±, (E.3)  
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where 

ηref,± = −
RT
F

ln

[(
1 − Δγred,±

/
γb

red,±

1 − Δγox,±

/
γb

ox,±

)(
1 − Δcred,±

/
cb

red,±

1 − Δcox,±

/
cb

ox,±

)]

= −
RT
F

ln
(gγ

red,±

gγ
ox,±

)

−
RT
F

ln

(
gc

red,±

gc
ox,±

)

= −
RT
F

ln

(
ga

red,±

ga
ox,±

)

(E.4)  

with 

gγ
α,± =

γs
α,±

γb
α,±

, ga
α,± =

as
α,±

ab
α,±

(E.5)  

is the polarisation with respect to the reference bulk quantities [26]. 

Appendix F. Derivation of the Butler-Volmer overpotentials 

Let us consider the flow of electrolyte through a porous carbon fiber electrode. The assumption of negligible concentration variations in the 
electrolyte bulk allows to simplify the transport problem and focus on the transport of species through the boundary layer forming around the carbon 
fibers. The solution to this transport problem determines the concentrations of the electroactive species at the electrode surface in terms of the electric 
current and bulk concentrations, which in turn allows the evaluation of the Butler-Volmer overpotential. 

The Butler-Volmer equation can be written as in terms of surface quantities as 

i = is
0

(
e(1− α)f ηs

− e− αf ηs) (F.1)  

with the exchange current density 

is
0 = Fk0

(
cs

ox

)1− α( cs
red

)α, (F.2)  

see e.g. Newman and Thomas-Alyea [35] on p. 212. 
As in Section 5, we consider the symmetry coefficient to be given by α = 0.5, which allows expressing the overpotential ηs in terms of the current 

density. The surface overpotential is then given in non-dimensional form as 

ηs = 2arsinh
(

ı
2ıs

0

)

= 2arsinh

(
ı

2ıb
0
̅̅̅̅̅̅̅̅̅̅̅̅̅
gc

oxgc
red

√

)

, (F.3)  

where ıb0 denotes the exchange current density in terms of the bulk concentrations. 
In the following we show the equivalence of the total cell potential based on formulations with respect to surface and bulk quantities. Inserting 

relation (E.3) into Eq. (D.1) yields 

ηb = ηs + ηref . (F.4)  

From the dimensionless Butler-Volmer equations formulated in terms of bulk and surface molar concentrations we find 

ηb − ηs = 2ln

(
ı +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ı2 + 4
(
ıb
0

)2gc
oxgc

red

√

2ıb
0gc

red

)

− 2arsinh

(
ı

2ıb
0

̅̅̅̅̅̅̅̅̅̅̅̅̅
gc

oxgc
red

√

)

= 2

[

ln

(
ı +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ı2 + 4
(
ıb
0

)2gc
oxgc

red

√

2ıb
0gred

)

− ln

(
ı

2ıb
0

̅̅̅̅̅̅̅̅̅̅̅̅̅
gc

oxgc
red

√ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ı2

4(ıb
0

)2gc
oxgc

red
+ 1

√ )]

= − ln
(

gc
red

gc
ox

)

(F.5)  

where we used arsinh(x) = ln(x +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + 1

√
). Thus, for the Butler-Volmer equations expressed with respect to bulk and surface quantities to be 

equivalent, we require 

ηref,± = −
RT
F

(
gc

red

gc
ox

)

, (F.6)  

a sufficient condition for which is that the activity coefficients are homogeneous, so that Δγα,± = 0, see also [26]. Alternatively, Butler-Volmer ex
pressions formulated in terms of activities yield 
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ηb − ηs = − ln
(

ga
red

ga
ox

)

= ηref . (F.7)  

Appendix G. Non-negativity of the reactant concentration 

For the model to be physically plausible, the reactant concentration must remain non-negative throughout the porous electrode. 
Starting from the observation that all species concentrations are non-negative as long as the reactant outflow concentration satisfies cout

react ≥ 0 we 
have to investigate if this outflow concentration can become negative. Mass and charge conservation imply that the magnitude of the electric current 
|I| and the outflow concentration cout

react are negatively correlated. Let |Icrit| denote the critical current, for which cout
react = 0, so that for |I| > |Icrit| the 

outflow concentration becomes negative. Clearly, the critical current can only be reached if the limiting current |Ilim| due to diffusive mass transport 
limitation is larger than the critical current. 

According to our model we have that the critical electric current satisfies 

|Icrit| = FV̇cin
react, (G.1)  

while the limiting electric current can be evaluated as 

|Ilim| = asLelAmemcb
reactkmF < asLelAmemcin

reactkmF. (G.2)  

The limiting current is smaller than the critical current if and only if 

|Ilim| < |Icrit| ⇔ asLelAmemkm < V̇ ⇔ km <
V̇

asLelAmem
. (G.3)  

Evaluating the above relation for the used model parameters shows that indeed |Ilim| < |Icrit|, so that the mass transport limitation is reached before the 
outflow concentration can become zero. 
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