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We introduce HP, an implementation of density-functional perturbation theory, designed to compute 
Hubbard parameters (on-site U and inter-site V ) in the framework of DFT+U and DFT+U +V . The code 
does not require the use of computationally expensive supercells of the traditional linear-response 
approach; instead, unit cells are used with monochromatic perturbations that significantly reduce the 
computational cost of determining Hubbard parameters. HP is an open-source software distributed under 
the terms of the GPL as a component of Quantum ESPRESSO. As with other components, HP is optimized 
to run on a variety of different platforms, from laptops to massively parallel architectures, using native 
mathematical libraries (LAPACK and FFTW) and a hierarchy of custom parallelization layers built on top 
of MPI. The effectiveness of the code is showcased by computing Hubbard parameters self-consistently 
for the phospho-olivine LixMn1/2Fe1/2PO4 (x = 0, 1/2, 1) and by highlighting the accuracy of predictions 
of the geometry and Li intercalation voltages.

Program summary
Program Title: HP
CPC Library link to program files: https://doi .org /10 .17632 /xsbtkpknf7 .1
Licensing provisions: GNU General Public License v 2.0
Programming language: Fortran 95
External routines: HP is a tightly integrated component of the Quantum ESPRESSO distribution and 
requires the standard libraries linked by it: BLAS, LAPACK, FFTW, MPI.
Nature of problem: Calculation of Hubbard interaction parameters for DFT+U and DFT+U +V .
Solution method: Hubbard parameters are expressed in terms of the inverse response matrices to 
localized perturbations of the atomic occupations. The response matrices are computed using density-
functional perturbation theory to first order (linear-response theory) in the reciprocal space, that allows 
to reconstruct the response to a localized perturbation (obtained from calculations in an appropriately 
sized supercell) as the superposition of the responses to a series of monochromatic perturbations in 
a primitive unit cell, thus reducing significantly the computational cost. The response matrices are 
computed via a self-consistent solution of the static Sternheimer equation, whose implementation does 
not require the calculation of any virtual states. Pseudopotentials (norm-conserving, ultrasoft, projector 
augmented wave) are used in conjunction with plane-wave basis sets and periodic boundary conditions.
Additional comments including restrictions and unusual features: Local and semi-local exchange-correlation 
kernels only. Noncollinear spin-polarized formalism is not supported, only collinear spin-polarized or 
non-spin-polarized cases can be treated. Spin-orbit coupling cannot be used. Calculation of Hund’s J
is not supported. Multiple Hubbard channels per atom are not supported. The Hubbard manifold can 
be only constructed on atomic orbitals, both orthogonalized and non-orthogonalized, while Wannier 
functions (as well as other localized basis sets) are not supported. The linear-response approach we 
adopt here typically results in Hubbard parameters that are unphysically large for closed shell states [1]. 
No virtual orbitals are used, nor even calculated.

✩ The review of this paper was arranged by Prof. Blum Volker.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).
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The distribution file of this program can be downloaded from the Quantum ESPRESSO website: http://
www.quantum -espresso .org/, and the development version of this program can be downloaded via 
Git from the GitLab website: https://gitlab .com /QEF /q -e. Interactions with end users of the HP code 
happen via a mailing-list forum of Quantum ESPRESSO: https://www.quantum -espresso .org /forum. 
Documentation of the HP code is tightly coupled with the code and is done via standard code comments; 
different subroutines that implement different equations of the DFPT formalism contain references to the 
two main papers [2,3] describing in detail theory behind the implementation.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The development of density-functional theory (DFT) [4,5] has 
allowed modeling of a broad spectrum of properties for a large 
variety of systems. In practical applications DFT relies on ap-
proximations to the exchange-correlation (xc) electronic interac-
tions, among which the local-density approximation (LDA) and 
the generalized-gradient approximation (GGA) are the most pop-
ular ones. Both approximations suffer from self-interaction errors 
(SIE) [6], which limit the accuracy only to simple systems with 
chemistries determined by s- and p-type electrons. In systems 
with strongly localized electrons of d and f type, the SIE of LDA 
and GGA is quite large and leads to a significant overdelocalization 
of these electrons which translates into quantitative and some-
times even qualitative failures in the description of complex ma-
terials.

A popular approach to alleviate SIE in DFT calculations is to use 
Hubbard corrections to approximate DFT energy functionals [7–9]. 
The rationale for this is that Hubbard corrections impose piecewise 
linearity in the energy functional as a function of atomic occupa-
tions [10], and thus remove/alleviate SIE in the Hubbard manifold 
both in extended systems and in molecular ones [11,12]. Within 
this approach, often referred to as DFT+U , the Hubbard correction 
acts selectively on strongly localized manifolds (of d or f types, 
typically) through projectors on the corresponding states, while 
electrons on more delocalized states are treated at the level of 
approximate DFT. What has made this approach popular is cer-
tainly the possibility to achieve significant improvement in the 
description of systems with localized electrons, while maintaining 
a combination of simplicity and reduced computational costs. An 
extended formulation of DFT+U – so-called DFT+U +V [13] – takes 
into account inter-site Hubbard interactions through the parame-
ter V and allows to improve the description of localized electrons 
even in presence of significant hybridization with neighbors. Re-
cent works [14,15,3] have highlighted the quantitative accuracy of 
DFT+U +V calculations with both on-site U and inter-site V effec-
tive parameters. It is useful to mention about alternative recent 
formulations of DFT+U +V [16,17].

The effectiveness of the (extended) Hubbard functional depends 
critically on the values of the effective interaction parameters (i.e., 
the Hubbard U and V ). Unfortunately, the values of these pa-
rameters are not known a priori and it is still quite a common 
practice in literature to evaluate them semi-empirically by fitting 
various experimental properties (when available), which prevents 
this method from being fully ab initio and from being predictive 
for novel materials. Most importantly, it is often forgotten that the 
Hubbard correction acts on a specific manifold that can be defined 
in different ways [18]. Hence, the values of the Hubbard parame-
ters are not transferable and should not be considered as universal 
quantities for a given element or material (see the appendix in 
Ref. [12]). It is crucial to use the U and V parameters consistently, 
i.e., maintaining the same Hubbard projectors, pseudopotentials, 
oxidation states, functionals, etc. for which they were computed. 
During the past 30 years there has been a large effort to develop 

methods for the first-principles calculation of Hubbard parame-
ters. Among these, the constrained DFT (cDFT) approach [19–24,10,
25–27], the Hartree-Fock-based approaches [28–31,16,17], and the 
constrained random phase approximation (cRPA) approach [32–38]
are the most popular. A linear-response formulation of cDFT (LR-
cDFT) was introduced in Ref. [10] and generalized to the calcu-
lation of the inter-site Hubbard parameters V in Ref. [13] (see 
also Refs. [39,40]). LR-cDFT has recently been recast via density-
functional perturbation theory (DFPT) [2,3], allowing to overcome 
several challenges of the supercell approach of Ref. [10]. It was 
shown that both LR-cDFT and DFPT give exactly the same values of 
Hubbard parameters (modulo the numerical noise), as they ought 
to by construction [2,3]. By constructing the localized perturba-
tion (typically requiring costly calculations in supercells) as a series 
of independent monochromatic perturbations in the primitive unit 
cell, it improves significantly the computational efficiency, accu-
racy, user-friendliness, and automation [2,3], as also demonstrated 
by several recent applications [14,41,15,42–49]. Key to this suc-
cessful implementation of the LR-cDFT is indeed the capability to 
express perturbation theory in reciprocal space as in the calcula-
tion of phonons using DFPT [50–52].

An open and recurring question concerns the extent at which 
the Hubbard parameters obtained from different approaches, e.g. 
cRPA [34] vs. LR-cDFT/DFPT [10,2] vs. ACBN0 [31] compare to one 
another. First and foremost, these methods have quite different 
definitions of the Hubbard U which complicates very much their 
comparison. In fact, only a few attempts have been made in the 
literature trying to identify the analogies and differences between 
these theories [1,35,40]. Moreover, different Hubbard projector 
functions can be used in these methods: cRPA is based on max-
imally localized Wannier functions [53], while LR-cDFT/DFPT and 
ACBN0 are used with several other popular types of Hubbard pro-
jectors (e.g. nonorthogonalized or orthogonalized atomic orbitals, 
projector-augmented-wave (PAW) functions, to name a few). Since 
the computed Hubbard parameters are very sensitive to the choice 
of Hubbard projector functions [47], the comparison between the 
values of U computed using different methods and different pro-
jector functions becomes even more complicated. Furthermore, in 
some works the Hubbard U is computed in a one-shot fashion (i.e. 
a single calculation from an uncorrected ground state) while in 
other works a self-consistent procedure is adopted where the ef-
fective Hubbard U is recomputed from a DFT+U ground state until 
self-consistency is reached [3,10,54]. The choice of pseudopoten-
tials is also very important when computing the Hubbard param-
eters [12,27]: the value of U obtained for the same structure but 
with differing pseudopotentials may easily differ by as much as 
2 − 3 eV, in particular if the pseudopotentials were generated from 
different oxidation states [12]. All in all, for a given material of in-
terest, even if the calculations of U are done using the same crystal 
structure and atomic positions, the same kinetic-energy cutoff, k
points sampling of the Brillouin zone (BZ) and same other techni-
cal details, all other aforementioned aspects must be very carefully 
considered when comparing studies reporting different Hubbard U
parameters. Therefore, we believe that it makes sense to compare 

2

http://www.quantum-espresso.org/
http://www.quantum-espresso.org/
https://gitlab.com/QEF/q-e
https://www.quantum-espresso.org/forum
http://creativecommons.org/licenses/by/4.0/


I. Timrov, N. Marzari and M. Cococcioni Computer Physics Communications 279 (2022) 108455

U values computed using different methods only when the same 
computational setup is used.

In this paper we introduce a computer code, named HP
(Hubbard Parameters), which implements DFPT for the calcula-
tion of Hubbard parameters. HP is distributed under the terms of 
the GPL license [55], as a component of the Quantum ESPRESSO

suite of open-source codes based on plane-wave basis sets, pseu-
dopotentials, and using periodic boundary conditions [56–58].

This paper is organized as follows. In Sec. 2 we provide a theo-
retical background for the Hubbard-corrected DFT and for DFPT. In 
Sec. 3 we describe the components of HP. In Sec. 4 we provide the 
instructions for installing HP on UNIX systems and discuss vari-
ous levels of parallelization implemented in it. In Sec. 5 we give 
an example of the usage of HP for the calculation of Hubbard 
parameters for LixMn1/2Fe1/2PO4 and studying its ground-state 
properties. Finally, Sec. 6 contains conclusions and perspectives for 
future work. Appendix A presents examples of the input files for 
the PW and HP codes, and Appendix B contains the description of 
the input variables of the HP code. Hartree atomic units are used 
throughout the paper.

2. Theory

2.1. Hubbard-corrected density-functional theory

In this section we briefly review the formulation of the ex-
tended DFT+U +V approach [13]. All equations which are presented 
below can be easily reduced to the case of DFT+U by simply set-
ting V = 0. For the sake of simplicity, the formalism is presented 
in the framework of norm-conserving (NC) pseudopotentials (PPs), 
for non-metallic ground states, in the collinear spin-polarized case.

As a generalization of DFT+U , DFT+U +V is also based on an ad-
ditive correction to the approximate DFT energy functional, mod-
eled on the Hubbard Hamiltonian [13]:

EDFT+U+V = EDFT + EU+V , (1)

where EDFT represents the approximate DFT energy (constructed, 
e.g., within the local spin density approximation – LSDA, or the 
spin-polarized generalized-gradient approximation – GGA), while 
EU+V contains the additional Hubbard term. At variance with the 
DFT+U approach, containing only on-site interactions, DFT+U +V
is based on the extended Hubbard model including also inter-
site interactions between an atom and its surrounding ligands. In 
the simplified rotationally-invariant formulation [9], the extended 
Hubbard term reads:

EU+V = 1

2

∑
I

∑
σm1m2

U I
(
δm1m2 − nI Iσ

m1m2

)
nI Iσ

m2m1

− 1

2

∑
I

∗∑
J ( J �=I)

∑
σm1m2

V I J nI Jσ
m1m2n J Iσ

m2m1 ,

(2)

where I and J are atomic site indices, m1 and m2 are the magnetic 
quantum numbers associated with a specific angular momentum, 
U I and V I J are the on-site and inter-site Hubbard parameters, and 
the star in the sum denotes that for each atom I , the index J
covers all its neighbors up to a given distance (or up to a given 
shell).

The atomic occupation matrices nI Jσ
m1m2 are based on a general-

ized projection of the Kohn-Sham (KS) states on localized orbitals 
ϕ I

m1
(r) of neighbor atoms:

nI Jσ
m1m2 =

Nk∑
k

Nocc∑
v

〈ψ◦
vkσ | P̂ J I

m2m1 |ψ◦
vkσ 〉 , (3)

where v and σ represent, respectively, the band and spin labels 
of the KS (pseudo-)wavefunctions, k indicate points (wave vectors) 
in the first BZ, Nk being their number, Nocc is the number of oc-
cupied KS states, and P̂ J I

m2m1 is the generalized projector on the 
localized orbitals of neighbor atoms:

P̂ J I
m2m1 = |ϕ J

m2〉〈ϕ I
m1

| . (4)

In Eq. (3) and hereafter, with the superscript ◦ we indicate quan-
tities which refer to the unperturbed ground state of the system. 
Here, ϕ I

m1
(r) ≡ ϕ

γ (I)
m1 (r − RI ) are localized orbitals centered on the 

I th atom of type γ (I) at the position RI . Given their importance 
for the calculation of the Hubbard parameters it is convenient to 
establish a short-hand notation for the on-site terms of the quanti-
ties defined in Eqs. (3) and (4): nIσ

m1m2
≡ nI Iσ

m1m2
and P̂ I

m1m2
≡ P̂ I I

m1m2
. 

The standard DFT+U approach is recovered by setting V I J = 0 in 
Eq. (2). Based on the definitions above, it is quite straightforward 
to see from Eq. (2) that the two terms in the corrective energy 
functional, proportional to the on-site (U I ) and inter-site (V I J ) 
couplings, respectively, counteract each other. In fact, while the 
on-site term favors localization on atomic sites (typically suppress-
ing hybridization), the inter-site one favors hybridized states with 
components on neighbor atoms. Computing the value of the U I

and V I J effective interaction parameters is thus crucial to deter-
mine the degree of atomic localization of d- and/or f -type elec-
trons when the system is in its ground state. The Hubbard projec-
tor functions {ϕ I

m1
(r)} can be constructed using different types of 

projector functions as a basis set (see Sec. 2.2).
The action of the Hubbard potential on KS wavefunctions can 

be obtained by taking the functional derivative of EDFT+U+V [see 
Eq. (1)] with respect to the complex conjugate of the same KS 
wavefunction [13,59]. The term corresponding to this functional 
derivative of EU+V [see Eq. (2)] is:

V̂ ◦
Hub,σ =

∑
I

∑
m1m2

U I
(

δm1m2

2
− nIσ

m1m2

)
P̂ I

m1m2

−
∑

I

∗∑
J ( J �=I)

∑
m1m2

V I J nI Jσ
m1m2 P̂ I J

m1m2 .

(5)

This Hubbard potential is added to the standard DFT Hamilto-
nian [2,3], and then the modified KS equations are solved self-
consistently.

As was mentioned in Sec. 1, in DFT+U and DFT+U +V the two 
crucial aspects are: i) the choice of projector functions that are 
used to construct the Hubbard manifold, and ii) the choice of the 
Hubbard parameters (U I and V I J ). It is of utmost importance to 
understand that the latter strongly depends on the former. There-
fore, it makes sense to discuss the values of Hubbard parameters 
only when the Hubbard projectors have been fixed.

The use of DFT+U +V instead of DFT+U is mainly motivated 
by the increased flexibility the former offers compared to the lat-
ter. This is particularly important for more covalently-bonded sys-
tems where electronic localization occurs on hybridized states with 
components on neighbor atoms. In fact, a too large U , favoring 
on-site localization, might suppress the inter-site hybridization and 
distort the electronic structure of these systems to the point that 
a negative U might be required to restore a more physical picture 
and to recover the results achieved with hybrid HSE06 function-
als [60]. This effect was already observed in Ref. [13] that showed 
that the standard on-site only DFT+U can actually suppress the 
insulating behavior of covalent semiconductors (Si and GaAs) and 
decrease their band gap. In the same work it was first demon-
strated that the use of a finite and positive V (within DFT+U +V ), 
by favoring the hybridization of atomic states between neighbor 
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atoms, can in fact re-establish the insulating character of their 
ground state also predicting a wider band gap than the one ob-
tained using uncorrected DFT functionals. A finite positive V was 
also found effective in re-establishing a sound description of other 
problematic covalent systems without the need of negative on-site 
U ’s, as detailed in Ref. [17]. While the need of an inter-site interac-
tion V makes a semi-empirical evaluation of the Hubbard param-
eters much harder, the calculation of V from first-principles can 
be achieved simultaneously to that of U , as illustrated already in a 
number of studies [2,3,13,16,17]. Therefore, DFT+U +V where both 
U and V values are computed ab initio constitutes a robust and 
accurate approach that describes accurately the on-site localiza-
tion and inter-site hybridization of electrons without any manual 
calibrations of Hubbard parameters. More on this is discussed in 
Sec. 2.3.

2.2. Hubbard projectors

As was discussed above, one of the key aspects of the Hubbard-
corrected DFT formalism is the choice of the projector functions 
for the Hubbard manifold. In other words, we need to choose 
the basis {ϕ I

m(r)} for the projector P̂ J I
m2m1 [see Eq. (4)]. There 

are quite many possible projector functions to use as a basis 
for the Hubbard manifold (see e.g. Refs. [61,62]). In particular, 
we mention here nonorthogonalized [10,63] and orthogonalized 
atomic orbitals [14,15,43], nonorthogonalized [64] and orthogo-
nalized Wannier functions [65], linearized augmented plane-wave 
approaches [66], and PAW projector functions [67,68]. A common 
feature of all these projector functions is that they are spatially lo-
calized and depend explicitly on atomic positions. In this work, we 
consider only two types of projector functions, nonorthogonalized 
and orthogonalized atomic orbitals. Let us comment briefly about 
each of them.

Nonorthogonalized atomic orbitals represent one of the sim-
plest choices for the Hubbard projectors, and they are well suited 
for systems with a pronounced ionic character. These functions 
are provided with pseudopotentials and, by virtue of their angular 
part, they are orthonormal within each atom but not between dif-
ferent atoms. Therefore, whenever inter-atomic overlaps between 
them become relevant, this type of projector functions is not suit-
able any more, and inter-site orthogonalization becomes necessary. 
Orthogonalized atomic orbitals are obtained by taking atomic or-
bitals of each atom and then orthogonalizing them to all the or-
bitals of all the atoms in the system. In this work, we will use the 
Löwdin orthogonalization method [69,70]. By doing so, a new set 
of orbitals is obtained that, by virtue of their mutual orthogonal-
ization [18], provide a more accurate representation of inter-site 
hybridization. This choice is particularly appealing to define the 
Hubbard projectors, because it allows us to avoid counting Hub-
bard corrections twice in the interstitial regions between atoms. 
This is especially relevant in the case of DFT+U +V . As explained in 
Ref. [18], Löwdin orthogonalized atomic orbitals are defined as:

ϕ I
m1

(r) =
∑
Jm2

(
O − 1

2

) J I

m2m1
φ

J
m2(r) , (6)

where O is the orbital overlap matrix which is defined from 
its matrix elements as: (O )

I J
m1m2 = 〈φ I

m1
|φ J

m2 〉, where φ I
m1

(r) and 
φ

J
m2 (r) are the nonorthogonalized atomic orbitals. It is important 

to note that the atomic and state indices must be understood as 
being in couples, (I, m1) and ( J , m2), because for different types 
of atoms the considered atomic manifolds can be different. Here 
we orthogonalize all the states of all the atoms in the system. It is 
important to orthogonalize not only states that belong to the cho-

sen Hubbard manifolds of each atom (e.g., d or f states), but also 
the remaining states, in order to preserve the on-site orthogonality.

In practice, we construct Bloch sums of the Löwdin orthog-
onalized atomic orbitals and then use only their lattice-periodic 
parts (see Eqs. (A2) and (A5) in Ref. [2]). Further, these quantities 
are Fourier-transformed from real to reciprocal space and used in 
the DFT+U (+V ) and DFPT formalisms to compute various scalar 
products [see e.g. Eqs. (3) and (4)] as sums over reciprocal lattice 
vectors.

As shown in Ref. [47], the computed Hubbard parameters do 
depend strongly on the choice of the Hubbard projector func-
tions. For example, for β-MnO2 the U values computed using 
nonorthogonalized and orthogonalized atomic orbitals differ by 
about 1 − 2 eV while V values differ by about 0.3 eV [47]. There-
fore, it is crucial that the same Hubbard projector functions are 
used for computing Hubbard parameters and for the subsequent 
DFT+U (+V ) production calculations.

2.3. Hubbard parameters from density-functional perturbation theory

Following Ref. [10], Hubbard parameters can be defined as the 
second derivatives of the total energy with respect to the total 
occupation of a given atom, i.e. with respect to the trace of the 
site-diagonal occupation matrix nIσ

m1m2
. This is consistent with the 

structure of the simple Hubbard corrective functional, shown in 
Eq. (2), that subtracts from the total energy a quadratic term in 
the atomic occupation, to substitute it with a linear one, thus re-
moving the unphysical self-interaction (delocalization) errors from 
approximate energy functionals. In this context, the inter-site part 
in Eq. (2) serves as an off-diagonal correction when removing self-
interactions, which is especially relevant for systems with a co-
valent bonding. In practice, the calculation of the energy second 
derivative can be achieved by perturbing the system with a shift 
in the potential acting on the Hubbard states of a given atom J , 
λ J ∑

m P̂ J
mm (λ J is the strength of the perturbation), and then com-

puting the response of all the atomic occupations. Applying this 
to all the Hubbard atoms in the system allows to construct the 
bare and self-consistent susceptibility matrices that are obtained, 
respectively, at the beginning of the perturbed run and at its self-
consistent convergence:

(χ0)I J = dnI
0

dλ J
, (χ)I J = dnI

dλ J
. (7)

Here, nI = ∑
mσ nIσ

mm and similar definition holds for nI
0. From 

these, the effective Hubbard parameters can be readily obtained 
[10]:

U I =
(
χ−1

0 − χ−1
)

I I
, (8)

V I J =
(
χ−1

0 − χ−1
)

I J
. (9)

It is important to stress that the procedure outlined above is based 
on isolated perturbations; therefore, it requires the use of large su-
percells (whose size has to be increased until the convergence of 
U I and V I J is achieved) [10] that makes these calculations com-
putationally demanding and prone to accuracy issues due to their 
problematic convergence and their reliance on small energy differ-
ences.

DFPT offers a more efficient approach to linear-response calcu-
lations and allows us to largely reduce these issues [2,3]. Within 
the framework of DFPT, the response of the KS wavefunctions to 
a small perturbation of the atomic potential [that induces a vari-
ation of the atomic occupations defined in Eq. (7)] is obtained as 
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the self-consistent solution of the perturbative problem resulting 
from a first-order variation of the KS equations:

(
Ĥ◦

σ − ε◦
vkσ

) ∣∣∣dψvkσ

dλ J

〉
= −

(
dV̂ Hxc,σ

dλ J
− dεvkσ

dλ J
+ V̂ J

pert

)
|ψ◦

vkσ 〉 ,

(10)

where Ĥ◦
σ = Ĥ◦

DFT,σ + V̂ ◦
Hub,σ is the total Hamiltonian of DFT+U +V , 

where Ĥ◦
DFT,σ is the Hamiltonian of standard DFT, and V̂ ◦

Hub,σ is 
the corrective Hubbard potential defined in Eq. (5). ε◦

vkσ and ψ◦
vkσ

are the KS energies and wavefunctions of the unperturbed system 
in the DFT+U +V framework. V̂ J

pert = ∑
m P̂ J

mm is the perturbing po-

tential; dV̂ Hxc,σ

dλ J , dψvkσ

dλ J , and dεvkσ

dλ J are the response Hartree and xc 
(Hxc) potential, response KS wavefunctions, and response KS ener-
gies, respectively [2,3]. It is important to remark that the response 
of the Hubbard potential is not present in Eq. (10) so that the Hub-
bard parameters are obtained, consistently with their definition, as 
second derivatives of the DFT part only of the total energy [2]. The 
problem has to be solved self-consistently because the response 
of the KS eigenvalues and of the Hxc potential appearing on the 
right-hand side of Eq. (10) depend on the response of the KS wave-
functions, obtained from the solution of the perturbative problem 
in the equation above. Once convergence is achieved, the variation 
of the diagonal (with respect to atomic sites) atomic occupation 
matrices [that define the self-consistent susceptibility matrix in 
Eq. (7)] are obtained [71]:

dnIσ
m1m2

dλ J

=
Nk∑
k

Nocc∑
v

[〈
ψ◦

vkσ

∣∣∣ P̂ I
m2m1

∣∣∣dψvkσ

dλ J

〉
+

〈dψvkσ

dλ J

∣∣∣ P̂ I
m2m1

∣∣∣ψ◦
vkσ

〉]
.

(11)

The major advantage offered by the DFPT reformulation of LR-cDFT 
consists in the possibility to obtain the variation of atomic occu-
pations as a sum of wavevector-specific contributions that can be 
computed independently from one another (thus leading to bet-
ter scaling of the computational cost [2]) using the primitive unit 
cell of the system. In fact, the Fourier spectrum of a perturbation 
that has the periodicity of a supercell (as needed to eliminate the 
interactions with periodic replicas) only contains fundamental vec-
tors of its reciprocal lattice that map into a corresponding q points 
grid within the BZ corresponding to the primitive cell [2]. The total 
response of atomic occupations can thus be written as (see Eq. (42) 
in Ref. [2]):

dnslσ
m1m2

dλs′l′ = 1

Nq

Nq∑
q

eiq·(Rl−Rl′ ) �s′
q n̄s σ

m1m2
, (12)

where the atomic site indices I and J have been decomposed as 
I = (l, s) and J = (l′, s′) indicating, respectively, the cell the atom 
belongs to (l and l′) and its position within the cell (s and s′). Here, 
Nq is the number of q points in the first BZ (note that the dimen-
sion of the q points grid reflects directly that of the supercell it 
is the reciprocal-space image of). Hereafter, we use the over-bar 
to indicate lattice-periodic parts of the ground-state and response 
quantities. �s′

q n̄s σ
m1m2

represents the lattice-periodic response of 
the occupation matrix to a monochromatic perturbation with a 
wavevector q, and it can be linked to the lattice-periodic varia-
tions of the KS wavefunctions as follows [2]:

�s′
q n̄s σ

m1m2
= 1

Nk

Nk∑
k

Nocc∑
v

[〈
ū◦

vkσ

∣∣∣ ˆ̄P s
m2,m1,k,k+q

∣∣∣�s′
q ūvkσ

〉

+
〈
ū◦

vkσ

∣∣∣ ˆ̄P s
m1,m2,k,k+q

∣∣∣�s′
q ūvkσ

〉]
.

(13)

Here, ū◦
vkσ and �s′

q ūvkσ are the lattice-periodic parts of the un-
perturbed and linear-response monochromatic q component of the 
KS wavefunctions, respectively (see the appendices 1 and 3 of 
Ref. [2]). The lattice-periodic part of the projector on the Hubbard 
manifold, which appears in Eq. (13), reads [2]:

ˆ̄P s
m2,m1,k,k+q = |ϕ̄s

m2,k〉〈ϕ̄s
m1,k+q| . (14)

The two terms on the right-hand side of Eq. (13) were made look 
similar (except for the inversion in the order of indices m1 and m2) 
by the use of time-reversal symmetry. As was mentioned above, 
due to the linear character of the perturbative problem [Eq. (10)], 
the lattice-periodic components of the response KS wavefunctions 
at different q can be computed independently from one another as 
solutions of q-specific Sternheimer equations [2]:( ˆ̄H◦

k+q,σ + α ˆ̄Ok+q,σ − ε◦
vkσ

)
|�s′

q ūvkσ 〉
= − ˆ̄Pk+q,σ

(
�s′

q
ˆ̄V Hxc,σ + ˆ̄V s′

pert,k+q,k

)
|ū◦

vkσ 〉 ,

(15)

where the perturbing potential reads:

ˆ̄V s′
pert,k+q,k =

∑
m

ˆ̄P s′
m,m,k+q,k . (16)

The quantities ˆ̄H◦
k+q,σ and �s′

q
ˆ̄V Hxc,σ are, respectively, the lattice-

periodic parts of the unperturbed Hamiltonian Ĥ◦
σ (which contains 

the Hubbard corrective potential with on-site U and inter-site V ) 
and response Hxc potential for a specific q. The response Hxc po-

tential �s′
q

ˆ̄V Hxc,σ depends on the response spin charge density at 
the same q, �s′

q ρ̄σ (r), which in turn depends on �s′
q ūvkσ (r) (see 

Ref. [2] for more details). The operators ˆ̄Ok+q,σ and ˆ̄Pk+q,σ are 
the lattice-periodic parts of projectors on the valence and conduc-
tion manifolds, respectively [52,72]:

ˆ̄Ok+q,σ =
Nocc∑

v ′
|ū◦

v ′k+qσ 〉〈ū◦
v ′k+qσ | , (17)

and

ˆ̄Pk+q,σ = 1 −
Nocc∑

v ′
|ū◦

v ′k+qσ 〉〈ū◦
v ′k+qσ | . (18)

In Eq. (15), α = 2 (max[ε◦
vkσ ] − min[ε◦

vkσ ]), where max[ε◦
vkσ ] and 

min[ε◦
vkσ ] are the highest and the lowest energies of the occupied 

KS bands, respectively. The operator ˆ̄Ok+q,σ is inserted on the left-
hand side of Eq. (15) in order to avoid singularity issues during the 
iterative solution; at the same time the operator ˆ̄Pk+q,σ avoids 
very expensive sums over numerous empty states [52,2,3]. Note 
that due to the presence of the projector ˆ̄Pk+q,σ in Eq. (15) the 
derivative of the KS eigenvalues disappears from the right-hand 
side of Eq. (15) in comparison to Eq. (10) (see also Ref. [2]). The 
KS wavefunctions at k + q points, ū◦

v ′k+qσ (r), which are present in 
Eqs. (17) and (18) are obtained by solving non-self-consistently the 
KS equations and using the unperturbed ground-state spin charge 
density ρ̄◦

σ (r). All the operators in Eq. (15) appear with a spe-
cific q component as a result of recasting Eq. (10) in reciprocal 
space through the Bloch sums of all the quantities appearing in 
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there (this is discussed in detail in Ref. [2]). The potential terms 
appearing on the right-hand side of Eq. (15) represent the lattice-
periodic components of the corresponding potential variations at 
the indicated wavevector q. Once these equations are solved self-
consistently for all the wavevectors, Eqs. (12) and (13) are used to 
compute the susceptibility matrices using Eq. (7), from which the 
Hubbard interaction parameters are readily obtained as indicated 
in Eqs. (8) and (9).

2.4. Extensions of the DFPT formalism

The formalism presented above has been generalized in several 
ways: i) metallic ground states; ii) ultrasoft (US) PPs [73] and the 
PAW method [74]; and iii) explicit account of symmetry. A detailed 
discussion about the first two points can be found in Ref. [3].

Metallic ground states. The ground state of a given system com-
puted using standard DFT can be used as a starting point for the 
DFPT calculation of Hubbard parameters. However, in some sys-
tems standard DFT predicts a metallic ground state due to large 
self-interactions errors, while in reality the system is insulating. 
Therefore, the DFPT approach presented above must be generalized 
to be able to work on top of metallic ground states. For this rea-
son, an extension of the DFPT approach to metallic ground states 
has been developed and discussed in detail in Ref. [3]. It is based 
on the use of the smearing technique [75]. In metals, very dense 
k points sampling is needed to sample the Fermi surface, which 
is computationally very expensive. Thanks to the smearing of the 
Fermi surface it is possible to reduce greatly the number of k
points needed to describe electronic states around the Fermi level, 
which helps containing the computational cost; as a consequence, 
these states have partial occupancy (between 0 and 1). The DFPT 
approach can still have the same form as for non-metallic systems 
but the following modifications are required [3]: i) electronic states 
should be allowed to have a fractional occupancy which translates 
into weighted sums over k points and band indices, ii) the defini-

tion of the projector ˆ̄Pk+q,σ is generalized, and iii) the response 
occupation matrix �s′

q n̄s σ
m1m2

and the response spin charge density 
acquire an extra term proportional to the shift of the Fermi level 
when q = 0. The interested reader can find a detailed discussion in 
Ref. [3].

US PPs and PAW. In systems containing localized valence states 
(e.g., semicore states included in the valence region or atomic 
states of d or f kind in transition-metal and rare-earth com-
pounds), high kinetic energy cut-offs in the plane-wave expansion 
are needed if NC PPs are used. In this case, it is useful to replace 
NC PPs by US PPs or PAW which allow to reduce significantly 
the kinetic energy cut-off and thus lower the overall computa-
tional cost of the calculations. However, when US PPs or PAW are 
used augmentation terms are added in the expressions for the spin 
charge density to restore the correct normalization, and conse-
quently extra terms appear in the expressions for the local and Hxc 
potentials. In US and PAW formalisms, the standard KS equations 
must be replaced by generalized KS equations which contain the 
overlap operator Ŝ [73], and therefore also the first-order response 
KS equations are modified [3]. The unperturbed and response oc-
cupation matrices are also generalized, as well as the Hubbard 
potential, with the projector on the Hubbard manifold acquiring 
the Ŝ operator, as P̂ J I

m2m1 = Ŝ|ϕ J
m2 〉〈ϕ I

m1
| Ŝ . Detailed discussions are 

presented in Ref. [3].
Symmetry. The CPU time and memory requirements of the DFPT 

calculation can be significantly reduced by exploiting the symme-
try of the system. In fact, as explained in abundant literature (and 
specifically in Appendix A.4 of Ref. [56] for Quantum ESPRESSO) 
the use of symmetry allows to focus ground-state calculations only 
on a small portion of the regular k point grid used to sample 

the BZ (the so-called irreducible wedge of the BZ (IBZ)). Within 
DFPT, the use of symmetry is slightly more articulated due to 
the presence of perturbations. The response of a system (and the 
derivative of relevant quantities) is typically reconstructed from the 
response to a series of monochromatic perturbations that are com-
puted one by one. Since a finite wavelength perturbation (q �= 0) 
lowers the symmetry of the crystal, at each specific q point all 
the ground-state quantities that are needed in DFPT calculations 
(e.g., KS wavefunctions, Hamiltonian, and eigenvalues) must be re-
computed on an extended IBZ that is determined according to the 
so-called small group of q (i.e. the group of symmetries such that 
Sq q = ±q + G, where G is a reciprocal lattice vector). The same 
procedure needs to be repeated for each q point. Once DFPT calcu-
lations are completed for all the inequivalent points of the q-grid, 
and the response on the other q-points is reconstructed by sym-
metry, the total response is computed according to Eq. (12). Sym-
metry is thus important to reduce the workload of both DFT and 
DFPT calculations. The use of primitive unit cells, and the possibil-
ity to reduce the number of q-specific linear-response calculations 
thanks to symmetry contribute to make these calculations substan-
tially faster than supercell-based LR-cDFT which cannot escape the 
cubic scaling of DFT calculations with respect to the number of 
atoms.

3. Description of software components

The HP code is contained in a module of the Quantum 
ESPRESSO distribution [56–58], and it resides in a self-contained 
directory HP under the root directory of the Quantum ESPRESSO

tree. The HP code is tightly integrated in Quantum ESPRESSO, and 
it uses many routines from other modules, namely PW, Modules, 
and LR_Modules (see Ref. [58] for more details). In addition, HP
uses various domain-specific mathematical libraries of Quantum 
ESPRESSO, such as LAXlib (containing routines to perform linear-
algebra operations) and FFTXlib (containing routines to perform 
Fast Fourrier Transforms (FFT’s)). Basic linear-algebra operations 
(e.g. matrix-matrix and matrix-vector multiplications, scalar prod-
ucts, matrix inversions, etc.) are efficiently performed using BLAS 
and LAPACK libraries. In the following we discuss the workflow of 
the calculation of Hubbard parameters.

3.1. Ground-state calculation

In order to compute the Hubbard parameters for a given sys-
tem, a standard ground-state DFT [or DFT+U (+V ) with some initial 
guess of U (and V )] calculation has to be performed first, yield-
ing the lattice-periodic parts of the unperturbed KS wavefunctions 
ū◦

vkσ (r) and the KS energies ε◦
vkσ for all the occupied states, the 

ground-state spin charge density ρ̄◦
σ (r), and the occupation ma-

trix nIσ
m1m2

. The information thus obtained is then used as input for 
the linear-response calculation with the HP code. This ground-state 
calculation is performed using the PW code (pw.x executable), 
which is one of the key components of the Quantum ESPRESSO

distribution. In Appendix A sample input files for pw.x are shown 
(see the input samples 1 and 2). After the successful completion 
of the ground-state calculation, the pw.x code writes the ground-
state quantities mentioned above to disk, together with all the rel-
evant information about the system, including unit cell and atomic 
positions, pseudopotentials, energy cutoffs, k point grids, etc. This 
data is used by the HP code which reads it from file. Therefore, it 
is not necessary to redefine the system under study in the input 
file of hp.x.

3.2. Linear-response calculation

The linear-response calculation of Hubbard parameters (U in 
the DFT+U framework, or U and V in the DFT+U +V framework) 
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is done using the HP code (hp.x executable). A list of all input 
variables of hp.x is given in Table B.3 of Appendix B, and a sample 
input file for hp.x is given in Appendix A (see the input sample 
3). The total number of linear-response calculations that have to 
be performed is Npert Nq , where Npert is the number of Hubbard 
atoms in the primitive unit cell that have to be perturbed, and Nq
is the number of points in the q grid.

The size of the response matrices χ and χ0 is Nsc
H × Nsc

H , where 
Nsc

H = NHNq , and NH is the total number of Hubbard atoms in 
the primitive unit cell [2]. Each column of the response matri-
ces corresponds to the perturbation of a specific Hubbard atom 
of the primitive unit cell with a specific q. It is possible to reduce 
the number of linear-response calculations by perturbing only in-
equivalent Hubbard atoms in the primitive unit cell. The HP code 
contains the implementation of several algorithms which find in-
equivalent Hubbard atoms (i.e. Npert); this is controlled by the 
keyword find_atpert which is described in Table B.3. The de-
fault algorithm for finding inequivalent (i.e., to be perturbed sep-
arately) Hubbard atoms is based on the comparison of the traces 
of unperturbed atomic occupation matrices, Tr[nIσ

m1m2
], which rep-

resent the Löwdin estimate of the number of electrons residing 
on the Hubbard manifold of a given Hubbard atom I . The calcula-
tion of the response to the perturbation of inequivalent Hubbard 
atoms are independent from each other, and hence it is possible 
to efficiently parallelize these calculations by performing them on 
different nodes/machines (see Sec. 4.2).

The linear-response calculation for each perturbed Hubbard 
atom requires solving Nq independent q-specific Sternheimer 
equations (15). Nq is the number of points in the q point grid, Nq
= nq1 × nq2 × nq3. The strength of DFPT (see Sec. 2.3) resides 
in the fact that linear-response calculations at each q point are 
independent from other q points (in linear regime there is no cou-
pling between perturbations at different wavelengths), and hence 
it is possible to parallelize calculations over q points as well (see 
Sec. 4.2). When the self-consistency of each q-specific Sternheimer 
equation has been reached, the q-specific response occupations 
matrices �s′

q n̄s σ
m1m2

are computed using Eq. (13). Then, all the re-
sponses are summed up using Eq. (12), thus giving one column 
of the self-consistent response matrix χ (see Eq. (7)). One col-
umn of the bare response matrix χ0 is computed in a similar way, 
however the sum of responses using Eq. (12) is computed after the 
first iteration in the self-consistent cycle of Eq. (15), i.e. before that 
the response of the Hxc potential (i.e. �s′

q
ˆ̄V Hxc,σ ) builds up. Other 

columns of the response matrices χ and χ0 are obtained from the 
perturbation of other inequivalent Hubbard atoms.

The Sternheimer equations (15) are solved iteratively and self-
consistently using the conjugate-gradient method [52,56], and us-
ing the standard linear-response machinery of Quantum ESPRESSO

[57,58]. In order to speed up the convergence of the iterative solu-
tion, the scheme of Ref. [76] is used for mixing the response Hxc 
potential �s′

q
ˆ̄V Hxc,σ [2]. Table B.3 describes the parameters that 

control the convergence of the Sternheimer equations and of the 
response matrices χ and χ0.

The final step of the HP calculation is the postprocessing calcu-
lation of the Hubbard parameters using Eqs. (8) and (9). This step 
is computationally inexpensive (negligible compared to the linear-
response calculation). In this final phase, the missing columns of 
the response matrices χ and χ0 are reconstructed from the avail-
able data (i.e. columns which were computed explicitly, as dis-
cussed above) exploiting the symmetry of the system. This is done 
by comparing the inter-atomic distances, atomic types, and the ori-
entation of spin (up or down). Once the full matrices χ and χ0

have been reconstructed, they are inverted to compute the inter-
action matrix as showed in Eqs. (8) and (9).

4. Software installation, parallelization, and testing

4.1. Installation instructions

The HP program is distributed as source code, like the other 
components of the Quantum ESPRESSO distribution. Version con-
trol is handled using Git and the code is hosted on the GitLab 
platform [77]. The installation procedure of HP is the same as 
for all other modules of the distribution. Quantum ESPRESSO (in-
cluding HP) makes use of GNU autoconf [78]. The HP repository, 
which contains the source HP code, is residing within the Quan-

tum ESPRESSO tree. The code is compiled with the following com-
mands from within the Quantum ESPRESSO tree:

./configure
make pw
make hp

Alternatively, it is possible to use cmake [79] instead of ./con-
figure. Here, the first step sets up the environment (compil-
ers, libraries, etc.), the second step compiles the PW code (pw.x), 
and in the third step, the HP code (hp.x) is compiled. Links to 
all these executables are created in the bin/ directory of the
Quantum ESPRESSO tree. More detailed instructions on the in-
stallation can be found in the documentation that comes with 
the distribution. If problems are encountered during the instal-
lation or the use of HP (or of any other code in the Quantum 
ESPRESSO distribution) users can also take advantage of the Quan-

tum ESPRESSO users forum [80] by posting specific questions about 
their difficulties. Users intending to make quick tests with HP 
or to use it for demonstrative or teaching purposes [81] could 
consider the Quantum Mobile [82] - a virtual machine that has
Quantum ESPRESSO pre-installed along with several other codes 
for quantum-mechanical materials simulations. Quantum Mobile 
can be easily installed on laptops and desktops and its use avoids 
any issues related to the installation of the Quantum ESPRESSO

package. Of course, the Quantum Mobile is not recommended for 
production runs; an optimized installation of Quantum ESPRESSO

on workstations and high-performance computers should instead 
be preferred for these purposes.

4.2. Parallelization of the code

Like the other components of Quantum ESPRESSO, the HP code 
is optimized to run on a variety of different platforms, from lap-
tops to massively parallel architectures. The parallelization of the
HP code is achieved by using the message-passing paradigm and 
calls to standard Message Passing Interface (MPI) libraries [83]. 
High performance on massively parallel architectures is achieved 
by distributing both data and computations in a hierarchical way 
across processors. The FFT’s, which are used for transformations 
from real space to reciprocal space and vice versa, are also effi-
ciently parallelized among processors [56]. The HP code supports 
four levels of parallelization:

1. The parallelization over perturbed Hubbard atoms, which 
is implemented by distributing independent linear-response 
atom-specific calculations (each having a grid of q points) 
across the processors, each taking care of one atom-specific 
perturbation. This parallelization is controlled by setting the 
input parameter perturb_only_atom(i) to .true.,
which specifies that the Hubbard atom with the index i will 
be perturbed in the current run;

2. The q points parallelization, which is implemented by dis-
tributing independent linear-response q-specific calculations 
of an atom-specific perturbation across the processors, each 
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Fig. 1. Schematic illustration of different parallelization levels of the HP code. Nk and Nq are the number of k and q points, respectively, Npool is the number of k points 
pools, NPW is the number of plane waves (PWs) in the basis, and Ipert is the index of the perturbed Hubbard atom. The meaning of the keywords perturb_only_atom,
start_q, and last_q is explained in Table B.3. Note, the specific parallelization over the k and q points is shown just for demonstration purposes, but in practice the total 
number of k and q can be split in many different ways, i.e. different number of k point pools Npool and different parallelization over q points (depending on the availability 
of computational resources).

taking care of one or more q points. This parallelization is 
controlled using the input parameters start_q and last_q
which specify the index of the starting and final q points from 
the list of all q points that have to be considered in the cur-
rent pool of q points;

3. The k points parallelization, which is implemented by dividing 
all processors into pools, each taking care of one or more k
points;

4. The plane-wave parallelization, which is implemented by dis-
tributing real- and reciprocal-space grids across the processors.

Fig. 1 shows the hierarchy of the parallelization levels of the HP
code. First, the calculation can be parallelized over the Hubbard 
atoms that must be perturbed (see perturb_only_atom); sec-
ond, for each perturbed Hubbard atom the calculation can be par-
allelized over q points (see start_q and last_q); third, for each 
q point (or a subset of q points) the linear-response calculation 
can be parallelized over the k points (by choosing an appropri-
ate number of k point pools Npool); and, last, within each k point 
pool all available CPUs are used to parallelize the calculation over 
plane waves (G points). If the system under study is quite small 
(say, a handful of atoms) and it can be run on a local workstation 
(with e.g. 8-16 cores), then it is convenient to skip the paralleliza-
tion over perturbed Hubbard atoms and over q points, and use the 
parallelization over the k points (which can also be skipped) and 
use (only) the parallelization over plane waves. If the calculations 
are run on HPC clusters with many nodes, then it is highly rec-
ommended to use all aforementioned levels of parallelization in 
order to utilize the computational resources in the most effective 
way. Moreover, on HPCs it is recommended to avoid that the same 
compute node is split between k pools or groups of q points or 
perturbed atoms (due to the slow inter-node communications). Fi-
nally, we note that at present these levels of parallelization have 
to be chosen by the user manually.

4.3. Testing of the code

The HP code implements DFPT which is complex from the pro-
gramming point of view, and hence it is crucial to have a test 
suite to ensure that the new developments do not break existing 
functionalities of the code – its availability facilitates maintenance 
of the code and ensures its long-term stability. As other compo-

nents of Quantum ESPRESSO, the HP code relies on the test suite 
that is based on the testcode.py [84]: this provides the func-
tionality to run tests automatically (nightly) and compare selected 
quantities (Hubbard parameters) parsed from the output files gen-
erated by HP against reference values. The HP code is run both 
in serial and in parallel, using various combinations of commonly 
used compilers [Intel Fortran compilers (ifort), GNU Fotran com-
pilers (GFortran), etc.] and libraries (Intel MPI, Open MPI, etc.), 
which ensures that the code function correctly on various high-
performance computer (HPC) architectures and in different envi-
ronments. Whenever new features are added to the HP code, the 
corresponding tests must be added to the test suite by the devel-
opers in order to guaranty the robustness of these features in the 
long term.

5. Benchmarking

We now showcase how to use the HP code for computing the 
Hubbard U for the Fe(3d) and Mn(3d) states and Hubbard V for 
Fe(3d)–O(2p) and Mn(3d)–O(2p) in LixMn1/2Fe1/2PO4 at x = 0, 
1/2, and 1. We recall that the validation of the DFPT implementa-
tion versus the finite-difference supercell approach of Refs. [10,13]
was already done in our previous works [2,3]. After computing U
and V self-consistently, we present the results for this material ob-
tained in the framework of DFT+U and DFT+U +V .

5.1. Technical details

All calculations were performed using the plane-wave
(PW) pseudopotential method as implemented in the Quantum 
ESPRESSO distribution [56–58]. We have used the xc
functional constructed using spin-polarized GGA with the
PBEsol prescription [85]. The PPs were taken from the SSSP li-
brary v1.1 (efficiency) [86,87], which are either US or PAW:
For manganese we have used mn_pbesol_v1.5.uspp.F.UPF
from the GBRV v1.5 library [88], for iron and
oxygen Fe.pbesol-spn-kjpaw_psl.0.2.1.UPF and
O.pbesol-n-kjpaw_psl.0.1.UPF from the Pslibrary v0.3.1 
[89], for phosphorus P.pbesol-n-rrkjus_psl.1.0.0.UPF
from the Pslibrary v1.0.0 [90], and for lithium
li_pbesol_v1.4.uspp.F.UPF from the GBRV v1.4 library 
[88]. To construct the Hubbard projector functions ϕ I

m(r) [see 
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Fig. 2. Crystal structure of the phospho-olivine LiMn1/2Fe1/2PO4. Fe atoms are in-
dicated in blue, Mn atoms in purple, O atoms in red, Li atoms in green, and P 
atoms in yellow. Black vertical arrows indicate the orientation of spin. Rendered us-
ing VESTA [94].

Eq. (4)] we have used atomic orbitals which are orthogonalized us-
ing Löwdin’s method [69,70]. Structural optimizations using DFT+U
and DFT+U +V were performed using orthogonalized atomic or-
bitals as described in detail in Ref. [18]. KS wavefunctions and 
potentials were expanded in PWs up to a kinetic-energy cutoff 
of 90 and 1080 Ry, respectively, and the BZ was sampled us-
ing the uniform �-centered k point mesh of size 5 × 8 × 9, for 
structural optimization. The crystal structure was optimized us-
ing the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [91], 
with a convergence threshold of 10−6 Ry for the total energy, 
10−5 Ry/Bohr for forces, and 0.5 Kbar for pressure. For the metal-
lic ground states we have used the Marzari-Vanderbilt smearing 
method [53] with a broadening parameter of 0.02 Ry.

The DFPT calculations of Hubbard parameters were performed 
using the uniform �-centered k and q point meshes of size 
3 × 4 × 5 and 1 × 2 × 3, respectively, which give an accuracy of 
0.01 eV for the computed values of U and V . These k and q
point meshes were determined by performing convergence tests 
as described in detail in Ref. [2]. The KS wavefunctions and po-
tentials were expanded in PWs up to a kinetic-energy cutoff of 
65 and 780 Ry, respectively, for calculation of Hubbard parame-
ters. The linear-response KS equations of DFPT were solved using 
the conjugate-gradient algorithm [92] and the mixing scheme of 
Ref. [76] for the response potential to speed up convergence.

Bulk Li was modeled at the DFT-PBEsol level using the bcc unit 
cell with one Li atom at the origin. The optimized lattice parameter 
is 3.436 Å. The BZ was sampled using the uniform �-centered k
point mesh of size 10 × 10 × 10, and we have used the Marzari-
Vanderbilt smearing method [53] with a broadening parameter of 
0.02 Ry. The KS wavefunctions and potentials were expanded in 
PWs up to a kinetic-energy cutoff of 65 and 780 Ry, respectively.

The phospho-olivine LixMn1/2Fe1/2PO4 has an orthorhombic 
crystal structure at x = 0 and x = 1 with a Pnma space group [93]. 
The unit cell contains four formula units, i.e. 24 atoms in the case 
of x = 0 and 28 atoms in the case of x = 1. The crystal structure at 
x = 1 is shown in Fig. 2. The transition-metal (TM) atoms (labeled 
as M) are coordinated by six O atoms forming a MO6 octahedron 
of which it occupies the center. The P atoms are instead at the 
center of PO4 tetrahedra that they form with neighboring oxygens. 
The three-dimensional structure of the crystal can be understood 
as being based on a network of corner-sharing MO6 octahedra fur-
ther linked by “interstitial” PO4 tetrahedra that act as structural 
reinforcer [avoiding excessive volume variations upon Li (de-)inter-
calation] and chemical stabilizers (useful to avoid oxygen escapes). 
Li ions reside within octahedral channels along the intermediate-
length side of the cell. The phospho-olivines are known to show 

an antiferromagnetic behavior below their transition temperatures. 
In the previous study (Ref. [14]) it was shown that different an-
tiferromagnetic arrangements of spins result in total energies that 
differ not more than by ∼ 20 meV at the DFT+U +V level of theory. 
Here we use the magnetic configuration that minimizes the total 
energy (labeled “AF1” in Ref. [14]), and it is depicted in Fig. 2. Fi-
nally, there are several configurations for arranging two Mn and 
two Fe atoms in the unit cell of LixMn1/2Fe1/2PO4. Our goal here 
is not to investigate all configurations but rather to choose one as 
a representative case for comparing results obtained using differ-
ent levels of theory. To this end, we choose to arrange Mn and Fe 
atoms such that two Mn atoms are antiferromagnetically coupled 
to each other and same for Fe atoms, as shown in Fig. 2.

The data used to produce the results of this work are available 
in the Materials Cloud Archive [95].

5.2. Ground-state calculation

In order to compute the Hubbard parameteres, independently 
from the specific functional adopted (DFT, DFT+U , or DFT+U +V ), 
the first step is the ground-state calculation using the PW code. 
Since we are interested in a self-consistent calculation of Hub-
bard parameters [3], in Appendix A we show the input samples 
for DFT+U (input sample 1) and DFT+U +V (input sample 2) al-
ready with the converged values of U and V . If one wants to start 
from the DFT ground-state, then the values of U for Fe(3d) and 
Mn(3d) states have to be initialized to some small numbers (e.g. 
10−10 eV) for the sake of activating the Hubbard-related machin-
ery (in the DFT+U +V case, there is no need to initialize V , instead 
initialize U for O(2p)).

The input files for the PW code contain the standard input pa-
rameters that will not be described here (the interested reader is 
invited to check the documentation of the PW code [96]). Instead, 
we focus on the initialization of the Hubbard-related input param-
eters. Since Quantum ESPRESSO v7.1, the input syntax for Hubbard-
corrected DFT has changed to make it more user-friendly. More 
specifically, there is a new input card called “HUBBARD”, where 
Hubbard-related data has to be specified. In particular, one has 
to specify the type of Hubbard projectors. Currently, in Quantum 
ESPRESSO there are two most popular types of Hubbard projec-
tors, namely “atomic” that corresponds to the nonorthogonalzied 
atomic orbitals and “ortho-atomic” that corresponds to the Löwdin 
orthogonalized atomic orbitals (see Sec. 2.2). Here we use the sec-
ond option, thus in the input file we specify “HUBBARD {ortho-
atomic}”. Next, one has to specify the Hubbard manifolds, the val-
ues of the Hubbard parameters, and the indices of neighbors I and 
J between which V is applied in the case of DFT+U +V . On the one 
hand, in the case of DFT+U (see the input sample 1 in Appendix A) 
we specify that we want to apply the Hubbard U correction to Fe1, 
Fe2, Mn1, and Mn2, so we write a letter U on each input line in-
side the “HUBBARD” card. For each of the Hubbard atomic types 
we specify the Hubbard manifold which is 3d, hence we indicate 
it as Fe1-3d, Fe2-3d, Mn1-3d, and Mn2-3d. Finally, we specify 
the corresponding values of the Hubbard U parameters on each in-
put line: for Fe1(3d) and Fe2(3d) states we have exactly the same 
value of 4.97 eV, while for Mn1(3d) and Mn2(3d) we have 4.32 eV. 
These values were computed self-consistently using the HP code 
(see below). It is important to remark that Fe1 and Fe2 are crys-
tallographically equivalent, and same for Mn1 and Mn2, and they 
differ only by the orientation of spin (this is why we have defined 
sublattices with different indices). That is why the values of Hub-
bard U parameters are the same for the same TM elements. On the 
other hand, in the case of DFT+U +V we need to specify both Hub-
bard U and V . The syntax for setting up Hubbard U is the same 
as in the DFT+U case. To specify Hubbard V , we need to indicate a 
letter V and then to indicate what is the couple of neighbors that 
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we want to consider. For example, in the input sample 2 in Ap-
pendix A we specify the pair Fe1-3d and O-2p, and similarly for 
other nearest neighbors for each TM element. However, this is not 
all and we need to specify the indices I and J to say specifically 
to which atoms we are referring. Since Quantum ESPRESSO uses 
periodic boundary conditions, our real simulation cell is virtually 
replicated in all three Cartesian directions (positive and negative 
directions) and periodic replicas of atoms are generated (so we 
end up with a virtual 3 × 3 × 3 supercell). It is important to stress 
that in practice we still work with the unit cell while the virtual 
3 × 3 × 3 supercell is only generated internally in the code just 
for the sake of determining the indices I and J of the neighboring 
atoms. This virtual supercell should not be confused with any of 
the real supercells that are used in the LR-cDFT approach to con-
verge the computed Hubbard parameters. A priori the user is not 
supposed to specify these indices, instead, these indices and the 
values of Hubbard parameters are obtained as an output of the
HP calculation. In the input sample 2 in Appendix A we can see 
that for each TM element we have specified six nearest neighbors 
because of the octahedral coordination; from our experience, set-
ting six nearest neighbors is sufficient in the vast majority of cases. 
However, technically there is no restriction to include even further 
neighbors, but care must be taken in converging accurately the val-
ues of V .

In the case of magnetic insulators (which is the case here), 
the ground-state calculation must be performed using a two-
step procedure. First step, we need to perform a self-consistent-
field (SCF) DFT+U or DFT+U +V calculation as indicated in Ap-
pendix A by treating the system as a fake metal by using some 
smearing function (occupations = ‘smearing’, smearing 
= ‘mv’, and degauss = 0.01 in the system namelist). This 
is needed technically in order to allow for fractional occupa-
tions in the spin-polarized calculation (nspin = 2 in the sys-
tem namelist) by setting some nonzero starting magnetization to 
each TM element (see starting_magnetization). If we pro-
ceed directly to the HP calculation immediately after this first 
step there will be a problem because the density of states at the 
Fermi level is very small and there will be a diverging “metal-
lic term” (see Eq. (79) in Ref. [52]). Therefore, we need to per-
form a second SCF calculation by restarting from the wavefunc-
tions and spin charge density/potential of the first SCF calcula-
tion (by adding startingwfc = ‘file’ and startingpot 
= ‘file’ in the electrons namelist), by setting occupations 
to be fixed (occupations = ‘fixed’), and by setting a total 
magnetization to be equal to the one determined in the first SCF 
calculation (tot_magnetization = 0.00 in this case in the
electrons namelist). After this second SCF calculation we obtain 
a converged ground state for a magnetic insulator, which allows us 
to proceed to computing Hubbard parameters using DFPT as im-
plemented in the HP code.

5.3. Hubbard parameters

In this section we discuss how to compute Hubbard parame-
ters using the HP code starting from the data generated from the 
ground-state calculation (see Sec. 5.2). The input file for the linear-
response calculation is quite simple and is shown in Appendix A
(see the input sample 3). First of all, one has to specify prefix = 
‘olivine’ and outdir=’./’, which are the prefix and output 
directory that must be exactly the same as in the input samples 1 
or 2 (this is needed for reading the ground-state data). Second, 
the q point grid must be set: in this case we use the grid of size 
1 ×2 ×3 and we specify it as nq1 = 1, nq2 = 2, and nq3 = 3. 
The values of the Hubbard parameters computed using DFPT must 
be converged with respect to the size of the q point grid [2]; this 
is equivalent to converging Hubbard parameters with respect to 

the size of the (real) supercell when using the LR-cDFT approach 
of Ref. [10]. In principle, this should be enough in the majority of 
cases because the default values for other input parameters will 
be used. For the case of the phospho-olivine LixMn1/2Fe1/2PO4
we have changed somewhat other two input parameters com-
pared to the default values. Namely, we set conv_thr_chi =
1.0d-7 eV−1 which is the convergence threshold for the self-
consistent response matrix (χ)I J [see Eq. (7)] during the itera-
tive solution of the Sternheimer equation (15), and dist_thr = 
5.D-3 Bohr which is the threshold for comparing inter-atomic 
distances when reconstructing the missing elements of the re-
sponse susceptibility matrices (χ)I J and (χ0)I J in the post-
processing step.

It is useful to comment on the different options available to 
make the HP code determine which Hubbard atoms must be per-
turbed. This is controlled by the input parameter find_atpert
(meaning “find atoms to perturb”). The default value (which is also 
used in this work) is find_atpert=1: it checks the ground-state 
atomic occupations, Tr[nIσ

m1m2
], and compares them for different 

Hubbard atoms. If the differences between the atomic occupations 
of Hubbard atoms of the same type are smaller than the threshold
docc_thr (whose default value is 5 × 10−5) then these Hubbard 
atoms are considered to be crystallographically equivalent (even 
if the magnetic moments have opposite sign). By applying this 
check the Hubbard atoms are classified according to their occu-
pations and one atom per class is then perturbed. This option is 
the default one because it is general and it works well in most 
cases (regardless the number of symmetries that the system fea-
tures). A second option is find_atpert=2: the code perturbs 
one Hubbard atom per type. It is important to stress that when 
using this option, Hubbard atoms of the same type will be always 
treated as equivalent (for the purpose of calculating the Hubbard 
parameters) even if they are crystallographically inequivalent or 
show different atomic occupations. This could lead to inaccuracies 
if not used properly. This option is useful when the user wants 
to distinguish Hubbard atoms that might accidentally assume the 
same occupation (see previous option). Option find_atpert=3 
corresponds to determining Hubbard atom perturbation classes 
based on the symmetries of the system. This option, mostly useful 
when the system is highly symmetric, serves to distinguish Hub-
bard atoms that accidentally show the same atomic occupation. 
Finally, find_atpert=4 corresponds to perturbing separately all 
the Hubbard atoms in the unit cell (i.e., assuming they are all 
inequivalent), which is obviously the most computationally expen-
sive case. All these options of find_atpert provide a signifi-
cant flexibility in determining which Hubbard atoms should be 
perturbed in a system of interest. In general, however, it is rec-
ommended to start with the default option find_atpert=1. By 
applying this procedure to LiMn1/2Fe1/2PO4, 8 Hubbard atoms are 
perturbed in total within DFT+U +V : Fe1 (#1), Mn1 (#3), and 6 
oxygen atoms (#5, #6, #9, #10, #13, #15) - see the numbering of 
atoms in the ATOMIC_POSITIONS card in Appendix A. As can be 
seen, within DFT+U +V when we compute the Hubbard parameters 
using DFPT we perturb also O atoms - this is needed in order to 
determine the inter-site Hubbard V parameters. However, we do 
not report and do not use Hubbard U for O atoms.

The resulting Hubbard parameters in the DFT+U and DFT+U +V
frameworks are shown in Table 1. It is interesting to observe how 
the values of Hubbard parameters change upon the lithiation of 
the material. In the DFT+U case we can see that when going from 
x = 0 to x = 1/2 the U value for Fe(3d) states is only slightly 
increased (by 0.13 eV), while the U value for Mn(3d) states de-
creased significantly (by 1.66 eV). This means that the extra two 
electrons went to two Mn atoms and hence the corresponding U
values dropped substantially. When further going from x = 1/2
to x = 1 we see that the U value for Fe has now decreased (by 
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Table 1
Self-consistent Hubbard parameters (HP) in eV computed using DFPT in the DFT+U and DFT+U +V frameworks for Fe(3d) and Mn(3d) states in LixMn1/2Fe1/2PO4 for x = 0, 
1/2, and 1. This is the case study presented also in Ref. [48].

Method x HP Fe1 Fe2 Mn1 Mn2

DFT+U
0 U 5.01 5.01 6.23 6.23
1/2 U 5.14 5.14 4.57 4.57
1 U 4.97 4.97 4.32 4.32

DFT+U +V

0
U 5.43 5.43 6.27 6.27
V 0.60-1.12 0.60-1.12 0.55-1.05 0.55-1.05

1/2
U 5.44 5.44 4.81 4.81
V 0.54-1.06 0.54-1.06 0.28-0.91 0.28-0.91

1
U 5.28 5.28 4.58 4.58
V 0.41-0.89 0.41-0.89 0.42-0.80 0.42-0.80

0.17 eV), while U for Mn has further decreased (by 0.25 eV). Such 
a nonmonotonic behavior of U for Fe upon the lithiation is quite 
confusing, while for Mn we observe a systematic decrease with x. 
As will be shown in the following, this is a consequence of the 
fact that DFT+U does not take into account the inter-site Hubbard 
interactions that are very important for materials with covalent 
bonding.

In the DFT+U +V case we take into account the inter-site Hub-
bard interactions hence we can see more clear trends in Table 1. 
More specifically, when going from x = 0 to x = 1/2 the U value 
for Fe(3d) states stays essentially constant, while the U value for 
Mn(3d) states decreases (by 1.46 eV). This clearly shows that the 
extra two electrons went to two Mn atoms, while Fe atoms re-
main unaffected. When further going from x = 1/2 to x = 1 the U
value for Fe(3d) states decreased (by 0.16 eV), but also the U value 
for Mn(3d) states decreased (by 0.23 eV, which is much smaller 
than when going from x = 0 to x = 1/2). This means that the extra 
two electrons now went mainly to Fe atoms. The relatively small 
change in U for Mn(3d) states seems to indicate that these states 
are very active chemically and hence they are very sensitive to 
changes in the chemical environment around them. In addition, 
it is important to remark that these are self-consistent values of 
Hubbard parameters, i.e. a structural optimization is performed for 
each concentration of x [3]. This might explain in part while the U
values for Mn(3d) states still change when going from x = 1/2 to 
x = 1. The overall decrease in the U values for Fe and Mn can be 
explained by the fact that the 3d manifolds of TM ions acquire an 
extra electron due to the insertion of Li; the more electrons there 
are in the Hubbard manifold, the weaker is the screened Coulomb 
interaction between them, and hence the U value is smaller. Re-
garding the Hubbard V , in Table 1 we show the range of obtained 
values for different couples Fe(3d)-O(2p) and Mn(3d)-O(2p). The 
intersite Hubbard V also decreases on average when going from 
x = 0 to x = 1. This latter observation is justified by the fact 
that the Li insertion leads to an increase of the cell volume and 
of the Mn–O bond lengths; the larger the bond lengths between 
two atoms, the smaller is the intersite Hubbard V interaction.

5.4. Accurate geometry and energetics from DFT+U +V

Using the self-consistent Hubbard parameters presented in 
Sec. 5.3, various ground-state properties of the phospho-olivine 
LixMn1/2Fe1/2PO4 can be computed, such as lattice parameters, 
electronic structure, atomic occupations, magnetic moments, Li in-
tercalation voltages, and others. The reader is invited to check 
Ref. [48] where all these properties are discussed in great detail 
for several phospho-olivines including LixMn1/2Fe1/2PO4. Here, for 
the sake of demonstration purposes only, we highlight briefly the 
accuracy of predictions of lattice parameters and Li intercalation 
voltages.

To the best of our knowledge, the experimental lattice param-
eters and volume for LixMn1/2Fe1/2PO4 are available only at x =

Table 2
The equilibrium lattice parameters (LP) a, b, and c (in Å) and the volume V (in Å3) 
of LiMn1/2Fe1/2PO4 computed using DFT, DFT+U , and DFT+U +V with self-consistent 
U and V (see Table 1). The experimental data is from Ref. [93]. This is the case 
study presented also in Ref. [48].

LP DFT DFT+U DFT+U +V Expt.

a 10.30 10.41 10.40 10.38
b 6.02 6.05 6.05 6.04
c 4.70 4.72 4.72 4.71
V 291.46 297.47 297.07 296.00

Fig. 3. Voltages vs. Li/Li+ (in V) for LixMn1/2Fe1/2PO4 for 0 < x < 1/2 and 1/2 < x <
1 computed using DFT, DFT+U , and DFT+U +V with self-consistent U and V deter-
mined from first-principles (see Table 1). The experimental data is from Ref. [93]. 
This is the case study presented also in Ref. [48].

1 [93]. Hence in Table 2 we show the optimized lattice parameters 
and the experimental one at x = 1. It can be seen that DFT under-
estimates the lattice parameters and the cell volume while both 
DFT+U and DFT+U +V slightly overestimate them, with DFT+U +V
marginally overcoming DFT+U in terms of accuracy. The effect of V
on the crystal structure of this material is very small though. This 
trend is consistent with the one we found for LiMnPO4 in Ref. [3]. 
Hence, overall we find that DFT+U +V gives the closest agreement 
with the experimental lattice parameters at x = 1. In Ref. [48] the 
optimized lattice parameters are presented also for other values 
of x.

The Li intercalation voltages for LixMn1/2Fe1/2PO4 are shown 
in Fig. 3. A detailed discussion on how these voltages were com-
puted can be found in Ref. [48]. Experimentally it is known that 
in Li-ion batteries with this material as a cathode there are two 
plateaus, with 4.1 V for 0 < x < 1/2 and 3.5 V for 1/2 < x < 1 [93]. 
The former corresponds to the average voltage of LixMnPO4, while 
the latter corresponds to the average voltage of LixFePO4. Indeed, 
when intercalating Li and changing its concentration from x = 0 to 
x = 1/2, Mn ions are first to react while Fe ions remain unchanged, 
hence the voltage corresponds to the pristine material LixMnPO4. 
When further increasing the concentration of Li from x = 1/2 to 
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x = 1, now Fe ions react while Mn remain unchanged and hence 
the voltage corresponds to the pristine material LixFePO4. As can 
be seen, DFT largely underestimates the voltages, while DFT+U
overestimates them. DFT+U +V gives the best agreement with the 
experimental voltages, which means that applying the on-site U
correction alone is not sufficient and it is important to include 
also the inter-site V correction to take properly into account the 
interactions of 3d electrons of TM ions with the 2p electrons of 
ligands. It is instructive to compare the accuracy of the DFT+U +V
voltages with the ones obtained when using HSE06. As reported 
in Ref. [48], the HSE06 voltages (computed using the DFT+U +V
optimized geometry) are 4.34 and 4.03 V for 0 < x < 1/2 and 
1/2 < x < 1, respectively. Therefore, we find that DFT+U +V out-
performs even HSE06 in terms of accuracy for predicting cathode 
voltages in this class of materials. Thus, DFT+U +V provides the 
most accurate and reliable framework for predicting voltages in 
phospho-olivines [14,48], and currently we are investigating the 
predictive accuracy of this approach for other types of cathode ma-
terials.

6. Conclusions

We have presented the HP code that implements DFPT for 
the calculation of the Hubbard parameters. DFPT allows to reduce 
significantly the computational costs and to improve the numer-
ical accuracy of the Hubbard parameters by recasting the linear 
response to a localized perturbation into an array of monochro-
matic perturbations that can be calculated in the primitive cell 
independently of one another. Moreover, the calculation of empty 
electronic states is avoided [52] which greatly speeds up linear-
response calculations of U and V . The HP code is one of the 
core components of the Quantum ESPRESSO distribution. It has 
multiple levels of parallelization which allows efficient usage of 
high-performance computers. Moreover, due to the high level of 
automation, HP can be readily used for high-throughput calcula-
tions e.g. using AiiDA [97,98].

The effectiveness of the code has been demonstrated by com-
puting the Hubbard parameters self-consistently for the phospho-
olivine LixMn1/2Fe1/2PO4 at x = 0, 1/2, and 1. It has been shown 
that the Hubbard parameters change upon changes of x which 
means that U and V should be recomputed at each Li concen-
tration and not treated as global x-independent parameters. The 
predicted crystal geometry and intercalation voltages are in very 

good agreement with the experimental data, thus validating this 
statement.

In the same spirit as the Quantum ESPRESSO project, HP pro-
vides scientists worldwide with a well documented and open-
source framework for implementing their ideas. It is in our best 
hope that HP can benefit from the already well established users 
community of Quantum ESPRESSO for incorporating new ideas and 
keep growing in the future. The HP code is hosted in a com-
munity accessible Git repository [77] and hence, apart from the 
releases of Quantum ESPRESSO [96], researchers who are willing 
to test the latest experimental implementations are welcome to 
do so and to contribute with their feedback. Finally, the HP code 
can be extended so as to employ various new features, in partic-
ular: (maximally-localized) Wannier functions as the projectors of 
the Hubbard manifold [99]; calculation of Hubbard parameters on 
top of meta-GGA functionals (e.g. SCAN [100]); extension to multi-
channel and noncollinear spin-polarized frameworks; ability to be 
run on novel GPU-enabled architectures, to name a few. These are 
some of the topics of future investigations of the HP developers.
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Appendix A. Sample input files

Input sample 1: DFT+U calculation using pw.x

&control
calculation = ’scf’, prefix = ’olivine’, pseudo_dir = ’./’, outdir = ’./’

/
&system

ibrav = 8, celldm(1) = 19.667, celldm(2) = 0.582, celldm(3) = 0.454,
nat = 28, ntyp = 7, nspin = 2, ecutwfc = 65.0, ecutrho = 780.0,
occupations = ’smearing’, smearing = ’mv’, degauss = 0.01,
starting_magnetization(1) = 0.5, starting_magnetization(2) = -0.5,
starting_magnetization(3) = 0.5, starting_magnetization(4) = -0.5

/
&electrons

conv_thr = 1.0d-10, mixing_mode = ’local-TF’
/
ATOMIC_SPECIES
Fe1 55.845 Fe.pbesol-spn-kjpaw_psl.0.2.1.UPF
Fe2 55.845 Fe.pbesol-spn-kjpaw_psl.0.2.1.UPF
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Mn1 54.938 mn_pbesol_v1.5.uspp.F.UPF
Mn2 54.938 mn_pbesol_v1.5.uspp.F.UPF
O 15.999 O.pbesol-n-kjpaw_psl.0.1.UPF
P 30.974 P.pbesol-n-rrkjus_psl.1.0.0.UPF
Li 6.94 li_pbesol_v1.4.uspp.F.UPF
ATOMIC_POSITIONS {crystal}
Fe1 -0.0018269047 0.0000304069 -0.0003932705
Fe2 -0.0624820605 0.4999699836 -0.5003915084
Mn1 0.4987576776 -0.0000338875 -0.4510637530
Mn2 0.4369302234 0.5000334630 -0.9510599331
O -0.1853704531 -0.0000413913 -0.2311704957
O 0.6251324004 0.4999517783 -0.7112993667
O 0.1210624075 0.5000390704 -0.7311671887
O 0.3105574643 0.0000452467 -0.2113000948
O 0.1689278301 0.0000409137 -0.7606906152
O 0.2595012636 0.5000440788 -0.1851692958
O -0.2332375356 0.4999600895 -0.2606909453
O 0.6761898894 -0.0000458163 -0.6851718584
O 0.0510283716 0.7040582036 -0.1900775054
O 0.0510181642 0.2960368185 -0.1900725354
O 0.5580466406 0.7033668148 -0.2511808171
O 0.5580572495 0.2965326193 -0.2511588987
O -0.1153361890 -0.2040586775 -0.6900811178
O -0.1153274751 0.2039633923 -0.6900740032
O 0.3776426890 -0.2033681130 -0.7511796423
O 0.3776336406 0.2034650241 -0.7511611819
P -0.1864198847 -0.0000468288 -0.5566953613
P 0.6287097290 0.4999490507 -0.3861250841
P 0.1221109842 0.5000464680 -0.0566921886
P 0.3069801138 0.0000492520 -0.8861258770
Li -0.2786794632 -0.2501647928 -0.9729266705
Li 0.2143739303 -0.2498290476 -0.4729136212
Li 0.2144236723 0.2499658680 -0.4729252455
Li -0.2787339024 0.2500407728 -0.9729169404
HUBBARD {ortho-atomic}
U Fe1-3d 4.97
U Fe2-3d 4.97
U Mn1-3d 4.32
U Mn2-3d 4.32
K_POINTS {automatic}
3 4 5 0 0 0

Input sample 2: DFT+U +V calculation using pw.x

&control
calculation = ’scf’, prefix = ’olivine’, pseudo_dir = ’./’, outdir = ’./’

/
&system

ibrav = 8, celldm(1) = 19.656, celldm(2) = 0.581, celldm(3) = 0.454,
nat = 28, ntyp = 7, nspin = 2, ecutwfc = 65.0, ecutrho = 780.0,
occupations = ’smearing’, smearing = ’mv’, degauss = 0.01,
starting_magnetization(1) = 0.5, starting_magnetization(2) = -0.5,
starting_magnetization(3) = 0.5, starting_magnetization(4) = -0.5

/
&electrons

conv_thr = 1.0d-10, mixing_mode = ’local-TF’
/

ATOMIC_SPECIES
Fe1 55.845 Fe.pbesol-spn-kjpaw_psl.0.2.1.UPF
Fe2 55.845 Fe.pbesol-spn-kjpaw_psl.0.2.1.UPF
Mn1 54.938 mn_pbesol_v1.5.uspp.F.UPF
Mn2 54.938 mn_pbesol_v1.5.uspp.F.UPF
O 15.999 O.pbesol-n-kjpaw_psl.0.1.UPF
P 30.974 P.pbesol-n-rrkjus_psl.1.0.0.UPF
Li 6.94 li_pbesol_v1.4.uspp.F.UPF
ATOMIC_POSITIONS {crystal}
Fe1 -0.0013002888 0.0000344681 -0.0011569560
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Fe2 -0.0630088651 0.4999654781 -0.5011531240
Mn1 0.4991481712 -0.0000456327 -0.4508915833
Mn2 0.4365431830 0.5000453113 -0.9508863966
O -0.1854167223 -0.0000457697 -0.2309578341
O 0.6251479692 0.4999513745 -0.7114114581
O 0.1211085328 0.5000433096 -0.7309509354
O 0.3105410503 0.0000450767 -0.2114131965
O 0.1689536157 0.0000428446 -0.7607925096
O 0.2594770427 0.5000509149 -0.1849993707
O -0.2332639027 0.4999581183 -0.2607911995
O 0.6762141677 -0.0000526565 -0.6850067566
O 0.0509385486 0.7043511556 -0.1897007541
O 0.0509246526 0.2957600446 -0.1896986710
O 0.5579501365 0.7036161924 -0.2513817004
O 0.5579633292 0.2962483677 -0.2513649470
O -0.1152470278 -0.2043524154 -0.6897058406
O -0.1152343627 0.2042410671 -0.6897024045
O 0.3777385470 -0.2036180333 -0.7513800607
O 0.3777272053 0.2037488625 -0.7513678647
P -0.1863309783 -0.0000548726 -0.5562820718
P 0.6286200092 0.4999421817 -0.3864261649
P 0.1220224059 0.5000536496 -0.0562763621
P 0.3070692847 0.0000558091 -0.8864285367
Li -0.2786861788 -0.2501758028 -0.9729446405
Li 0.2143816342 -0.2498167962 -0.4729292757
Li 0.2144369823 0.2499681667 -0.4729426850
Li -0.2787476689 0.2500403462 -0.9729317161
HUBBARD {ortho-atomic}
U Fe1-3d 5.28
U Fe2-3d 5.28
U Mn1-3d 4.58
U Mn2-3d 4.58
V Fe1-3d O-2p 1 321 0.89
V Fe1-3d O-2p 1 14 0.89
V Fe1-3d O-2p 1 401 0.78
V Fe1-3d O-2p 1 5 0.55
V Fe1-3d O-2p 1 410 0.42
V Fe1-3d O-2p 1 409 0.42
V Fe2-3d O-2p 2 465 0.89
V Fe2-3d O-2p 2 18 0.89
V Fe2-3d O-2p 2 11 0.78
V Fe2-3d O-2p 2 7 0.55
V Fe2-3d O-2p 2 14 0.42
V Fe2-3d O-2p 2 13 0.42
V Mn1-3d O-2p 3 16 0.80
V Mn1-3d O-2p 3 323 0.80
V Mn1-3d O-2p 3 12 0.76
V Mn1-3d O-2p 3 19 0.43
V Mn1-3d O-2p 3 20 0.43
V Mn1-3d O-2p 3 8 0.51
V Mn2-3d O-2p 4 20 0.80
V Mn2-3d O-2p 4 467 0.80
V Mn2-3d O-2p 4 374 0.76
V Mn2-3d O-2p 4 379 0.43
V Mn2-3d O-2p 4 380 0.43
V Mn2-3d O-2p 4 6 0.51
K_POINTS {automatic}
3 4 5 0 0 0

Input sample 3: calculation of U (and V ) using hp.x

&inputhp
prefix = ’olivine’, outdir=’./’,
nq1 = 1, nq2 = 2, nq3 = 3,
conv_thr_chi = 1.0d-7,
dist_thr = 5.D-3

/
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Appendix B. Input variables

Table B.3
Input variables for the HP code (hp.x executable), that have to be specified in the namelist inputhp. Here, only the most relevant input parameters are discussed; the 
complete list of all possible variables can be found in the documentation of the HP code, which can be found in the folder /HP/Doc residing in the Quantum ESPRESSO

tree.

Variable name Default Description

Basic keywords

prefix ‘pwscf’ Prefix which is prepended to input/output filenames; must be the same used in the calculation of 
unperturbed system.

outdir ‘./’ Path to the working directory containing temporary files (wavefunctions, spin charge density, occupation 
matrix, XML file with the system’s data, etc., which are generated by a ground-state pw.x run).

find_atpert 1 Method for searching of atoms which must be perturbed. Possible values: 1 - find how many inequivalent 
Hubbard atoms there are by analyzing the trace of unperturbed occupation matrices, Tr[nIσ

m1m2
]; 2 - find 

how many Hubbard atoms to perturb based on how many different Hubbard atomic types there are. 
Note: atoms which have the same type but which are inequivalent by symmetry or which have different 
occupations will not be distinguished in this case; 3 - find how many inequivalent Hubbard atoms there 
are using symmetry. Atoms which have the same type but are not equivalent by symmetry will be 
distinguished in this case; 4 - perturb all Hubbard atoms (this is the most expensive option).

docc_thr 5 × 10−5 (unitless) Threshold for the comparison of the traces of unperturbed occupation matrices Tr[nIσ
m1m2

] of different 
Hubbard atoms, which is needed for the selection of atoms which must be perturbed. Can be used only 
when find_atpert = 1.

nq1, nq2, nq3 1, 1, 1 Size of the q point grid. Each q point corresponds to a monochromatic perturbation of electronic 
occupations in the Hubbard manifold of Hubbard atoms.

skip_equivalence_q .false. If .true. then hp.x will skip the equivalence analysis of q points, and thus the full grid of q points 
will be used. Otherwise, the symmetry is used to determine equivalent q points (star of q), and then 
perform calculations only for inequivalent q points.

dist_thr 6 × 10−4 (Bohr) Threshold for comparing inter-atomic distances when reconstructing the missing elements of the 
response susceptibility matrices in the post-processing step.

iverbosity 1 Verbosity level, i.e. the amount of information printed in the output file of the hp.x run. Possible values: 
1 - minimal output; 2 - as 1 plus symmetry matrices, final response matrices χ0 and χ [see Eq. (7)] and 
their inverse matrices χ−1

0 and χ−1, and the matrix of Hubbard parameters (U on the diagonal, V on the 
off-diagonal); 3 - as 2 plus various details about the non-self-consistent calculation at k and k + q points; 
4 - as 3 plus response occupation matrices �s′

q n̄s σ
m1m2

[see Eq. (13)].

Keywords controlling the convergence

conv_thr_chi 10−5 (eV−1) Convergence threshold for the self-consistent response matrix χ [see Eq. (7)] during the iterative solution 
of the Sternheimer equations (15).

thresh_init 10−14 Initial threshold for the solution of the Sternheimer equations (first iteration). Needed to converge the 
bare (non-interacting) response matrix χ0 [see Eq. (7)]. The specified value will be multiplied by the 
number of electrons in the system (i.e. it is an extensive quantity).

ethr_nscf 10−11 (Ry) Threshold for the convergence of KS eigenvalues during the iterative diagonalization of the Hamiltonian 
in the non-self-consistent calculation at k and k + q points. Note, this quantity is not extensive.

niter_max 100 Maximum number of iterations for the self-consistent iterative solution of the Sternheimer equations (15).

alpha_mix(i) 0.3 Mixing parameter (for the i-th iteration, i runs from 1 to niter_max) for updating the response Hxc 
potential �s′

q
ˆ̄V Hxc,σ using the modified Broyden method [76].

nmix 4 Number of iterations used in the mixing of the response Hxc potential �s′
q

ˆ̄V Hxc,σ using the modified 
Broyden method [76].

Keywords for the parallelization of the calculations (optional)

perturb_only_atom(i) .false. If perturb_only_atom(i)=.true. then only the i-th atom (not the atomic type) will be perturbed 
and considered in the run. This variable is useful when one wants to parallelize the whole calculation 
over perturbed Hubbard atoms (see Sec. 4.2).

start_q 1 This keyword is used for the parallelization of the calculation over q points [see Sec. 4.2)] for a fixed 
perturbed atom (see perturb_only_atom). start_q specifies the q point starting from which the 
calculations will be performed; see also last_q.

last_q Nq This keyword is used for the parallelization of the calculation over q points [see Sec. 4.2)] for a fixed 
perturbed atom (see perturb_only_atom). last_q specifies the q point up to which the calculations 
will be performed; see also start_q.

sum_pertq .false. If it is set to .true. then hp.x will collect pieces of the response occupation matrices �s′
q n̄s σ

m1m2
[see 

Eq. (13)] for all q points and compute the sum of them including the respective phase factors and using 
the normalization 1/Nq , according to Eq. (12). This variable should be used only when start_q,
last_q and perturb_only_atom are used; otherwise, hp.x will automatically compute the sum 
using Eq. (12).

(continued on next page)
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Table B.3 (continued)

Variable name Default Description

compute_hp .false. This keyword is used to perform post-processing calculation of the Hubbard parameters. If it is set to 
.true., hp.x will not perform linear-response calculations; instead, it will assume that selected 
columns of the χ0 and χ matrices were already computed in previous runs [each column corresponds to 
the response of occupations on all atoms to a perturbation of a specific Hubbard atom, see Eq. (7)]. The
hp.x code will look for the files prefix.chi.i.dat (i runs over perturbed Hubbard atoms I) that 
must be stored in outdir/HP/. This keyword must be set to .true. when the calculation was 
parallelized over perturbations (or when the post-processing step must be re-run). outdir and prefix
are defined in Appendix A.
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