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A B S T R A C T   

Harnessing the full potential of the metal-based Laser Powder Bed Fusion process (LPBF) relies heavily on how 
effectively the overall reliability and stability of the manufactured part can be ensured. To this aim, the recent 
advances in sensorization and processing of the associated signals using Machine Learning (ML) techniques have 
made in situ monitoring a viable alternative to post-mortem techniques such as X-ray tomography or ultrasounds 
for the assessment of parts. Indeed, the primary advantage of in situ monitoring over post-mortem analysis is that 
the process can be stopped in case of discrepancies, saving resources. Additionally, mitigations to repair the 
discrepancies can also be performed. However, the in situ monitoring strategies based on classifying processing 
regimes reported in the literature so far operate on signals of fixed length in time, constraining the generalization 
of the trained ML model by not allowing monitoring processes with heterogeneous laser scanning strategies. As a 
part of this work, we try to bridge this gap by developing a hybrid Deep Learning (DL) model by combining 
Convolutional Neural Networks (CNNs) with Long-Short Term Memory (LSTM) that can operate over variable 
time-scales. The proposed hybrid DL model was trained on signals obtained from a heterogeneous time-synced 
sensing system consisting of four sensors, namely back reflection (BR), Visible, Infra-Red (IR), and structure- 
borne Acoustic Emission (AE). The signals captured different phenomena related to the LPBF process zone 
and were used to classify three regimes: Lack of Fusion (LoF), conduction mode and Keyhole. Specifically, these 
three regimes were induced by printing cubes out of austenitic Stainless steel (316 L) on a mini-LPBF device with 
operando high-speed synchrotron X-ray imaging and signal acquisition with the developed heterogeneous sensing 
system. The operando X-ray imaging analysis ensured that the regimes correlated with the defined process pa-
rameters. During the validation procedure of the trained hybrid DL model, the model predicted three regimes 
with an accuracy of about 98% across various time scales, ranging from 0.5 ms to 4 ms. In addition to tracking 
the model performance, a sensitivity analysis of the trained hybrid model was conducted, which showed that the 
BR and AE sensors carried more relevant information to guide the decision-making process than the other two 
sensors used in this work.   

1. Introduction 

All businesses whose production line requires prototypical high mix 
and low volume — such as aerospace, biomedical, automotive, and 

tooling industries — have banked on metal-based Additive 
Manufacturing (AM) techniques such as Laser Powder Bed Fusion pro-
cess (LPBF) [1]. LPBF is indeed emerging as a commercial 
manufacturing technology due to its ability to produce complex 

* Corresponding author. 
E-mail address: Vigneashwara.SolaiRajaPandiyan@empa.ch (V. Pandiyan).   

1 Vigneashwara Pandiyan and Giulio Masinelli contributed equally to this work. 

Contents lists available at ScienceDirect 

Additive Manufacturing 

journal homepage: www.elsevier.com/locate/addma 

https://doi.org/10.1016/j.addma.2022.103007 
Received 5 April 2022; Received in revised form 30 May 2022; Accepted 27 June 2022   

mailto:Vigneashwara.SolaiRajaPandiyan@empa.ch
www.sciencedirect.com/science/journal/22148604
https://www.elsevier.com/locate/addma
https://doi.org/10.1016/j.addma.2022.103007
https://doi.org/10.1016/j.addma.2022.103007
https://doi.org/10.1016/j.addma.2022.103007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addma.2022.103007&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Additive Manufacturing 58 (2022) 103007

2

geometries, customized parts, and open-cell structures (3D lattices) with 
little material waste [2,3] — resulting in a paradigm shift in the 
manufacturing domain [4]. LPBF process can generally be described as 
follows; a metal powder layer is deposited on a build plate; upon irra-
diation from a laser source, this powder is heated and melts to form a 
melt pool which, upon rapid cooling, solidifies. After the laser scanning 
of the part’s cross-section (also called slice), the building platform is 
lowered by a predefined distance, followed by a new powder layer 
deposition. This process is repeated until the completion of the part is 
achieved [5]. 

Though the process looks conceptually simple, the utilization of 
high-powered lasers to fully melt a layer of powder particles brings 
about complex hydrodynamic phenomena such as multiphase interac-
tion between vapor plume, atmospheric gas, and the material — all of 
which are not very well understood. These interactions often increase 
the complications of the process via complex melt flow dynamics and the 
formation of by-products (i.e., spatter particles and condensates), 
resulting in the generation of defects in the final consolidated parts. 
Additionally, extremely high local heating and cooling rates result in 
numerous physical and thermo-mechanical phenomena taking place 
locally at very short time scales. Specifically, the occurrence of defects 
can be directly correlated to the melt pool characteristics, such as its 
geometry and depression morphology, and they are, in turn, a result of 
laser irradiation parameters and material properties [1]. Therefore, the 
manufacturing of parts with desired quality is contingent upon utilising 
carefully derived sets of process parameters (also called the process 
window) balancing the undergoing complex phenomena during the 
build process [6,7]. Furthermore, finding the appropriate process win-
dow is rather a time-consuming procedure, given that it is both material- 
and machine-dependent. This issue represents a significant challenge for 
industrial application, for which the “reduced lead time” — promised by 
additive manufacturing techniques — may be questioned [8,9]. 

Under optimized process parameters, the melt pool is in the so-called 
conduction mode regime, where we observe a stable melt pool formation, 
corresponding stable melt flow dynamics, and subsequent stable solid-
ification. The consolidated parts that went through conduction mode 
usually result in high density and low defects. Conversely, the melt pool 
lifetime is shortened under insufficient laser energy densities, resulting 
in insufficient time for forming a stable melt pool, fully adjoining and 
wetting the underlying solidified layer. Consequently, upon solidifica-
tion, Lack of Fusion (LoF) defects appear due to incomplete overlap be-
tween adjacent melt pools or the underneath layers [10]. On the other 
hand, under high laser energy densities, excessive evaporation results in 
the formation of a deep depression zone (Keyhole) with complex melt 
flow dynamics, which could be followed by depression collapse and 
entrapment of pores in the final consolidated part under the name of 
keyhole porosity [11,12]. 

Given the above, it is clear that the applicability of AM for industrial 
applications depends mainly on the level of part quality insurance that 
can be provided [13]. The conventional characterization techniques to 
examine the build quality in parts/components built by LPBF include 
X-ray Computed Tomography (CT) or destructive microscopical analysis 
on the polished cross-sections. These analyses are carried out offline 
after the fabrication of the part. Consequently, their disadvantages are 
twofold: first, they are highly time-consuming, and second — as the 
detection of defects occurs post-mortem — the resources in terms of 
material and machine time are unavoidably wasted for the part that 
eventually fails to pass the quality check [14]. Hence, AM research 
communities have a solid motivation to develop real-time/in situ quality 
monitoring as an alternative. The primary advantage of in situ moni-
toring over post-mortem analysis is that the process can be stopped in 
case of defects, saving resources. Additionally, suitable actions can be 
taken to repair the defects after their occurrence. To this aim, recent 
approaches take advantage of the developments in sensorization and 
associated Artificial Intelligence (AI) algorithms for building monitoring 
systems capable of detecting, localizing, and helping to correct defects in 

real-time during the build process [15]. 
As seen, with numerous events happening during parts fabrication, 

the introduction of several sensors to capture the secondary thermal, 
optical, and Acoustic Emissions (AE) from the region where the laser 
interacts with the powder — the process zone — is fundamental, as well 
as the interpretation of the data to understand and monitor the process 
[16–18]. Indeed, correlating undesirable events in LPBF with sensor 
signals will enable the development of strategies to suppress them. 
Furthermore, as the associated physical phenomena happening during 
the process could be very short-lived, the sensors used to monitor them 
should have a fast response time and not be susceptible to dynamic 
changes. To cope with that, in literature, the most common sensing 
technologies for monitoring laser-material interactions are pyrometers, 
high-speed cameras, near-infrared (NIR) spectrum thermography cam-
eras, photodiodes, and AE sensors. 

In the literature, several approaches can be found, mainly differing 
from the adopted sensing strategy. For example, Chivel and Smurov 
developed a monitoring system based on pyrometers [19], which allows 
tracking the surface temperature profile variations of the process zone 
[20]. The surface temperature measurements carried out by pyrometers 
can also help understand the melt pool’s solidification mechanism [21, 
22]. However, their main downside is the inability to provide spatially 
resolved information, as the provided temperature reading is integrated 
over a region (the so-called field of view). Unlike pyrometers, 
camera-based sensing systems with CCD or CMOS detectors provide 
more comprehensive information about the melt pool morphology and 
temperature profile [23–26]. Additionally, high-speed imaging tech-
niques can also be used to gain a fundamental understanding of dynamic 
fluctuations such as spatter or melt pool size fluctuations [27,28]. For 
these reasons, camera detectors capable of capturing the IR radiation 
with high data capture rates have started replacing pyrometers [17]. 
Infrared cameras have been used to detect defects, such as LoF pores 
caused by insufficient heat dissipation [29]. For example, Bartlett et al. 
[30] have demonstrated that full-field infrared (IR) thermography can 
effectively predict LoF defects. With the help of infrared imaging of the 
melt pool, it has also been demonstrated that unstable behaviors can be 
identified [24,31]. Similar to camera imaging, photodiodes have been 
reported to monitor the LPBF process in both off-axis and coaxial modes 
[32,33]. Moreover, photodiode sensors are preferred over camera im-
aging due to their higher sampling rate, minimum required computa-
tion, and lower cost [34,35]. For example, Egan et al. employed two 
coaxial photodiodes to capture plasma and Infra-Red (IR) emissions and 
confirmed that their signals are correlated with defective layers con-
taining pores created during the LPBF process [36]. In addition, the 
existence of a linear relationship between deposited energy to create the 
melt pool and the photodiode sensor data has been reported in the 
literature [37–39]. Besides, the correlation between tensile properties of 
builds produced using AM and off-axial photodiode readings has been 
established [40]. Berumen et al. [35] also demonstrated that machine 
faults that occur during the printing job of the part could be detected 
with the help of a photodiode. With melt pools of dimensions 50–250 µm 
wide [41,42], appearing in a time scale over roughly 10–100 μs in LPBF 
process [43–45], building in situ monitoring systems based on visual and 
optical sensors with a high spatial and temporal resolution, makes them 
very expensive. In this regard, AE sensors — both structure-borne and 
air-borne — are a suitable alternative for monitoring as they possess 
good temporal resolution and are also economical [46–48]. Gutknecht 
et al.[49], as an example, showed that acoustic signals from the process 
zone of the AM processes tend to be 40 times more sensitive compared to 
imaging techniques and are still 15 times more sensitive than pyrometer 
techniques. Pandiyan et al. [50] demonstrated that information inside 
the air-borne acoustic signals from different LPBF regimes exhibited 
different characteristics in time, frequency, and time-frequency do-
mains. Furthermore, the identification of the location of the micro de-
fects such as pores and microcracks in the LPBF process has been 
demonstrated based on burst type AE events [51]. Finally, more recent 
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works started to focus on multiple sensing systems such as the combi-
nation of photodiodes, pyrometry, and camera systems to capture all the 
pros from each of them [17,52]. A comprehensive review of in situ 
sensing methodologies for AM techniques can be found in the literature 
[17,18,53,54]. 

Understanding patterns in the multifaceted information from the 
LPBF process zone extracted through the sensors will help characterize 
the physics of these mechanisms and build a comprehensive monitoring 
system with high reliability [55]. However, the highly dynamic nature 
of laser-material interaction makes it difficult for human operators to 
extract patterns from the raw sensors data and make the right decision in 
real-time, given the high dimensionality of the space these data live by 
Pandiyan et al. [56]. On the contrary, Machine Learning (ML) algo-
rithms can accurately model complex nonlinear problems, even by 
deriving knowledge from raw sensor data [57]. A comprehensive review 
of ML algorithms trained in supervised, semi-supervised and unsuper-
vised manners applied for monitoring the AM processes have been re-
ported in the literature [58]. Specifically, data from optical and thermal 
sensors have been used to train conventional ML algorithms such as 
K-Nearest Neighbor (KNN) and Decision Tree (DT) to estimate the part 
quality [14]. Khanzadeh et al. [59] proposed a multilinear principal 
component analysis (MPCA) approach to extract low dimensional fea-
tures from thermal maps to monitor the AM process. Gobert et al. [60] 
confirmed that a linear support vector machine (SVM) could determine 
the quality of the individual layer based on digital images. Gaussian 
Mixture Models (GMM) have also been reported to identify the build 
quality using randomized Singular Value Decomposition (SVD) features 
extracted from a photodiode sensor [61]. The linear SVM classifier 
effectively classified different processing regimes in LPBF using statis-
tical features computed on acoustic signals [62]. Unlike conventional 
ML algorithms that require preprocessing of the data prior to training, 
algorithms based on Deep learning (DL) have been used recently to 
monitor the LPBF process [63,64]. The DL algorithms based on Con-
volutional neural networks (CNNs) have been demonstrated to detect 
defects such as delamination and spattering based on IR images captured 
[65]. Similarly, CNN’s have been trained with melt pool images corre-
sponding to various processing regimes to detect the associated defects 
[66]. The CNN trained on the powder bed images before laser scanning 
has been reported to predict anomalies induced by the recoater blade in 
the LPBF process [67,68]. Acoustic signals corresponding to different 
process parameters that induce different concentrations of pores were 
trained on spectral CNN to distinguish the corresponding build qualities 
[16]. Semi-supervised DL algorithms have also been implemented to 
detect and classify anomalies in the LPBF process [69,70]. A defect 
detection system based on a deep belief network (DBN) and microphone 
data have been successfully developed to classify several processing 
regimes [71]. Digital camera images were combined with a deep re-
sidual neural network and region proposal network to detect several 
defects that may occur during fabrication, namely warpage, delamina-
tion, and short feed [72]. Caggiano et al. [73] have combined the 
powder bed and process zone images with a Bi-stream CNN to evaluate 
the process quality. 

It has to be noted that most monitoring strategies reported in the 
literature using ML are based on signals of fixed length in time (fixed 
input size), which constrains the application of the trained models across 
different scanning lengths. As a part of this work, we try to bridge this 
gap by using a hybrid DL model consisting of CNNs and Long-Short term 
memory (LSTM). Apart from the AI algorithm that operates over various 
time scales, this work also introduces a monitoring system comprised of 
a heterogeneous sensing system consisting of four sensors, namely back 
reflection (BR), Visible, IR, and AE, measuring different aspects of the 
LPBF process when printing cubes out of 316 L stainless steel powder. In 
addition, high-speed synchrotron X-ray imaging was used to validate the 
occurrence of different operating regimes. The paper is organized into 5 
Sections. Section 1 presents a brief literature review of the LPBF pro-
cessing regimes, sensing techniques, and ML algorithms used for real- 

time LPBF process monitoring. Section 2 gives an overview of the pro-
posed hybrid DL model. Section 3 describes the LPBF experimental 
setup, processing parameters, and data acquisition setup. Section 4 
presents and discusses the prediction results using the heterogeneous 
sensing system using hybrid DL architectures. Finally, Section 5 sum-
marizes this investigation’s findings and the future works on in situ 
monitoring for the LPBF process. 

2. Theoretical basis 

One of the most impressive aspects of convolutional operation in a 
neural network is the ability to exploit the degree of invariance in 
translation that most signals naturally have. Indeed, it is intuitively 
evident that — once found a meaningful representation in a specific 
portion of a signal — the same representation should be searched for 
everywhere else in the signals, as it represents a distinct pattern. CNNs 
embody this idea by applying the same linear local transformation (the 
convolution) to the totality of the signal, using trainable filters [74]. As a 
result, a trained CNN model tends to have a well-represented hierarchy 
of features for data distributions close to the ones seen during training 
[75]. However, the major drawback of neural networks based on CNNs 
is that they only accept input data with a fixed size, and they process 
them all at once to produce a fixed amount of output data each time. 
This processing scheme implies that they cannot be employed for data 
with different lengths [75]. Unlike CNNs, Recurrent Neural Networks 
(RNNs) do not process all the input data simultaneously. Instead, they 
process the input data one data point (the smallest unit in which a signal 
can be divided) at a time, treating the input signal as a sequence. Indeed, 
the RNN performs its computation on the first element of the input 
sequence before producing an output [76]. The output, known as the 
hidden state, is then combined with the following input in the sequence 
to produce another output. This computation continues until the model 
encounters all the elements in the sequence so that the final output is 
dependent on all the sequence’s elements. The computational unit that 
performs the operations on the current sequence’s element and hidden 
state is called the RNN cell, and it is reused at each time step. This 
mechanism enables RNNs to exploit dynamically changing temporal 
information from the input sequences for decision-making [77]. There 
are many variants of RNNs, such as Vanilla RNNs, Gated Recurrent Units 
(GRU), LSTM, and Bi-directional LSTMs[78]. 

Given the CNNs ability to find patterns in the input data and RNNs 
capacity to discover temporal relationships regardless of the sequence 
duration, combining both help develop hybrid DL models with inter-
esting properties [79]. The combination of such networks has been 
applied to a variety of tasks such as forecasting [80], classification [81], 
and sentiment analysis [82]. As far as this work is concerned, we have 
built a DL architecture combining a CNN and an LSTM block, namely 
CNN-LSTM, a network that can flexibly operate over variable time 
scales. LSTM network was chosen over other variants of RNN as they can 
learn very long order dependencies [83]. The proposed hybrid DL model 
is schematized in Fig. 1. As can be seen, CNN acts as the front-end for the 
proposed model by processing the input data to extract features out of 
them. As CNNs preserve the signal structure, the processed data is flat-
tened (converted into a vector) before feeding the RNN. The RNN then 
learns the temporal relationship in the data irrespective of the vector 
size and performs the decision-making task by outputting a class. Notice 
that, by combining a CNN (susceptible to the input data size) and an 
RNN (not affected by the input size), we were able to achieve one of our 
goal, which is to have an ML model that can predict on inputs with 
variable time-scales. 
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3. Experimental setup, materials, data acquisition, and 
methodology 

3.1. Experimental setup 

The operando X-ray imaging experiments were carried out at the 
TOmographic Microscopy and Coherent rAdiology experimenTs 
(TOMCAT) beamline at the Swiss Light Source (SLS) utilizing a mini- 
LPBF device designed and built at the Paul Scherrer Institute (PSI) 

[84,85]. This setup was developed in order to be implemented at syn-
chrotron X-ray diffraction and radiography beamlines for operando ex-
periments while printing 3D structures under conditions very close to 
commercially available LPBF devices. The mini-LPBF device is equipped 
with two glassy carbon windows in the front and back of the chamber, 
transparent to high-energy X-rays, allowing the incoming X-ray beam to 
access the powder bed through the back window and the transmitted 
X-ray beam to reach the detector placed outside the chamber via the 
front window. Fig. 2 displays the main components of the machine. The 

Fig. 1. Hybrid CNN-LSTM design.  

Fig. 2. Schematic view of the operando radiography setup at the TOMCAT beamline. a), b) Build chamber of the mini-LPBF machine and the camera in two different 
views, and c) zoom on the build plate and the printed sample to highlight the volume that is probed during the operando experiment. During LPBF processing, a 2- 
axis scanning head (1) deflects the laser beam (2) onto a 12 × 12 mm2 build plate (3) and the sample (4). A parallel X-ray beam (5) passes through the sample (c) and 
reaches the microscope (6). 
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chamber has a continuously pulsed laser beam, with a pulse repetition 
rate of 250 kHz (redPOWER, SPI Lasers Ltd, UK) operating at a 1070 
± 10 nm wavelength with a maximum power of 500 W and a beam 
quality factor of M2 < 1.1. The laser beam is collimated as a parallel 
Gaussian beam into a 2-axis deflection scanning unit (SuperScan III, 
Raylase GmbH, Germany). The latter employs two fused silica mirror 
galvanometers to scan the laser beam over the powder bed. An F-theta 
lens (Sill Optics, Germany) with 163 mm focal length is used to focus the 
laser beam to a spot size of ø 45 µm at 1/e2. The laser and scanning unit 
is piloted using an SP-ICE-3 board and WeldMARK software (Raylase 
GmbH, Germany). During and before the operation, the chamber is 
continuously flushed with high purity Argon gas (99.996%), and the 
oxygen level is monitored, reaching concentrations as low as 0.2%. The 
chamber employs a re-coater mechanism for powder deposition between 
each layer. A more detailed description of this mini-LPBF device can be 
found in [84,85]. The miniaturized LPBF device is mounted on a devoted 
stage and tilted by 20 degrees with respect to the X-ray beam direction 
(Fig. 2). As illustrated in Fig. 2(c), the edge of the powder bed is illu-
minated by a parallel X-ray beam with energies ranging between 10 and 
55 keV. The transmitted beam is recorded with a custom-made micro-
scope with 4x magnification [86] coupled to the in-house developed 
GigaFRoST detector [87]. The experiments are performed at an acqui-
sition frequency of 10 kHz. All the acquired data was processed using 
ImageJ software. 

3.2. Material, processing conditions, and operando X-ray analysis 

A gas atomized 316 L stainless steel powder acquired from Oerlikon 
Metco, with the chemical composition listed in Table 1 and a particle 
size distribution ranging from 15 to 45 µm, was used in this study. The 
morphology of the 316 L feedstock powder was dominantly spherical 
with the presence of occasional satellites. 

A cuboid sample (width: 2 mm, length: 8 mm) was printed using the 
previously described mini-LPBF device. The first 30 layers were built 
with optimized parameters (see Table 2) for minimal porosity content. 
The build-up of these initial layers was required to reach a sufficient 
height for the X-ray beam to be transmitted through the sample without 
being obstructed by the edge of the build plate, as illustrated in Fig. 2(c). 
Following this preliminary “build-up” step, three different processing 
regimes were investigated by building successive layers on the same 
sample, in the following order: Keyhole, conduction mode, LoF. This order 
was selected carefully to inhibit the removal of the signatures of each 
regime by a higher energy regime (corresponding to a deeper melt pool) 
in subsequent layers. A bidirectional and parallel scanning strategy was 
employed with the layer thickness set to 30 µm. This value allows an 
appropriate balance between powder particle size and melt pool depth, 
allowing good sintering between layer n and layer n-1. Three sets of 
parameters were defined for each regime to cover an appropriate region 
of the process parameter space. To easily observe the different regimes 
by X-Ray radiography, a slow range of scanning speed was chosen. For 
each regime, the change in power and speed was mostly investigated. 
The hatch distance was adapted according to theoretical melt pool sizes 
to reach the desired regime. Each parameter set was repeated four times 
to have adequate data for further processing. 

The process parameters such as power and speed were chosen using 
the concept of normalized enthalpy ΔH (Eq. (1)) as a way to predict the 
normalized melt pool depth d (Eq. (2)) and associated processing 
regime [12,88]. 

ΔH =
ΔH
Δh

=
αP

ρ(CΔT Lm)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
πω3VD

√ (1)  

d =
d
ω (2)  

Where ΔH
Δh is the ratio between the input and the dissipated energy, α is 

the absorptivity of the powder material, P is the laser power [W], ρ the 
density [kg/m3], C the specific heat [J/kg K], ΔT the difference between 
the melting temperature and initial temperature [K], Lm the latent heat 
of melting [kJ/kg], ω the laser spot radius [m], V the laser speed [m/s], 
D the thermal diffusivity [m2/s], and d the melt pool depth [m]. Based 
on the processing map defined in Fig. 3, it was determined that the LoF, 
conduction mode, and keyhole regimes correspond to normalized 
enthalpy values below 21–22, between 26 and 28, and above 40, 
respectively. The values of normalized enthalpy used in the present 
experiment for each regime are reported on the processing map shown 
in Fig. 3(a). The operando radiography measurements confirmed the 
occurrence of the three processing regimes. Representative radiographs 
are shown in Fig. 3(b) for the different regimes. Additionally, videos of 
keyhole formation are available at https://c4science.ch/diffusion/ 
12010/. 

3.3. Post-mortem tomography and microscopy analysis 

Post-mortem analysis of the manufactured samples was performed to 
confirm each regime’s occurrence and correlate the process parameters 
to the presence of specific types of defects. First, X-ray tomography 
(Fig. 4.a and b) was carried out on the sample to evaluate the distribu-
tion of defects in its entire volume. Then, a microstructure analysis was 
performed by sectioning the sample perpendicular to the scanning di-
rection, followed by grinding and polishing of the surface down to 1 µm. 
The melt pools were revealed by etching using aqua regia (100 ML H2O, 
75 ML HCl, 25 ML HNO3) for 180 s. Representative optical micrographs 
of each regime are shown in Fig. 4.c. As illustrated in Fig. 4, deep melt 
pools and numerous spherical pores typical of the keyhole regime are 
visible in the region where high normalized enthalpies were applied. 
The melt pools are shallower in the conduction mode region, and defects 
are significantly reduced. Finally, large LoF pores are observed in the 
upper part of the specimen, indicating insufficient energy input deliv-
ered to the material. These results confirm that the chosen parameters 
based on a pre-existing processing map (Fig. 4) successfully induced 
each of the three processing regimes (Keyhole, conduction mode, and 
LoF). 

3.4. Heterogeneous sensing and data acquisition 

In this work, we perform in situ sensing for predicting three pro-
cessing regimes (Keyhole, conduction, LoF, see Section 1) via four sensors, 
namely an AE sensor and three photodiode detectors. The purpose of 
multiple sensors in this work was to utilize the secondary emissions such 
as thermal, optical, and acoustic from the process zone for decision 
making. Fig. 5 shows the mini-LPBF setup used in this work equipped 
with sensors. The AE sensor PICO HF-1.2 (Physical Instruments, US) is a 
lightweight miniature structure-borne sensor. It was mounted at the 
bottom of the base plate with reasonable proximity to the laser-material 
interaction zone to capture AE events inside the material, as shown in 
Fig. 5. The sensitivity range of the sensor is 500–1850 kHz. Three 
photodiode detectors and corresponding optics from Thorlabs were used 
to look at different aspects of the optical and thermal emissions origi-
nating from the top surface. A fixed focus collimator (F220SMA-980) 
was installed in an off-axial configuration, as shown in Fig. 5, to collect 
the optical emissions from the melt pool. The collimator was pointed 
towards the region to be monitored (i.e., the top surface of the build 
plate) with an angle of 30◦ and a distance of 5 cm. The collected optical 

Table 1 
Chemical composition of the 316 L powder feedstock.  

Weight percent (nominal) 

Fe Cr Ni Mo C Other 

Balance  18  12  3 < 0.03 < 1.0  
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signals were then coupled to a 25:75 multi-mode fiber splitter. 25% of 
the original signal was directed to a Si photodiode (PDA100A2 [350 – 
1′100 nm]) coupled with a laser line bandpass filter with a central 

wavelength (CWL) of 1070 nm ± 2 nm. Therefore, the response from 
this sensor mainly corresponded to the reflected laser light. The ampli-
fication was set at 0 dB. The other 75% was further split by a 50:50 

Table 2 
316 L print process parameters.   

Power [W] Speed [mm/s] Normalized enthalpy Hatch distance [μm] Scanning direction Number of layers 

Build-up 280 400 27.4 100 0◦ 30 
Keyhole 1 380 220 50.13 100 0◦ 4 

90◦ 1 
Keyhole 2 340 220 44.86 100 0◦ 4 

90◦ 1 
Keyhole 3 300 220 39.58 90 0◦ 4 

90◦ 1 
Conduction mode 1 200 200 27.67 100 0◦ 4 
Conduction mode 2 210 225 27.40 95 0◦ 4 
Conduction mode 3 225 250 27.85 100 0◦ 4 
LoF 1 140 280 16.37 110 0◦ 4 
LoF 2 100 250 12.38 110 0◦ 4 
LoF 3 80 240 10.11 100 0◦ 4  

Fig. 3. (a) Processing map for 316 L [89]. The values of normalized enthalpies used in the present experiments are reported in the graph. (b) Representative ra-
diographs for the different regimes. 

Fig. 4. Tomography sections of the printed cuboid sample perpendicular to the build direction: (a) Y-Z and (b) X-Z orientations. (c) Optical micrograph for each 
regime is highlighted in color rectangles (X-Z plane). 
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splitter, whose ends were connected to InGaAs (PDA20CS2 [800 – 
1700 nm]) and Si (PDA100A2) photodiodes, respectively. At the 
amplification level of 30 dB, the InGaAs photodiode was equipped with 
a low-pass optical filter (FELH1100) to allow sensing wavelengths above 
the laser radiation. On the other hand, the Si photodiode was used to 
detect optical emission in the visible and NIR range, thanks to a short- 
pass optical filter (FESH0950). Due to the weak signals in this spectral 
range, a high amplification level of 60 dB was used. The output of all 
three photodiode detectors was represented by an analog voltage with a 
dynamic range of ± 5 V. All photodiodes have programmable gain that 
was optimized based on the processing conditions. The schematic of the 
heterogeneous sensor setup is given in Fig. 6. 

The signals from the four sensors were acquired separately using four 
channels of the Advantech Data Acquisition (DAQ) card at a sampling 
rate of 3 MHz using customized software developed based on the C# 
framework. The sampling rate of 3 MHz was chosen across all four 
channels to ensure that the Nyquist Shannon theorem [90] is satisfied 

for the signals considered in this work. The AE sensor PICO HF-1.2 
sensor sensitivity till 1500 kHz was considered in this work; thus, a 
sampling frequency of 3 MHz (2 ×1500 kHz satisfying Nyquist-Shannon 
theorem) was used. Out of the four channels in the DAQ card, channels 
0, 1, and 2 were assigned to capture the analog signals from the pho-
todetectors configured to capture BR, IR, and visible range. Channel 3 
was assigned to record the AE signals from the structure-borne sensor. In 
addition, the signal acquisition was automatically triggered for all 
channels based on the photodiode detector that oversees the BR light. 
The underlying principle of the trigger is that — once the laser radiation 
hits the powder bed — the photodiode detector catches the increment of 
light intensity around the wavelength of the incident laser and produces 
an analog voltage. As soon as the voltage crosses a user-specified 
threshold (in this work, 1.0 V), the data acquisition starts, and the 
files are stored separately for further offline analysis. Since the acqui-
sition starts in parallel across all four channels, they are by default 
synchronized. 

Fig. 5. Mini- SLM setup as described in [84,85] equipped with optical detectors and AE sensor.  

Fig. 6. Schematics of the proposed heterogeneous sensing system, comprising of photodiode detectors and AE sensor.  
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3.5. Dataset and methodology 

Fig. 7 shows the mean trend line computed across ten windows on 
the BR signals corresponding to the three regimes in the data set, con-
sisting of a window size of 1.65 ms. Comparing the mean and standard 
distribution computed across the regimes from Fig. 7 suggests that the 
BR signals’ statistical distribution is distinct. The increase in the in-
tensity of the BR signal collected in the keyhole regime compared to the 
LoF and conduction mode could be attributed to the fact that emissions 
after the multiple reflections of the laser wavelength from the vapor 
cavity are more incident on the collimator in off-axial configuration. 

The visualization of distribution in the Root Mean Square (RMS) 
features computed against each window size of 1.65 ms corresponding 
to emissions in the visible wavelength, as shown in Fig. 8(a), suggests 
that statistical difference is evident in the distribution among the three 
regimes. Similarly, there existed a distinct distribution on the skewness 
feature that was computed for the IR signals with a window size of 
1.65 ms corresponding to the three regimes as shown via bar plots in 
Fig. 8(b). 

Furthermore, the AE signal energy decomposition into five energy 
bands arbitrarily using the periodogram method, namely 
0.25–0.55 MHz, 0.55–0.85 MHz, 0.85–1.15 MHz, 1.15–1.45 MHz, and 
1.45–1.75 MHz, as shown in Fig. 9 suggest that AE characteristics across 
the regimes are non-identical. The cumulative energy values were 
computed on a window of 1.65 ms, and the concentration of energy 
contents within the frequency range of 0.25–0.55 MHz suggests that AE 
sources are dominant below 0.55 MHz when processing 316 L. From 
visualization of the distribution in the time-resolved and frequency- 
resolved feature on the four sensors in Figs. 7–9, it is conclusive that 
multifaceted information from the LPBF process zone extracted across 
regimes are different and could be used as an input to train models for in- 
situ monitoring of the process state. 

Data preparation is imperative to develop a CNN-LSTM model that 
can work regardless of the time duration of the input signals. Therefore, 
the time-synced signals corresponding to each printed layer representing 
the three different built regimes from the four sensors were split into 
four different running windows (w1, w2, w3, and w4), whose time 
duration is 0.83, 1.65, 2.5, and 3.30 ms, respectively. The windows of 
respective lengths were computed across all three processing regimes 
without overlaps. The length of the windows or the size of the input to 
train the hybrid DL network were decided based on the authors’ previ-
ous works [50,70,91]. The choice of windows length, i.e., data points to 
train the CNN-LSTM network, is not related to the sampling frequency 
but rather to the resolution of the monitoring strategy. The data prep-
aration was performed as an offline process. The workflow to build the 
dataset from operando experiments is illustrated in Fig. 10. A detailed 
description of the dataset is discussed in Table 3. 

The development of the hybrid model consists of two phases: training 

and testing. Before model training, the time-synced signals corre-
sponding to the four window lengths (w1, w2, w3, and w4) from the 
whole dataset with ground-truths are concatenated to form a four- 
dimensional tensor which will be the input for the CNN-LSTM model. 
The dataset is split stochastically into 70% for training and 30% for 
testing. The full dataset, including all the windows of all time durations, 
comprises four different data loaders (DL 1, DL 2, DL 3, and DL 4), each 
dedicated to loading windows of a single time duration. All the four data 
loaders are put into a randomizer so that only one data loader is used at a 
time after initialization. In the training phase for differentiating the 
three processing regimes, the randomizer is initialized separately at each 
epoch (a full pass over the complete training set), so the model is trained 
with windows of only a single time duration at each epoch. Since the 
randomizer is independent of the data, all four data loaders share the 
total number of epochs to train the model equally. As this is a classifi-
cation problem, the cross-entropy loss is backpropagated to alter the 
weights to minimize the classification loss. As stated in Section 2, the 
coupling of the CNN with the LSTM allows the model to be trained on 
windows of variable time duration. After training, to check the predic-
tion accuracy of the model, 30% of the data that was reserved for testing 
is used. The schematic flow of the training strategy is illustrated in  
Fig. 11. 

4. Variable time scale classification 

4.1. Architecture and training 

The architecture proposed in this work consists of two neural 
network types, namely CNN and LSTM (see Section 2). However, both 
networks were trained together. The design of the CNN network consists 
of five convolution layers, as illustrated in Fig. 12. During training, the 
first layer of the CNN model takes an input tensor of size 200 (batch size) 
x 4 (number of sensors) x one of the following [2′500, 5′000, 7′500, 
10’000], depending on the specific data loader that gets randomly 
chosen at the beginning of each epoch. A kernel size of 16 was used 
across all five 1D convolution layers. The number of kernels of the first 
convolution was four and was subsequently doubled till the fourth layer. 
Finally, the fifth layer was configured to use 10 kernels. The output of 
the CNN was then passed into the LSTM block. The LSTM block with one 
recurrent layer consisting of ninety hidden states operates on the output 
of the CNN as a sequence. The newly computed hidden states from the 
LSTM are further connected through a linear layer for classifying the 
input signal into three categories labeled LoF, conduction mode, and 
Keyhole. The cross-entropy was used as the loss function since we are 
dealing with a classification problem. The total parameters to be trained 
in the hybrid CNN-LSTM model were around 91 thousand. Both CNN 
and LSTM models were developed with a PyTorch framework, and the 
1D convolutions, LSTM blocks, data loaders, activations, and max 
pooling operations were performed using the inbuilt PyTorch libraries 
[92]. Nonlinearity in the model training was introduced using the 
Rectified Linear Unit (ReLU) as activation function. 

A batch size of 200 was selected during the model training. The 
training parameters of the hybrid CNN-LSTM model are listed in Table 4. 
Batch normalization was applied across the CNN layers to reduce 
overfitting and speed-up training time. Furthermore, for the same rea-
sons, it was also ensured that the datasets were shuffled across epochs, 
and a dropout of 0.2 was applied during training. The number of win-
dows per class differs among classes, i.e., the data set is imbalanced, as 
shown in Table 3. The keyhole regime class has a higher count value than 
the other two classes (LoF and conduction mode), making learning 
biased towards the dominant keyhole class. To improve the training of 
the hybrid model and remove the biasing towards the more frequent 
class, the weight of the classes is balanced using weighted loss. The 
weights of the less frequent classes are scaled to a higher value and vice 
versa in the loss term based on Eq. (3). The computed weights corre-
sponding to the three classes LoF, conduction mode, and keyhole regime 

Fig. 7. Mean and standard deviation plots computed on the BR signals for three 
different regimes across ten windows on a window size of 1.65 ms. 
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were 0.81, 0.65, and 0.53. 

weight for class k = 1 −

(
number of samples in the class k

total number of samples

)

(3) 

The optimizer for the training was stochastic gradient descent with a 
momentum of 0.9 and a learning rate of 0.01, and the total number of 
epochs was 800. Additionally, the model’s training was stabilized by 
reducing the learning rate by 70% after every 100 epochs, as shown in  
Fig. 13(a). At the beginning of each epoch, a randomizer randomly 
selected a single data loader among the four available ones (differing by 
the time duration of the loaded windows). During the training, it was 
also ensured that the randomizer gave equal weightage for each window 
length across the epochs. Fig. 13(b) shows that after the training of the 
hybrid model, 800 epochs were almost equally shared across the four 
different window lengths. 

Furthermore, elastic net regularization was introduced to guide the 
model towards learning a less complex mapping based on the parame-
ters listed in Table 4. Also, weight initialization was also done to prevent 
the layer activations outputs from exploding or having vanishing gra-
dients. Since ReLU activation was used, the initialization of the network 
was based on the Kaiming initialization method [93]. The 

hyperparameters for the model were determined after an exhaustive 
search. The model’s overall training was performed using two 
hardware-accelerated Graphical Processing Units (GPU), namely Nvidia 
RTX Titan, with a dedicated memory of 24 Gigabyte integrated inside a 
Lambda (Lambda Labs, US) work station. The CNN- LSTM took 4.5 h for 
training. Fig. 14 shows the accuracy and loss curves of the CNN-LSTM 
model trained on the data from the heterogeneous system with four 
window lengths. From the visualization of the loss and accuracy curve 
values over the 800 epochs, it is evident that the CNN-LSTM model 
would have learned the distributions corresponding to the three 
ground-truth labels over the considered four signals. The accuracy and 
loss trend saturates after 400 epochs. There is no significant perfor-
mance improvement. However, there are occasional peaks in the loss 
curves, which we suspect are due to the change in window lengths across 
each epoch. 

4.2. Prediction results 

Table 5 shows the classification accuracy of the trained CNN-LSTM 
on windows of four different time durations simultaneously using 3- 
by-3 confusion matrices for the three regimes. 30% of the labelled 

Fig. 8. a) RMS feature distribution of photodiode signal covering visible wavelength. b) Skewness distribution plots of IR signal corresponding to all the 
three regimes. 

Fig. 9. Comparison of energy density between five different energy bands for three different regimes.  
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data, which was stochastically split from the whole dataset, was used to 
estimate the trained model’s performance. For a better understanding of 
the model’s performance across individual time durations, the confusion 
matrix is reported so that each row across the ground-truth corresponds 
to the window length in the following order: 0.83, 1.65, 2.50, and 

3.30 ms. In this table, the classification accuracies are defined as the 
number of true positives divided by the total number of tests for each 
category. These values are given in the diagonal cells of the table (dark 
grey cells). The classification errors are computed as the number of the 
misclassified signals divided by the total number of the tests for each 
category. These corresponding values are filled in non-diagonal row 
cells. For example, the classification accuracy of the category LoF for a 
window length of 0.83 ms, in bold in Table 5, is 98.2%. The classifica-
tion error is 1% with the categories conduction mode and 0.1% with 
Keyhole. As shown in the confusion matrix, the model’s overall accuracy 
ranged from 98.2% to 99.9%. Comparing accuracies across window 
lengths, it was found that with smaller time duration (0.83 ms), the 
accuracy was lower than the other larger window lengths (1.65, 2.50, 
and 3.30 ms). Conversely, the accuracies increased with the window 
length. This analysis shows that there is information loss in smaller 
window lengths for processing regimes prediction compared to the 
larger window length. 

Fig. 10. Workflow to build the dataset from operando experiments.  

Table 3 
Number of windows for the time-synced heterogeneous sensing datasets for 
training and testing the CNN-LSTM model.  

Category Window length 

0.83 ms 1.65 ms 2.50 ms 3.30 ms 

LoF ≈ 7′500 ≈ 6′000 ≈ 4′500 ≈ 3′000 
Conduction mode ≈ 12’500 ≈ 10’000 ≈ 7′500 ≈ 5′000 
Keyhole ≈ 1′7000 ≈ 14’000 ≈ 10’000 ≈ 7′000 
Total number of windows ≈ 3′7000 ≈ 30’000 ≈ 21’000 ≈ 15’000  

Fig. 11. The schematic flow of the training strategy used in this work.  
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The generalization of the trained CNN-LSTM model concerning the 
window length was validated by analyzing the model’s prediction ac-
curacy with window lengths that were not used during training. For this 
study, five window lengths (0.5, 1.33, 2, 3, and 4 ms) were arbitrarily 

selected. Out of which, three window lengths of 1.33, 2, and 3 ms cor-
responding to 4′000, 6′000, and 9′000 data points were within the 
window lengths that the CNN-LSTM model was trained on. The 
remaining two window lengths were 0.5 and 4 ms corresponding to 500, 
12’000 data points which were outside the window lengths the model 
was trained on. The 30% of the test dataset was also split into these five- 
window lengths with ground-truth labels separately to check the 
model’s prediction. Table 6 shows the 3-by-3 confusion matrices 
depicting the classification accuracy of the trained CNN-LSTM on the 
five different arbitrarily selected windows. The overall prediction ac-
curacy of the model in these window lengths ranged from 96.5% to 
99.9%. Synonymous with the previous findings reported in Table 5, 
there was a drop in the accuracy as the window length decreased. 
However, the global accuracy on different window lengths suggests that 
the model has good generalization across the different lengths. 

4.3. Sensor ranking 

The main advantage of such multimodal analysis — made up of 
multiple sensors, 4 in our case — is a better adaptation to different sit-
uations and comprehensive decision-making. Indeed, a sensor can pro-
vide more information in specific conditions and be less informative in 
others. As it was shown by Shevchik et al. [15], the highest accuracy is 
obtained when combining multiple sensors at once. Nonetheless, it is 
noteworthy to quantify which sensor carries the most information in 

Fig. 12. The shape of the proposed hybrid architecture combining CNN and LSTM.  

Table 4 
Training parameters for the CNN-LSTM model training.  

Training 
parameters 

CNN-LSTM 

Type of analysis Classification 
Solver name ’sgdm’ 
Learning rate 0.01 (computed after every 100 epochs) 
Training epochs 800 
Batch size 200 
Dropout 0.2% 
Loss Weighted cross-entropy loss 
Regularization Elastic net regularization (L1 with alpha= 0.005 and L2 with 

decay = 0.3) 
Initialisation Kaiming 
Shuffle Every-epoch 
Training set 70% 
Testing set 30% 
Trainable weights 92 thousand parameters 
Training libraries Python version: 3.9.12 

Pytorch version: 1.11.0  

Fig. 13. Training loss and accuracy plot of the CNN-LSTM model.  
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each of the specific conditions under investigation to understand and 
improve the monitoring setup. To answer this question, we have adop-
ted the saliency maps technique, often used in computer vision, to 
highlight a region of interest in the analyzed images [94,95]. Saliency 
maps can reveal which among the data points that constitute the input 
sample are the most important, in the sense that their modification in-
fluences the most the model’s predictions. The saliency map was 
computed based on the equation Eq. (4). 

saliency = |∇inputSamplemax(outunits(inputSample) )| (4)  

where outunits ∈ RN, and N is the number of classes considered (3, in this 
case). inputSample,saliency ∈ ℝM times T, where M is the number of sensors 
(4, in this case), and T is the window length (2′500, 5′000, 7′500, 
10’000, corresponding to 0.83, 1.65, 2.50, and 3.30 ms, see Section 3.5). 
∇inputSample emphasizes that the gradient is computed with respect to the 
input sample and not to the model’s parameters as in training, and | • |
denotes the element-wise absolute value. Given that the operation of 
derivation preserves the input sample dimensionality, the median per 
sensor is applied to the saliency of every input sample (reducing the 
dimensionality from M times T to M). The result is then scaled by the 
median absolute amplitude per sensor of the input sample. This opera-
tion calculates the relative amplitude of the derivative of the maximally 
excited output unit with respect to the input sample, which is insensitive 
to the signal amplitude — allowing to compute a score per sensor for 
each input sample denoting the importance of each sensor in the 
decision-making process. 

Fig. 15 shows the distribution of the relative amplitude of the median 
saliency per sensor on our test set for each of the four window lengths. As 
stated, the computed score (the derivate relative amplitude) denotes the 
importance of each sensor, so as the derivative distribution per sensor is 
shifted to the right, the higher is the sensor importance. In this scenario, 
the sensors carrying the most informative content are the BR and AE 
sensor signals. Interestingly, as the window length reduces, the impor-
tance of AE over BR increases. This behavior can be explained consid-
ering that the AE sensor can probably capture more time-resolved events 
that contribute to the decision-making process — even with small 
windows. However, these events appear to be less reliable for the clas-
sification task, as seen in the lower accuracy obtained with smaller 
windows. In contrast, the BR requires a more extended integration 
period, which guarantees more stable and reliable results once granted 
(with a bigger time window), giving a higher accuracy. BR contributes 
more to the model’s decision-making because BR is directly correlated 
with the regimes than other secondary AE and optical emissions 

Fig. 14. Training loss and accuracy plot of the CNN-LSTM model.  

Table 5 
Confusion matrix from the hybrid-DL model on four window lengths (0.83, 1.65, 
2.50, and 3.30 ms).  

True class LoF Conduction mode Keyhole 
Predicted class 

LoF 98.9 1.0 0.1 
99.9 0.1 0.0 
100 0.0 0.0 
99.9 0.1 0.0 

Conduction mode 0.7 97.7 1.6 
0.2 99.4 0.4 
0.1 99.7 0.2 
0.1 99.9 0.0 

Keyhole 0.4 1.6 98.0 
0.1 0.2 99.8 
0.1 0.1 99.8 
0.0 0.1 99.9 

Tables for the classification accuracy results on the four windows. The classifi-
cation results in each cell are organized in the following descending order: 0.83, 
1.65, 2.50, and 3.30 ms. All values are in %. 

Table 6 
Confusion matrix from the hybrid-DL model studied on five windows (0.50, 
1.33, 2, 3, and 4 ms).  

True class LoF Conduction mode Keyhole 
Ground truth 

LoF 97.6 2.1 0.3 
100 0.0 0.0 
99.9 0.1 0.0 
100 0.0 0.0 
100 0.0 0.0 

Conduction mode 1.2 95.9 2.9 
0.0 99.4 0.6 
0.1 99.8 0.1 
0.0 99.9 0.1 
0.1 99.9 0.0 

Keyhole 0.6 3.2 96.2 
0.0 0.6 99.4 
0.1 0.3 99.7 
0.0 0.2 99.8 
0.0 0.1 99.9 

Tables for the classification accuracy results on the five window lengths. The 
classification results in each cell are organized in the following descending 
order: 0.50, 1.33, 2.00, 3.00, and 4.00 ms. All values are in %. 
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considered in this work, as depicted in Fig. 7. Also, AE contributes to the 
decision-making because the AE sensor was in close proximity to the 
process zone compared to the collimator, resulting in less information 
loss. 

5. Conclusions 

We have demonstrated a novel monitoring strategy for LPBF pro-
cesses that consists of developing and training a hybrid CNN-LSTM 
model that can classify regimes across different time scales based on 
heterogeneous sensing data. Specifically, the heterogeneous time- 
synced sensing system utilized for the hybrid model training included 
signals from four sensors, namely BR, Visible, IR, and structure-borne AE 
— measuring different aspects of the LPBF process zone in stainless steel 
(316 L) manufactured with a mini-LPBF device. The experiments were 
performed in an operando high-speed X-ray imaging environment to 
confirm the occurrence of three processing regimes: LoF, conduction 
mode, and Keyhole, which were subsequently classified with the pro-
posed DL architecture. The following generalized conclusions are drawn 
based on the experimental results:  

• The combination of two neural network architectures, namely CNN 
and LSTM, proved advantageous, allowing the creation of a single 
monitoring model that can predict the processing regime using input 
signals whose duration extends from 0.5 to 4.0 ms with high pre-
diction accuracy ranging from 95.9% to 100%.  

• Secondly, due to the usage of signals with heterogeneous time 
duration during training, the developed model was able to generalize 
its high-accuracy prediction to input data of time duration not seen 
during training.  

• Based on the model prediction accuracy over the different input data 
time durations, it was seen that there was a drop in model prediction 
as the signal lengths decreased.  

• Finally, saliency map-based sensor ranking computation revealed 
that signals from BR and AE sensors influenced the decision-making 
process more than others. Also, as the length of the window de-
creases, the AE sensor tends to have higher relevance than BR. 

In general, this research’s outcomes confirm that the proposed 
approach allows the generalization of the model’s predictions to data of 
different time scales. Though this work’s primary investigation has been 
performed by printing trivial cubes, the model’s efficacy in a more 
demanding situations such as more complex geometries and scanning 
paths is to be validated and integrated into our planned research di-
rection. Out of many events in the laser interaction zone, only three 
process regimes are evaluated in this research work. The application of 
such strategies over other types of defects is part of our future work. Our 
future work will also include optimizing the sensors’ hardware, the data 
collection pipeline, and the inclusion of physics-based inference from 
the trained models. The data and codes for this work are present in the 
following repo (https://c4science.ch/diffusion/12010/). 
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