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Abstract
We performed tomographic investigation of the most heavily perturbed (thus highly radioactive) rod and its pristine/unir-
radiated replicate from the target No. 12 of the Swiss neutron spallation source (SINQ). The tomographic dataset reveals 
the 3D re-distribution of the lead filling inside the irradiated Zircaloy tube. The change in the linear attenuation coefficient 
of both the lead filling and the Zircaloy tube of the irradiated rod (due to the presence of the entrapped spallation products) 
in comparison with the pristine/unirradiated material is quantified. The dataset provides valuable input for the enhancement 
of safety and efficiency of future spallation targets at SINQ.
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Introduction

The Swiss neutron spallation source (SINQ) [1] at the Paul 
Scherrer Institut (PSI) produces free neutrons by means of a 
target bombarded by an intense 590 MeV proton beam. The 
SINQ target comprises more than 300 hermetically-sealed 
Zircaloy tubes filled with lead up to 90 percent of its inner 
volume (see Fig. 1). The desired original distribution of lead 
filling inside the Zircaloy tube is achieved by lead melting 
and solidification [2]. The distribution of the pristine lead 
filling in the fully welded tube is then checked by neutron 
radiography using standard scintillator-camera detector.

The SINQ source is a continuous spallation source and it 
experiences a large number of short operational interruptions 
(in the order of fifty thousand over the standard two years of 
its operational lifetime). These include intentional pauses for 
the production of ultracold neutrons (so-called UCN-kicks) 
[3] and unintentional beam interruptions in the production 
of protons. Even though only a fraction of the incoming 
proton beam energy is deposited at SINQ [4], the operational 
pauses lead to cycles of melting and solidification of the lead 
filling (lead melting point is 600.6 K) in the most heavily 
thermally loaded rods [5]. The volumetric fraction of the 

lead inside the rods is only up to 90% which allows for the 
thermal expansion/contraction of lead during melting and 
solidification cycles (lead density in molten state 10.66 g/
cm3, lead density at 25 K 11.34 g/cm3). Though, it has been 
recently demonstrated using neutron radiography of inactive 
target rods subjected to heating/cooling cycles [6] that such 
repeated melting/solidification process leads to redistribu-
tion of the lead filling inside the Zircaloy tubes.

In this process, the centre part of the target rod gets pro-
gressively filled up fully with the melted/solidified lead fill-
ing, while the solid lead parts of the filling at the ends of 
the tube shrink progressively towards the centre of the rod. 
This poses a potential risk to the evolution of cracks in the 
irradiated Zircaloy tubes due to the build-up of hydrostatic 
pressures in fully filled up parts of the rods and, therefore, 
to the safety of the target [7]. The detailed knowledge about 
the distribution of lead inside the irradiated target rods is 
therefore of crucial importance for both the safe operation of 
the source and for the optimization of the source efficiency.

The SINQ targets at the end of its lifetimes represent 
very highly radioactive samples (dose rate ~ 100 Sv/h). The 
non-destructive investigation of the inner structure of highly 
radioactive materials using neutrons is demanding and is 
routinely performed only at a very few facilities worldwide 
(e.g. [8–11]). In Paul Scherrer Institute, such samples can be 
imaged at the NEUTRA thermal neutron imaging beamline 
[12] by means of NEURAP—a dedicated set-up for highly 
radioactive materials. Applications of NEURAP for imaging 
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of radioactive materials have been recently reviewed by 
Lehmann et al. [13]. It should be noted that all but one [14] 
of the applications in the above mentioned review are limited 
to 2D radiography. In this pioneering work we present the 
first attempt for tomographic investigation using a reason-
ably high number of projections with the goal of the visuali-
zation of the lead distribution in the most perturbed rod from 
target No. 12 of the Swiss neutron spallation source (SINQ).

Experimental

The SINQ target No. 12 has been operated in the years 2016 
and 2017 and received the total proton current integral of 
5,239 mAh. During that time the target experienced 23,435 
UCN-kicks and 13,504 additional unintentional short proton 
accelerator operational pauses. In September 2020, five rods 
were removed from the target in a large dedicated hot cell 
(ATEC) and placed into the NEURAP sample capsule for 
neutron radiographic investigation. Positions of the investi-
gated rods in the target No. 12 are clearly marked in Fig. 1 
left. The radiographies showed major redistribution of lead 
in the first four rods (Nos. 1–4) while the rod No. 5 exhibited 
hardly any apparent redistribution of the lead filling.

Based on the radiographic investigations, the rod No. 2 
(originally denominated Z4-5) exhibited the largest appar-
ent redistribution of the lead filling (see the arrow in Fig. 2) 
making it likely the most perturbed rod of the target No. 12 
and was thus selected as the sample of interest for the neu-
tron tomographic investigation. The dose rate of the target 
rod No. 12 measured shortly before the tomographic inves-
tigation was equal to 345 mSv/h.

For the tomographic investigation, the target rod No. 2 
has been placed at bottom of the NEURAP aluminum sam-
ple capsule. In addition, a pristine (unirradiated) Zircaloy 
replicate rod was placed on the top of the rod No. 2. For the 
purpose of the assessment of the spatial resolution, a broken 
piece of spatial resolution test object (gadolinium Siemens 
star [15, 16], was fitted on the top of the pristine target rod. 
The tomographic investigation of the two target rods was 
performed at NEUTRA beamline at measuring position No. 
2 (L/D = 365) in April 2021 (see Fig. 3). A set of 27 dyspro-
sium based imaging plates [17] of 40 × 250 mm in size were 
utilized for the investigation. In the first step, the images of 
all 27 imaging plates without any sample present in the beam 
were acquired for the subsequent image normalization. The 
following temporal sequence was consistently applied for 
the data acquisition: (1) 15 min pre-erasure, (2) 20 min neu-
tron exposure, (3) 15 min erasure, (4) 90 min self-exposure 

Fig. 1  (Left) Cross-section of the SINQ neutron spallation target No. 
12 showing the direction of the incoming protons, (middle) the photo-
graph of the target with stripped casing, (right) a sketch of the single 

Zircaloy target rod showing the original extent of the lead filling. The 
original outer diameter of the Zircaloy tube was 10 mm, the rod full 
length including the Zircaloy caps is 127.5 mm
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followed by immediate scanning of each imaging plate using 
an imaging plate reader.

The sample capsule has been lowered to the beam 
position in such a manner that the entire length of the 
irradiated sample and a lower part of the pristine sam-
ple were in the available field of view. The samples were 
then subsequently scanned in thirty-seven angular posi-
tions that were evenly distributed along 180 degrees rota-
tion. The following interleaved acquisition scheme [18] 
has been applied—0:20:180, 10:20:170, 5:10:175. Taking 

into consideration the decay time of Dy-165 m (half-life 
of 2.334 h), it was assured that the same imaging plate 
was not used more than once within 24 h. The acquisition 
sequence was completed with an image of the entire pris-
tine sample with gadolinium Siemens star for the check of 
the spatial resolution.

The total experimental time for the tomographic inves-
tigation was approximately 32 h. All the original images 
were of the size of 9920 × 1440 pixels. The pixel size was 
equal to 25 µm.

Fig. 2  Neutron radiographies of the highly irradiated five target rods from SINQ target No. 12. The rod diameters equal approximately 10 mm. 
The rod No. 2 (originally denominated Z4-5) showing the largest redistribution of the lead filling (see the green arrow)

Fig. 3  Original (above) and 
normalized (below) projection 
images of the highly radioactive 
SINQ spallation target rod
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The original projection images were normalized by the 
corresponding images of the imaging plates without sam-
ples. As the imaging plates could not be placed in the imag-
ing plate reader with sufficient (sub-pixel) reproducibility 
the images were registered to each other based on the area 
outside the sample using affine registration routine in Avizo 
software [19]. The examples of the original and the normal-
ized image are shown in Fig. 3.

After the normalization all the 37 projection images were 
manually prealigned and cropped to the size of 7236 × 744 
pixels. In the next step, the stack of the normalized images 
was registered using StackReg routine in Fiji software [20]. 
Due to the fact that the 37 projections are still far from satis-
fying the sampling theorem, the stack of images was binned 
by factor 4 × 4 leading to 37 images of 1809 × 186 pixels in 
size and of the resulting pixel size of 100 µm.

The dataset has been reconstructed using a standard fil-
tered back projection algorithm using Muhrec software [21] 
(Hamming filter, cut-off = 0.5) thus providing the 3D map of 
linear attenuation coefficients [22]. Wavelet-FFT ring artifact 
removal algorithm [23] was applied during the reconstruc-
tion. The reconstructed dataset was post-processed using ISS 
edge preserving filter [24] using Kiptool software [25].

Results and discussion

As this is the first tomographic investigation of highly radio-
active samples using the NEURAP insertion device that is 
based on reasonably high number of projections, the spatial 
resolution of the technique is discussed first here. The visual 
assessment of the image of a part of the gadolinium Sie-
mens star [15, 16] at the top of the pristine sample revealed 
approximately 120 µm spatial resolution for a single spoke 
size (240 µm line pair)—see Fig. 4. At the same time, a 
Zircaloy edge response function from the 3D dataset was 
evaluated to be approximately 300 µm (10–90% of the edge 
response distance).

Figure 5 shows the reconstructed vertical slice of the 
tomographic dataset from approximately axial position of 
the both target rods as well as the reconstructed horizon-
tal/axial slices of both the rods. The observed attenuation 
coefficient of pristine lead (Ʃpristine_lead = 0.21  cm−1) does 
not differ significantly from that of the pristine Zircaloy 
(Ʃpristine_Zircaloy = 0.20  cm−1). The average linear attenua-
tion coefficient of lead filling of the highly radioactive sam-
ple changes significantly along the horizontal position of 
the target (see Fig. 6). The highest attenuation coefficient 

Fig. 4  Image of a part of the gadolinium Siemens star resolution 
test pattern showing approximately 120 µm spatial resolution (single 
spoke size)

Fig. 5  Vertical slice from the tomographic reconstruction of (top 
right) highly radioactive SINQ target rod and (top left) a part of the 
pristine unirradiated target rod. The axial slice of the pristine/unirra-

diated sample (bottom left) and the axial slice of the highly irradi-
ated sample (bottom right) showing the clear difference in the linear 
attenuation coefficients betwen the irradiated and the pristine material
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of the lead filling (Ʃirradiated_lead = 0.33  cm−1) is observed 
approximately at the centre of the rod (see Fig. 5 bottom 
right) which represents more than 57 percent increase with 
respect to the pristine material. This is consistent with the 
fact that the centre of the highly radioactive rod received 
the highest dose of protons and therefore is expected to 
exhibit the highest level of spallation products (e.g. hydro-
gen) exhibiting superior neutron cross-section than that of 
the lead. Likewise, the increase in linear attenuation coef-
ficient is observed also in the case of the highly radioac-
tive Zircaloy tube (Ʃirradiated_Zircaloy = 0.25  cm−1). However, 
this increase is relatively lower than the corresponding 
relative increase in the linear attenuation coefficient of lead 
(25 percent for Zircaloy versus more than 57 percent for 
lead). This observation is, however, consistent with the 
lower proton capture cross-section of zirconium than that 
of the lead. The linear attenuation coefficient of aluminum 

in the NEURAP’s 16 mm-diameter sample capsule equals 
(Ʃaluminum = 0.08  cm−1).

Thanks to the relatively low noise level in the recon-
structed datasets several material phases can be easily ren-
dered. Figure 7 presents the 3D renderings of the distin-
guishable material phases in the highly radioactive target 
rod. The presence of water (blue phase in Fig. 7 top left)—
likely due to the insufficient drying of the sample capsule 
during the preceding decontamination procedure—was 
unexpected. Several droplets of the decontamination liquid 
can be observed both on the outer wall of the Zircaloy tube 
as well as on the inner wall of the 16-mm-diameter alu-
minum sample capsule.

The shape of the Zircaloy rod has been revealed in 3D and 
its thickness analysis can be thus performed at an arbitrary 
cross-section. The approximately 100 µm larger thickness 
of the rod in the centre in comparison with the thickness at 

Fig. 6  The linear attenuation 
coefficient of lead in the highly 
activated SINQ spallation target 
rod plotted as the function of 
the horizontal position of the 
rod

Fig. 7  3D renderings of the identified material phases: blue—water droplets in the sample capsule, dark green—Zircaloy tube, yellow—lead fill-
ing, black—porosity in the lead filling. The size of the visualized bounding boxes is equal to 12.6 × 12.3 × 117 mm
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the rod’s ends had been observed and was confirmed by the 
tactile measurements performed in the ATEC hot cell.

Regarding the shape of the redistributed lead filling, the 
tomographic dataset revealed that approximately 50 mm of 
the central part of the highly irradiated rod has been fully 
filled with the lead while the lead filling shrunk approxi-
mately 10 mm one side of the rod. The defects/pores in the 
lead filling—otherwise undetectable by radiography only—
were revealed in the tomographic datasets as well (see Fig. 7 
bottom right).

In general, the presented investigation offers the first 
NEURAP based tomographic dataset of highly radioactive 
material which allows a quantitative analysis based on the 
derived linear attenuation coefficients (LAC). The lower than 
expected values of the derived linear attenuation coefficients 
are to be expected due to the fact that no scatter correction 
[26, 27] could be applied during acquisition. The observed 
increase in LAC of Zircaloy due to the irradiation corre-
sponds well with the expected level of implanted spallation 
products (e.g. 6600 appmH in the SINQ target No. 11) [7].

The homogeneous distribution of linear attenuation coef-
ficient along the perimeter (see Fig. 5 bottom right) suggests 
that no areas of inhomogeneous hydrides accumulation were 
present in the radioactive target rod. This is consistent with 
the recent results based on the high-resolution neutron imag-
ing [28, 29] of SINQ target rod material [30]. As much as 
this diminishes the concerns about the extent of the local 
embrittlement, the large area of the rod fully filled with the 
lead together with the observed increase in the rod’s thick-
ness in its centre part gives reasons for safety concerns [7].

Conclusions

The first tomographic investigation of highly radioactive 
(345 mSv/h) SINQ spallation target rod using a reasonably 
large number of projections was performed. The obtained 
neutron tomography dataset is pioneering in numerous ways 
and goes qualitatively beyond any tomography of highly 
radioactive object made so far using the NEURAP tech-
nique. It reveals in 3D the re-distribution of the lead filling 
inside the rod as well as the precise shape of the deformed 
target rod (including the approximately 100 µm increase in 
the thickness of its centre part). Thanks to the applied image 
normalization trustworthy values of the linear attenuation 
coefficients of the materials are derived. The change in the 
linear attenuation coefficient of the lead filling—probably 
thanks to the presence of the entrapped spallation prod-
ucts—in comparison with the pristine lead was quantified. 
The dataset will be used in the future as a valuable input for 
possible design improvements of future SINQ targets both 
in the direction of its safety and its efficiency.
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