
Computer Physics Communications 282 (2023) 108546

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

OSSCAR, an open platform for collaborative development of 

computational tools for education in science ✩,✩✩

Dou Du a,b,d, Taylor J. Baird d, Sara Bonella d, Giovanni Pizzi a,b,c,∗
a Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
b National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, 
Switzerland
c Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
d CECAM Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 March 2022
Received in revised form 7 September 2022
Accepted 9 September 2022
Available online 16 September 2022

Keywords:
Jupyter
Notebooks
Computational physics
Computational chemistry
Computational materials science
Education

In this paper we present the Open Software Services for Classrooms and Research (OSSCAR) platform. 
OSSCAR provides an open collaborative environment to develop and access educational resources in 
the form of web applications, for which various deployment methods are discussed and compared. To 
minimize efforts in the creation and use of new educational material, OSSCAR combines software tools 
that have emerged as standards with custom domain-specific ones. The technical solutions adopted to 
create and distribute content are described and motivated on the basis of reliability, sustainability, ease 
of uptake and use. Examples from courses in the domains of physics, chemistry, and materials science are 
shown to demonstrate the style and level of interactivity of typical applications. The tools presented are 
easy to use, and create a uniform and open environment exploitable by a large community of teachers, 
students, and researchers with the goal of facilitating learning and avoiding, when possible, duplication 
of efforts in creating teaching material. Contributions to expand the educational content of the OSSCAR 
project are welcome.

Program summary
Program Title: OSSCAR Interactive Notebooks for Quantum Mechanics and Computational Materials 
Science
CPC Library link to program files: https://doi .org /10 .17632 /26py5zz9f8 .1
Developer’s repository link: https://github .com /osscar-org /quantum -mechanics
Licensing provisions: MIT
Programming language: Python
Nature of problem: Among others, computational courses (e.g. on quantum mechanics) can benefit from 
advanced interactive visualizations of the content. However, on the one hand it might be complicated for 
teachers to develop such interactive content; on the other hand, students need to be able to access very 
quickly and efficiently the content, reducing the time needed to install libraries and dependencies that 
might differ between courses.
Solution method: Here, we developed interactive web applications to complement teaching and encourage 
computational thinking for courses in computational physics, chemistry and materials science, using 
Jupyter notebooks and their rendering as interactive web applications. The latter is powered by a 
combination of Voila, to hide code and convert notebooks into live web applications, and (existing or 
custom) Jupyter widgets to enable interactiveness. The code is ready to be deployed via a number of 
open approaches.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
✩ The review of this paper was arranged by Prof. Blum Volker.
✩✩ This paper and its associated computer program are available via the Computer 
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).

* Corresponding author at: Theory and Simulation of Materials (THEOS), École 
Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
E-mail address: giovanni.pizzi@epfl.ch (G. Pizzi).

https://doi.org/10.1016/j.cpc.2022.108546
0010-4655/© 2022 The Authors. Published by Elsevier B.V. This is an open access article
1. Introduction

Software-based tools, such as notebooks or illustrative codes, 
are increasingly employed in scientific courses to enrich and com-
plement more standard teaching approaches. These tools can pro-
vide an interactive environment for teachers to demonstrate, via 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2022.108546
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108546&domain=pdf
https://doi.org/10.17632/26py5zz9f8.1
https://github.com/osscar-org/quantum-mechanics
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:giovanni.pizzi@epfl.ch
https://doi.org/10.1016/j.cpc.2022.108546
http://creativecommons.org/licenses/by/4.0/


D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546
live examples and engaging visualization, complex and abstract 
concepts that may otherwise be difficult to transmit. At the same 
time, students can gain intuition, facilitate understanding and 
strengthen learning [1] by exploiting them as simple virtual lab-
oratories, e.g., to experiment in real time with the effect of rel-
evant parameters in equations. Given these advantages, and with 
the growing relevance of remote education, software-based educa-
tional tools are becoming more common. For example, Quantum 
Physics Online [2] publishes online Java applets with visualizations 
that illustrate topics typically covered in undergraduate and master 
level courses in that area. Considering more domain-specific exam-
ples, the Soft Matter Demos [3] or NanoHUB [4] websites present 
simulations and visualizations to stimulate interest in these do-
mains. NanoHUB in particular, provides computing resources and 
computational tools that include course materials and demos with 
potential to be deployed in lessons. Other open-source platforms 
offer visual tools for education in chemistry in the form of inter-
active simulations [5]. Use of e-tools based on Google Colab was 
recently explored [6] to support the teaching of thermodynam-
ics and provide some introduction to coding in chemistry classes 
taught in Columbia. Further impetus to develop on-line teaching 
tools was added by the recent pandemic crisis [7–9], with several 
interesting studies on their effectiveness [10–12].

In spite of their great potential, widespread adoption and shar-
ing of software-based tools for teaching is, however, still hindered 
by different barriers. On the side of the teachers, the time in-
vestment to create bespoke material for different classes might be 
considerable and efforts frustrated by the lack of agile develop-
ment and deployment environments. Moreover, curating the ma-
terial to counteract software obsolescence, guaranteeing resilience 
to changes in versioning of the adopted language, and facilitat-
ing updates when content evolves are all non-trivial challenges. 
Furthermore, given that the same type of material is needed for 
classes across different areas and in different institutions, the risk 
of effort duplication is very high. No “public library” (i.e., a cen-
tralized repository of digital lessons and the ingredients to create 
them) of software teaching tools exists to reduce this risk and limit 
the teachers’ effort only to the creation of new, original material. 
On the side of the students, uptake and usage of these tools can 
be problematic depending on the technology employed to deploy 
them and the level of user-friendliness of the platforms to access 
them. Also, the lack of a coherent platform may force them to 
spend considerable effort to migrate from one technological solu-
tion to another when changing class.

In this paper, a new platform that attempts to mitigate these 
difficulties is presented: the Open Software Services for Classrooms 
and Research (OSSCAR). OSSCAR is inspired by the software archi-
tecture developed as part of AiiDAlab [13], a platform designed 
to provide easy access to research-oriented software, workflows 
and tools via a web interface. OSSCAR adapts and applies these 
concepts and technologies for education purposes. Specifically, as 
detailed in Sec. 3, OSSCAR combines and builds upon a set of 
well-established software tools to create a web-based collabora-
tive environment targeted at providing educational resources and 
enhancing awareness and adoption of best practices in Open Sci-
ence [14–17]. In particular, Open Science rests on principles (see 
for example Ref. [14]) that include the concepts of open source (in 
OSSCAR, we adhere to this by providing links to source code in 
all notebooks), open access (all our notebooks are available to ac-
cess without a paywall), and open educational content (all teaching 
materials developed within the OSSCAR project are freely accessi-
ble to any instructor who may wish to make use of them in their 
classroom). The programming language chosen is Python, and we 
use Jupyter [18–20] and JupyterLab [21] as the programming 
interface and environment. Within this framework, common visu-
alization tools and widgets are employed (and new ones are de-
2

veloped) to create interactive notebooks illustrating specific topics 
or proposing exercises. Jupyter notebooks are then automati-
cally converted into web applications exploiting the Voila pro-
gram [22–24]. The web applications hide all code and show only 
the outputs (including, in particular, the widgets to interact with 
the application) in a user-friendly format accessible through any 
browser, circumventing the need for specific software installation 
and set up. It should be noted that in recent years, considerable ef-
fort has been put into developing online educational content, also 
inside Jupyter, as evidenced by the substantial literature on the 
subject [25–38]. Here, however, we provide a novel way to use 
notebooks. In particular, we employ a specific structure, with de-
sign choices motivated by the educational literature, along with the 
aforementioned tools to conceal any superfluous and possibly dis-
tracting components from students. Additionally, we leverage the 
use of bespoke widgets which are specifically designed for maxi-
mal efficacy of the notebooks.

The contributions of OSSCAR are along three main lines, de-
tailed in the rest of the paper, and that we summarize here: 
1) provide custom graphical components (widgets) for domain-
specific visualization types (see Sec. 3.2); 2) provide custom ed-
ucational content tailored for a number of courses in the fields of 
computational physics, chemistry and materials science; these are 
developed in the form of self-contained modules that can be com-
bined and reused also beyond the courses for which they were 
originally developed (see Sec. 6); 3) provide clear documentation 
(on http://www.osscar.org), transferring know-how gathered in the 
past years on how to combine various open technologies to eas-
ily develop new educational applications and open to input and 
feedback from the community (see Sec. 7).

In the following, we first demonstrate the appearance and 
structure of an OSSCAR notebook via the example of a classic prob-
lem in quantum mechanics: the double-well potential. We then 
provide technical details on the tools employed to develop new 
notebooks and justify our choices. Next, we show some selected 
examples, based on notebooks developed for Master-level courses 
in Physics, Chemistry and Materials Science. These examples, all re-
lated to quantum-mechanical problems, also suggest that OSSCAR 
notebooks can act as modules to be combined in various ways for 
different classes.

While technologically mature, OSSCAR is at the early stages of 
development in terms of content. It is intended as an open repos-
itory to be built in collaboration with the community of students 
and teachers in scientific disciplines, and we invite contributions 
from interested groups.

2. An OSSCAR interactive web application example: a 
quantum-mechanical double-well potential

In this section, we discuss a prototypical OSSCAR application: 
the interactive visualization of the eigenvalues and eigenvectors 
obtained by solving the one-dimensional (1D) Schrödinger equa-
tion for a double square-well potential [39]. To provide a general 
overview of a typical application, we focus mainly on the key com-
ponents that are shared among the OSSCAR notebooks, rather than 
on the specific content of this example. Note that, since the web 
applications are implemented as Jupyter notebooks, as men-
tioned in the Introduction and described in more detail in Sec. 3, 
in the following we will use the terms notebooks and applications 
(almost) interchangeably.

To clarify the reasons behind the overall structure and graphi-
cal appearance of the application, we start by discussing how we 
expect these notebooks to be employed by teachers and students. 
In our experience, there are two main use cases, that we shall call 
A and B. In use case A, the notebooks are used for independent 
learning by students. Students might have simply found the appli-

http://www.osscar.org


D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546

Fig. 1. An example of the graphical layout of an interactive web application to demonstrate the numerical solution of the Schrödinger equation for a 1D double square-well 
potential. The web application is hosted at https://osscar-quantum -mechanics .materialscloud .io. a) The whole webpage, showing the typical structure of an OSSCAR notebook: 
introductory text (zoomed in panel b) including a link to the background theory, the goals of the notebook and a set of tasks and exercises for the students, followed by the 
interactive visualization (better displayed in panel c), and a legend.
cation online, or might have been referred to it with a web link, for 
example in a class. In this case, before they are presented with the 
interactive visualization itself, it is important to provide users with 
a short explanation of the goals of the application and with some 
guidance on how to best interact with it to achieve the learning 
objectives.

In use case B, instead, teachers might use the applications for 
live demonstrations during their classes to complement and enrich 
standard lecturing (textbooks, blackboard, slides, . . . ) thus improv-
ing students’ learning effectiveness [40]. We include in use case B 
also the case of teaching assistants that present the notebook con-
tent as part of their discussion sessions, because the requirements 
are relatively similar. In this second scenario, the introductory part 
of a notebook is not relevant, since the topic has already been in-
troduced and discussed by the teachers, who will instead focus 
on using the interactive part. In this case, it is essential that ap-
plications can be accessed very rapidly (in a matter of seconds), 
because they will be used only for the minimal time required to 
convey the message (typically no more than a couple of minutes), 
before the teachers continue with their lectures. (The students 
might also use the applications after the lecture is ended to re-
vise the course content, falling back into use case A.)

With these two use cases in mind, we now discuss the struc-
ture of a typical OSSCAR notebook, as illustrated in Fig. 1. (Note 
that this Figure, as well as some of those in the following such as 
Fig. 4, are shown to convey the look and feel of the notebook, its 
general structure, and showcase the role of the widgets. The de-
tailed content, in particular text which is hardly visible, is not our 
focus here.) Each application starts with a brief textual section that 
we see at the top of Fig. 1(a), including a short list of educational 
goals, a link to additional background theory, as well as a list of 
tasks to guide the exploration of the interactive part of the note-
book. Authorship is also acknowledged at the top of each notebook 
to give due credit to contributors and encourage collaborative con-
tributions by other teachers and also by students. This first section 
3

addresses the needs of use case A, to quickly assess if the notebook 
covers the topics of interest and to provide guidance for interact-
ing with the application via a set of tasks for the students. At the 
same time, this section is kept to a minimum to cover the needs 
of use case B (or of students already familiar with the application): 
being short, the section is easy to skip, so one can jump directly 
to the interactive visualization. In particular, the background the-
ory is discussed in a different, linked, page (and also there only 
as a brief overview of the physical problem, favoring links to ex-
isting online material to avoid content duplication). Furthermore, 
the solutions for the students’ tasks are hidden by default. This 
latter design choice not only keeps the first textual section short, 
but also encourages students to answer the questions themselves 
rather than read directly the solutions, promoting active learning 
and thus improving learning effectiveness [41,42].

Below this textual introduction, we find the interactive visu-
alization section, better displayed in Fig. 1(b). This is the core of 
the web application. Each interactive visualization consists of two 
main groups of components: the interactive figures and the con-
trollers. The controllers are “widgets” (discussed in more detail in 
Sec. 3.2) such as sliders, dropdown menus, checkboxes or buttons, 
that allow one to tune some parameters of the model or the vi-
sualization itself and whose effect is dynamically reflected in the 
interactive figures.

In this specific example, the top part with the figures displays 
the potential energy (thick black line, formed by two square wells) 
and the wavefunctions (colored thin lines) at the height of the 
corresponding eigenvalues. The right part of the plot displays the 
eigenvalues only, represented as thick horizontal lines (with the 
same color of the corresponding wavefunctions).

In the controllers section of this figure, five sliders are used to 
tune the width and depth of the two square wells and the distance 
between the two. Two radio buttons allow the students to decide 
whether to display the wavefunction ψ(x) or the probability den-
sity |ψ(x)|2. A sixth slider can be used to determine the “zoom 

https://osscar-quantum-mechanics.materialscloud.io


D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546
factor” of the wavefunctions (i.e., a multiplicative factor in front of 
the wavefunction, that is only used to have a nice visualization but 
does not affect the simulation).

In typical notebooks the figures, in addition to being dynamic 
(i.e., changing their content as soon as the value of one of the 
controllers is modified), can also be interactive: for instance, in 
this specific example, a click on one of the wavefunctions (or on 
the corresponding eigenvalue on the right-hand side) displays its 
plot and numerical value, while hiding all other wavefunctions. A 
button “Show all” in the controllers section allows one to display 
again all the wavefunctions.

Finally, at the bottom of the page (see Fig. 1(a)), there is a leg-
end that describes in more detail the figure components and the 
functionality of each controller. This is placed at the bottom of the 
page as a useful reference, mostly to cover the needs of use case A, 
but we strive to design the interactive visualizations so that all fig-
ures and controls are as intuitive and self-explanatory as possible, 
reducing to a minimum the need to read the legend.

A collection of OSSCAR web applications can be considered as 
a “living book”, with powerful interaction and visualization ca-
pabilities that go beyond what is achievable on printed text or 
static images, and can convey more effectively advanced content 
to students, facilitating their understanding. In addition, the tasks 
presented at the top of the notebook help students to focus their 
attention on core concepts. For instance, one of the tasks of this 
notebook suggests investigating the phenomenon of quantum tun-
neling and anticrossing of states as a function of the distance 
between the two wells: by moving the slider to alter the gap dis-
tance, students can vividly observe in real time how the wavefunc-
tions and their energies change, something that would be difficult 
to achieve through traditional teaching.

Finally, at the very top of each page, we also provide a link to 
the source code of the notebook. We discuss the additional advan-
tages of providing immediate access to the notebook source code 
in Sec. 7.

3. Technology to develop interactive web applications

One of our key design goals for OSSCAR is to make it simple 
enough for teachers with basic coding experience to develop fur-
ther applications. Consequently, as mentioned in the Introduction, 
the majority of the software stack is deliberately composed of ex-
isting open, well documented and well maintained software. The 
motivation behind doing this is to maximize the lifetime and ac-
cessibility of the notebooks by ensuring that they do not depend 
on custom software and technology that might become unsup-
ported soon. Let us now detail the core technological components 
of the OSSCAR platform.

3.1. Development environment: Python and Jupyter/JupyterLab

We choose Python as the programming language for the inter-
active notebooks. Python is a common programming language for 
data science and scientific computing that has gained popularity 
in the past years in many computational scientific disciplines [43]. 
This is probably due to both Python’s syntax, which is relatively 
easy to learn and quite readable even for people with little pro-
gramming experience, and to the very large number of free Python 
packages that can be easily installed via, e.g., the pip [44] or
conda [45] package management tools.

Python allows for relatively rapid development, even if (being 
an interpreted language) it might be slow for expensive computa-
tions. The need for performant simulations is less of an issue for 
education-oriented applications than for scientific production runs, 
since the main goal is not to obtain results with ultimate precision 
and speed, but rather to demonstrate the simplest approximation 
4

that captures the essential aspects of the model (so that students 
can focus on the core concepts, and not on the numerical opti-
mizations). In spite of this, in both use cases described in Sec. 2 it 
is very important that simulations can be performed almost in real 
time (or in any case, in a matter of seconds). Indeed, in use case A 
students might easily lose focus if they have to click a button and 
wait for minutes before the results appear. Moreover, slow execu-
tion time limits the interactive capabilities of the applications and 
the number of different input parameters that students can exper-
iment with. Similarly, teachers in use case B need to be able to 
demonstrate rapidly the relevant results to students before contin-
uing with their lectures.

While in our experience Python is often fast enough, there are 
cases in OSSCAR where strategies to speed up the simulations are 
required (e.g., when performing simulations with millions of itera-
tions, or when dealing with large matrices). We list some of these 
strategies in Appendix A.

For the purpose of creating interactive visualizations, however, 
the programming language itself is not sufficient, but one also 
needs a library to enable powerful displays of the results via a 
graphical user interface (GUI). A relatively large number of GUI li-
braries are available for Python. Our choice is to use Jupyter
notebooks (using a “classic” Jupyter server, or the more recent
JupyterLab environment), that provide a notebook interface to 
interact with Python code.1 Jupyter has very rapidly gained pop-
ularity, also in the scientific context [46,47] (including for teach-
ing [27]), as a very powerful approach to distribute understandable 
and reusable code.

Having a notebook interface means that the whole code is di-
vided in cells, and each cell contains only a part of the code that 
can be executed independently, and whose output is displayed 
underneath the cell. The advantage is that the notebooks do not 
contain only the source code, but can also include contextual rich-
text annotations, descriptions, and widgets (such as plots, buttons, 
. . . – see discussion in Sec. 3.2), combining in a single consistent 
document both the code and its documentation and visualiza-
tion.

One of the reasons why we choose Jupyter in OSSCAR, be-
sides its popularity (and thus availability of visualization and wid-
get libraries), is that the GUI is web-based and displays directly 
in the web browser. As such, it works on any computer operating 
system (OS) and does not require additional installation of cus-
tom software, contrary to typical GUIs that might require one to 
install OS-specific code and libraries. Having a simple web-based 
interface is one of the key requirements in OSSCAR to make the 
use of the applications straightforward. We discuss in the next sec-
tions how to implement interactive visualizations within Jupyter
notebooks, and then discuss in Sec. 4 how to completely hide the 
Python code and provide students with a very simple and intuitive 
web interface.

3.2. Widgets: components for interaction

Visualization plays a crucial role in human learning [48]. This 
is important, for instance, when dealing with multi-dimensional 
representations, where interactive 3D plots can be very effective 
in representing datasets. In particular, in fields such as computa-
tional physics, interactive figures can greatly facilitate explanation 
of abstract concepts compared to text, bare equations or static fig-
ures. In Appendix B we discuss some plotting libraries for 2D and 
3D plots that we use in OSSCAR, with some minimal usage exam-
ples.

1 We note for completeness that Jupyter(Lab) can actually work also with 
programming languages other than Python.



D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546
Fig. 2. (a) A custom OSSCAR widget to display the molecular orbitals of a molecule 
(in this example, benzene), wrapping the NGLView Jupyter widget. (b) A custom 
OSSCAR widget to compute and plot the first BZ of any crystal, together with the 
labels of high-symmetry points and a suggested path to compute a band structure.

However, while plots are essential to display the results of a 
simulation or the values of a function, one additional type of com-
ponent is crucial to enable interactivity and decide the relevant 
parameters in the controller section (e.g., the width or depth of the 
quantum well in the example of Fig. 1). As previously mentioned, 
these components are called widgets and allow the user both to 
supply inputs and to trigger events (e.g., via a click on a button). 
The Python library ipywidgets provides a large number of com-
mon native widgets working within Jupyter notebooks, such as 
sliders, checkboxes, dropdowns, text areas and buttons.

We show in Appendix C a simple example, both to illus-
trate how easy the code to interact with these widgets can be, 
and to discuss how one can implement instantaneous reaction to 
events.

3.2.1. OSSCAR custom widgets
When Jupyter-ready widgets are not already available, OSS-

CAR develops bespoke widgets customized for specific needs, em-
bedded in our applications and realized as open source. A typical 
example is custom visualizations necessary to display domain-
specific content, especially for 3D visualization. While general-
purpose 3D libraries exist, they often require one to define the data 
to visualize at a very low level (e.g. by providing the coordinates 
of the triangles composing a surface mesh). This is however very 
cumbersome and requires lengthy custom code, while a teacher 
would strongly benefit from a simple domain-specific widget re-
quiring only minimal input. Widgets with this goal are provided by 
OSSCAR as shown in the two examples in Fig. 2. Panel (a) shows 
a widget to plot the isosurfaces of molecular orbitals [39]. It lever-
ages the NGLview visualizer [49], but exposes a simpler interface 
to directly plot volumetric data associated to molecules. Panel (b), 
instead, shows a custom widget to compute and display interac-
tively the first Brillouin zone (BZ) [39] of a crystal. It is based 
on the JavaScript visualizer developed as part of the SeeK-path 
library [50], and it exposes to teachers a very simple Python inter-
face: one just needs to provide the three real-space lattice vectors 
to generate the BZ, where high-symmetry points are automati-
cally displayed and labelled, together with the suggested path to 
compute band structures. Another example of a custom widget de-
veloped in OSSCAR, not shown here, is an interactive periodic table 
that allows users to select and group multiple chemical elements 
(with each of them being in one of a range of possible states, e.g., 
to select elements to be either included or excluded for searches 
and filtering).

We emphasize that developing a new widget might not be 
straightforward, as it requires relatively advanced knowledge of 
both Python and JavaScript, as well as experience with specific 
frameworks and libraries in the two languages. However, once a
Jupyter widget has been developed and published, its use is 
very straightforward, typically requiring only a couple of lines of 
5

Python code. Therefore, the custom OSSCAR widgets are a power-
ful catalyst that we provide to facilitate and promote the creation 
of interactive notebooks with effective visualizations, and we ex-
pect to keep developing new ones with input and contributions 
from the more expert user community.

The OSSCAR widgets and access to their download links can be 
found on the OSSCAR webpage, in particular following the entry in 
the sidebar of page.

4. Convert notebooks into web applications

In the use cases A and B described in Sec. 2, the primary goal 
of the interactive visualizations is to deliver physics knowledge, 
with less emphasis on programming and algorithms behind the 
notebook. The code might actually be distracting the first time a 
student interacts with the application, and therefore we prefer to 
hide it in order to retain clarity in the presentation.

A number of tools have been developed to convert Jupyter
notebooks into shareable web applications, including appyters [51], 
nbinteract [52], bokeh [54], Voila [22], and appmode [55]. In OS-
SCAR we opted to use Voila, a subproject of Project Jupyter that 
can turn Jupyter notebooks into live standalone web applica-
tions, by executing the whole notebook and rendering only the 
output cells into a web page format, while all of the source code is 
hidden. For instance, Fig. 1 shows the page obtained for the double 
quantum well after rendering the notebook with Voila. Addition-
ally, Voila keeps the Python code active (i.e., an active connection 
is maintained between the web frontend and the so-called “Python 
kernel” in Jupyter). This is crucial to allow the Python callbacks 
(see, e.g., Fig. C.8) to be executed when the users interact with 
the widgets. Other solutions provide various levels of interactiv-
ity. Nbconvert, for instance, converts the notebook into a static 
webpage [56]. While this approach has the advantages of easier 
deployment (see also Sec. 5), it limits the interaction possibilities. 
On the other hand, JupyterBook constitutes a solution with an in-
termediate level of possible interactivity [57], enabling the user to 
launch interactive code via Binder, Google Colab, or Thebe [53]. In 
addition, Voila supports the development of custom templates 
to modify the overall appearance of web applications. In OSSCAR, 
we have developed our own template that is also shown in Fig. 1
(e.g., the header and footer with the OSSCAR logo are part of this 
template) to provide a uniform and consistent look and feel for all 
notebooks.

While the code can be completely hidden from the user and 
thus made fully private using Voila, we stress that in OSSCAR 
we strive to provide a solution that fully complies with the Open 
Science principles: not only regarding open availability of the ap-
plications for reuse in other classes, but also releasing open source 
all code for inspection and reuse. Therefore, all source code of the 
OSSCAR notebooks is available as open source on GitHub, and each 
notebook displays a link to it at the top of each page (see also 
Sec. 7).

5. Deployment on web/cloud servers

The final aspect of making the notebooks available to a broad 
audience is their deployment. This is crucial, as most users will not 
have the time (nor, often, the expertise) to install locally Python,
Jupyter and all the dependencies to run the notebooks. There-
fore, easy access to the applications with just a web link becomes 
essential to make them straightforward to use.

However, deployment (especially if it has to be efficient) often 
comes with some costs associated to it. For instance, hosting con-
tent on most public cloud services is not free, while self-hosted 
servers might also have a non-negligible cost associated to the hu-
man time needed to maintain the service (perform system security 



D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546

Fig. 3. Input GitHub details to generate the mybinder.org link.
updates, recover after system crashes, . . . ). Therefore, in OSSCAR 
we have investigated various solutions and, while we did not find 
a single one that covers all requirements, we identify, use and sug-
gest three different (free) solutions to deploy and deliver the web 
applications, depending on the student and teacher needs. These 
are briefly described below, highlighting pros and cons of each so-
lution.

5.1. mybinder.org

mybinder.org is a website offering a free cloud solution to 
deploy Jupyter notebooks, and has been already used to serve 
course content to students [58]. mybinder.org allows one to 
generate a unique URL associated to a GitHub repository that 
contains notebooks and code. When a user opens the link, my-
binder.org automatically fetches the code and runs it in an 
isolated environment for each user (using Docker [59] containers 
behind the scene) so that each user does not interact with others 
using the application at the same time.

mybinder.org requires minimal effort for teachers. One first 
has to create a public GitHub repository with the notebooks and 
some basic configuration files that, as detailed in their documen-
tation, primarily consist of a list of Python dependencies that need 
to be installed in order to make the notebooks functional. Then, 
on the mybinder.org homepage, one can easily obtain a unique 
link (that can be distributed to students, or published on a web-
page) to access the deployed application. The link can be obtained 
simply by providing the GitHub repository name, the Git branch 
name and the notebook URL (see Fig. 3). The link will open by 
default the notebook in a JupyterLab environment. Furthermore, 
using Voila together with mybinder.org is very straightfor-
ward: one can just declare Voila among the dependencies, and 
then prepend the string /voila/render/ to the notebook URL 
to trigger the Voila server extension at load time.

Being free, open and requiring almost zero maintenance effort, 
this service is extremely useful, but there are two shortcomings. 
The most critical one is that every time that the page is loaded, 
the initialization might take a significant amount of time (from 
a few tens of seconds to some minutes). This might be problem-
atic for the needs of the two use cases described in Sec. 2, and in 
particular for use case B, where a teacher might want to use the 
application only for a very short amount of time. In addition, be-
ing a free service, the computing power is also very limited, which 
can be an issue for sophisticated notebooks performing advanced 
simulations. Nevertheless, we strongly encourage any teacher de-
veloping a notebook to provide a mybinder.org link in their 
homepage, as this makes the notebooks immediately accessible 
6

(even if with a lag of a few tens of seconds) to any web user, 
without any setup needed.

5.2. dokku deployment

In order to speed up the startup time of each notebook, we 
also deploy the OSSCAR notebooks on custom resources using an 
open-source software called dokku [60]. dokku is an extensible 
Platform-as-a-Service software that makes deployment of applica-
tions extremely easy. In particular, one just needs to place all their 
code and notebooks inside a Git repository, and push the content 
to the dokku server to update the deployed version.

Similarly to mybinder.org, dokku transparently creates a
Docker container. This container is, however, the same one for 
all users and user isolation is obtained thanks to Voila. This 
requires special care when implementing the notebooks to avoid 
unexpected interactions between users, e.g., if files with the same 
name are generated on the server. The startup time, however, is 
considerably reduced, typically to 5 seconds or less.

Unfortunately, this solution also has some shortcomings. In ad-
dition to having to understand the deployment model to prevent 
unexpected interaction among different users, installing and main-
taining a dokku server requires the availability of an online server 
(that might not be free) and most importantly it requires expertise 
in managing and deploying web servers. In our case, we leverage 
the dokku service provided by the Materials Cloud portal [61], 
with servers hosted at the Swiss National Supercomputing Cen-
ter (CSCS), that kindly provides the resources to host the OSSCAR 
applications. For instance, the applications for quantum mechan-
ics described later in Sec. 6 can be accessed at the address https://
osscar-quantum -mechanics .materialscloud .io. If, however, a teacher 
does not have access to such a deployment, this solution might not 
be viable (we note, however, that similar hosted commercial solu-
tions exist, such as heroku.com for instance, that might have a 
free tier for small non-commercial applications).

5.3. Institutional JupyterHub servers

Because of the widespread adoption of Jupyter, many univer-
sities, research centers and computer centres are now offering to 
their users (teachers, students, researchers) access to locally hosted
JupyterHub installations. JupyterHub is an open server facili-
tating the provision of multi-user access to notebooks.

This solution could be ideal for courses given at universities 
where this service exists and all students have access to it. The 
added benefit of this deployment approach is that each student 
has access to their persistent home folder, where they can not only 
install and use the applications, but also easily modify the code 

https://osscar-quantum-mechanics.materialscloud.io
https://osscar-quantum-mechanics.materialscloud.io


D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546

Fig. 4. An example of the graphical layout of an OSSCAR notebook as displayed in the JupyterLab interface. This specific example is available via the EPFL NOTO platform.
and run the modified versions, possibly contributing back their 
changes to the original repository. This solution is therefore par-
ticularly suitable if the teachers want to encourage the students to 
modify and adapt the code of the notebooks.

One example of such an institutional JupyterHub is the 
NOTO platform at EPFL (https://noto .epfl .ch). We show how a note-
book appears inside the JupyterLab interface provided by NOTO 
in Fig. 4, but we stress that many more universities are already 
providing a similar service, also thanks to the fact that Jupyter-
Hub and JupyterLab are open source and officially supported as 
part of Project Jupyter.

We finally mention that in terms of use cases covered, also 
Google Colab [62] can be considered to fall within this category, 
where rather than institutional credentials one would need instead 
a Google login. Note that, at present, this is not a viable option for 
deployment of OSSCAR notebooks due to the lack of easy integra-
tion of Voila in Google Colab.

6. OSSCAR notebooks for computational science

In addition to proposing guidelines for best practices in devel-
oping open teaching content, and developing custom widgets for 
computational-science content, one of the main goals in OSSCAR is 
to generate open and free learning content in the broad domain of 
computational physics, chemistry, and materials science.

OSSCAR currently offers a number of interactive notebooks cov-
ering the topics of quantum mechanics, band theory of crystals, 
statistical mechanics, and molecular dynamics. The choice of the 
topics stems primarily from the content of two courses taught by 
some of the authors at EPFL (“Computational methods in molecular 
quantum mechanics” and “Atomistic and quantum simulations of 
materials”). The notebooks have been already used in the past year 
with very positive feedback from students. In particular, anony-
mous surveys were conducted at the end of one of the courses. 
The results indicate that for the majority of students (over 70%) 
the inclusion of interactive visualizations during the classes was 
motivating and helped them to better understand the core course 
concepts by being actively engaged in the learning process. Fur-
thermore, the same proportion of students also accessed and used 
the interactive visualizations to improve their understanding af-
ter the lectures, while revising the course content (use case A in 
Sec. 2). Students also provided valuable feedback for improvement 
of the notebooks, and, in both classes, some even demonstrated 
interest in generating new educational content using the OSSCAR 
approach.
7

Without aiming at presenting an exhaustive list, in the fol-
lowing we briefly show some selected examples of applications 
developed in OSSCAR, to demonstrate with practical examples 
the general concepts and technologies (such as the widgets) de-
scribed earlier. More applications are available online, and we 
expect the list to continue growing in the future. The source 
codes of all notebooks are available on the GitHub repository at 
https://github .com /osscar-org /quantum -mechanics and can be di-
rectly inspected on our dokku server at https://osscar-quantum -
mechanics .materialscloud .io.

Fig. 5 presents three different OSSCAR notebooks. As mentioned 
in Appendix B, we use matplotlib to render 2D interactive fig-
ures. This is the case, for instance, for the two plots in Fig. 5(a), an 
application illustrating the construction of norm-conserving pseu-
dopotentials [39]. The two panels display the hydrogen-atom po-
tential and the pseudopotential that was generated (bottom panel) 
and one of the wavefunctions and the corresponding pseudo-
wavefunction (top panel). Users can select the principal quantum 
number n and the angular quantum number l of the wavefunction 
in the controllers region, as well as the cutoff radius Rc determin-
ing the core region.

In Fig. 5(b) we instead show an application that illustrates the 
use of Monte-Carlo simulations with the Metropolis–Hastings al-
gorithm [63,64] to sample the canonical distribution at a given 
temperature T for a potential that can be selected among vari-
ous possibilities (a 2D double-well potential is selected and shown 
in the figure). Students can set the starting coordinates (x, y) of 
the simulation, select the temperature T , and tune the simula-
tion parameters (maximum move size and total number of iter-
ations), to investigate both physical (temperature and potential-
barrier height) and numerical effects on the efficiency and ergod-
icity of the simulation. This application displays various types of 
figures: a 3D visualization of the potential energy surface (top left, 
displayed with plotly as discussed in Appendix B), the proba-
bility histogram as a color map obtained from the simulation (top 
right, displayed using matplotlib), and the total energy as a 
function of the Monte-Carlo move (bottom right). This notebook is 
also an example of the Multiple Representation Principle, where 
complementary representations of related quantities are displayed 
to facilitate learning, thanks to the different informational content 
of each of them [65].

Finally, Fig. 5(c) shows an application to compute and show 
the band structure and BZ of a simple empty-lattice free-electron 
crystal (for simple, face-centered and body-centered cubic lat-
tices) [39]. The notebook can be used to explain the concept of 

https://noto.epfl.ch
https://github.com/osscar-org/quantum-mechanics
https://osscar-quantum-mechanics.materialscloud.io
https://osscar-quantum-mechanics.materialscloud.io


D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546

Fig. 5. Three interactive web applications developed in OSSCAR and used to complement teaching in classes of computational simulations. The web applications are hosted at 
https://osscar-quantum -mechanics .materialscloud .io. a) Construction of a norm-conserving pseudopotential. b) Monte-Carlo simulations to sample the canonical distribution 
of a given potential energy surface. c) Electronic band structure and first BZ of an empty-lattice free-electron crystal. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)
reciprocal space, discuss how band structure paths are selected, 
and compare band structures of actual materials with the free-
electron case. While the band structure plot (on the right) uses 
the same matplotlib library that we employ for 2D plots, the 
left part uses the custom OSSCAR BZ visualizer already described 
in Fig. 2(b).

6.1. A library of focused self-contained applications

From a learning perspective, we strive to design each web ap-
plication to be self-contained and focused on conveying one sin-
gle core concept. When more complex concepts need to be ex-
plained, we prefer and suggest splitting the content into a se-
quence of propaedeutic smaller notebooks, each focusing on a 
single (sub)topic. This makes each application easy to use even 
without teacher supervision, and the series of notebooks guides 
the students in a progressive learning process. To demonstrate 
this modular approach, we show in Fig. 6 four different exam-
ples of notebooks focusing on basic quantum-mechanical concepts, 
in addition to the double quantum well already presented in 
Fig. 1.

The first notebook of the series is shown in Fig. 6(a), focusing 
on the numerical solution of the Schrödinger equation for a sin-
gle 1D finite square-well potential [66]. Being one of the simplest 
quantum models, it allows students to start familiarizing them-
selves with the visualization of quantum eigenstates, and to in-
spect the effect of quantum confinement [67].

The second notebook in the series is the double quantum well 
already discussed in Fig. 1: having two wells, it allows students 
to investigate their interplay and the effect of quantum tunnel-
ing. A slightly more advanced model is presented in the notebook 
of Fig. 6(b), where a 1D asymmetric quantum-well system is now 
proposed, described by the expression V (x) = x4 − 0.6x2 +μx. The 
8

parameter μ can be tuned via a slider to determine the amount of 
asymmetry between the two wells. The lower panel, showing the 
eigenenergies of the three lowest states in the system as a func-
tion of μ, helps students to focus on the phenomenon of avoided 
crossing [68].

Fig. 6(c) goes back to the same single quantum-well model of 
Fig. 6(c). However, the teaching focus in this case is not on the so-
lutions of the equation, but on the algorithm to obtain them. In 
particular, this notebook aims at describing the shooting method 
using Numerov’s algorithm [69]. The vertical sliders on the left al-
low one to choose a “guess” energy, that will be used to determine 
a wavefunction with the correct boundary condition for x → −∞
(vanishing wavefunction). However, only the actual eigenvalues of 
the system will return a wavefunction that fulfills the vanishing 
boundary condition also at x → +∞. The students can then try 
various values to understand how the algorithm works. For con-
venience, we also provide an “Auto search” button, which imple-
ments the full algorithm and aids in quickly finding the correct 
solutions.

Finally, the most advanced notebook is shown in Fig. 6(d). 
Unlike the previous applications (solving the time-independent 
Schrödinger equation), this notebook demonstrates the solution of 
the time-dependent Schrödinger equation using the split-operator 
Fourier transform (SOFT) numerical method [68,70]. After choosing 
a potential energy shape, a wavepacket is constructed and its time 
evolution is computed and displayed. The various panels enable 
the monitoring of the wavepacket evolution in real and reciprocal 
space (top panels), as well as the kinetic and potential energy of 
the packet and the conservation of the total energy (bottom left 
panel) and of the norm of the wavefunction (bottom right panel) 
to inspect the robustness of the algorithm.

https://osscar-quantum-mechanics.materialscloud.io


D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546

Fig. 6. Four OSSCAR applications of different levels (from basic to advanced) addressing the general topic of the solution of the Schrödinger equation, to demonstrate how 
an advanced topic can be split into smaller self-contained notebooks. a) Numerical solution of the 1D time-independent Schrödinger equation for a single quantum-well 
potential. b) Avoided crossing in a 1D asymmetric quantum well. c) Explanation of the shooting method and Numerov algorithm to solve the Schrödinger equation. d) 
Numerical solution of the 1D time-dependent Schrödinger equation using the split-operator Fourier transform (SOFT) method and time evolution of a wavepacket.
7. Documentation, tutorials, and source code to engage teachers 
and students

As we mentioned earlier, the overarching goal of OSSCAR is to 
foster an open-science approach for education, encouraging other 
teachers and researchers to develop their own educational interac-
tive web applications and inviting them to share them on this plat-
form. The previous sections describe a number of strategies that 
are all instrumental to this objective. In addition we provide online 
extensive documentation and tutorials, accessible from the OSSCAR 
homepage (https://www.osscar.org), to illustrate how to contribute 
to the project. The documentation, in conjunction with the library 
of notebooks, assists and encourages teachers in developing further 
teaching content. All existing notebooks and custom widgets are 
released with open-source licenses and hosted on GitHub reposi-
tories of the OSSCAR organization (https://github .com /osscar-org). 
These serve as examples for development of new applications. 
In addition, the repositories not only contain the notebooks with 
the source code of all applications, but also all configuration files 
needed for deployment on, e.g., mybinder.org or on dokku. 
9

Therefore, each repository is a complete template to develop a new 
web application. Teachers can extract the notebooks or just the 
configuration files, modify them for their individual needs, and, if 
they wish, contribute new notebooks for different courses. Specific 
guidance for new contributions is available on the OSSCAR home-
page [71] and has been included in the README of the project’s 
main GitHub repository.

Furthermore, as discussed in Sec. 2, we provide a direct link at 
the top of each application to directly access the source code, aim-
ing at multiple objectives. First, interested students (after having 
interacted with the notebook) can inspect the code to see which 
algorithms have been used to solve the equations, and possibly 
adapt the codes and algorithms to gain an even deeper under-
standing of the subject. Second, code access encourages both stu-
dents and other teachers to provide feedback and improvements 
via GitHub issues and pull requests, in a fully collaborative and 
open approach and in the spirit of Open Science. Third, by en-
gaging the students in the preparation of the content, teachers 
can implement and encourage in their courses approaches of peer 

https://www.osscar.org
https://github.com/osscar-org


D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546

1
2
3

instruction and cooperative learning, that have been shown to in-
crease student engagement and understanding [72].

8. Conclusions

We presented OSSCAR, an open web-based platform for ed-
ucational content. OSSCAR provides a collaborative environment 
where teachers can easily develop, deploy, and distribute to stu-
dents interactive notebooks that facilitate scientific learning via 
visualization, examples, and numerical experimentation. The plat-
form aims at hosting a growing number of modules, each tackling 
a specific topic and with the potential to be combined and or-
ganized in multiple ways, based on the needs of each class. This 
free online library will hopefully provide a set of “off-the-shelf” 
tools to complement classical teaching, and attract contributions 
by a large community of teachers recognizing the advantage of 
sharing and improving over duplicating. New content is welcome 
and can be easily created in the OSSCAR environment, that re-
lies on user-friendly and common languages and software, such as 
Python and Jupyter, as the key development tools. Easy deploy-
ment of the notebooks is achieved by their automatic conversion 
into web applications via the Voila software, and then by host-
ing them on existing or custom web cloud solutions. Students can 
thus access the material directly via their web browser, avoiding 
the need of tailored installations for each individual course. They 
learn by performing specific tasks, solving exercises, and – impor-
tantly – experimenting in real time with the interactive content 
of the notebooks. Further information on the OSSCAR project and 
the documentation can be found on the project web page: https://
www.osscar.org. Examples, custom widgets and templates for the 
development of OSSCAR web applications are available on GitHub 
at https://github .com /osscar-org.

CRediT authorship contribution statement

Dou Du: Formal analysis, Investigation, Methodology, Software, 
Validation, Visualization, Writing – original draft, Writing – re-
view & editing. Taylor J. Baird: Formal analysis, Investigation, 
Methodology, Software, Validation, Writing – review & editing.
Sara Bonella: Conceptualization, Funding acquisition, Methodology, 
Project administration, Supervision, Writing – review & editing.
Giovanni Pizzi: Conceptualization, Formal analysis, Funding acqui-
sition, Methodology, Project administration, Resources, Software, 
Supervision, Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

All data and code used for research descried in the article is 
available online under open-source licenses.

Acknowledgements

We acknowledge financial support from the EPFL Open Science 
Fund via the OSSCAR project. We acknowledge CECAM for dedi-
cated OSSCAR dissemination activities. We acknowledge the NCCR 
MARVEL (a National Centre of Competence in Research, funded 
by the Swiss National Science Foundation, grant No. 182892), the 
European Centre of Excellence MaX “Materials design at the Exas-
cale” (grant No. 824143) and the European Union’s Horizon 2020 
research and innovation programme under grant agreement No. 
10
957189 (BIG-MAP), also part of the BATTERY 2030+ initiative un-
der grant agreement No. 957213, for their support in the de-
ployment of the applications on the Materials Cloud (via dokku). 
The authors are grateful to Michele Ceriotti, Nicola Marzari, Igna-
cio Pagonabarraga and Berend Smit for fruitful discussions, Cécile 
Hardebolle for feedback and useful discussions on how to bet-
ter design the notebooks to increase their learning effectiveness, 
Pierre-Olivier Vallès for the support for the deployment on the 
EPFL NOTO JupyterHub platform, Guoyuan Liu for implementing 
two notebooks, and the students of the courses where the OSSCAR 
content was used for providing valuable feedback on style and con-
tent.

Appendix A. Strategies to speed up Python simulations

The first and foremost approach to accelerate simulations is 
to optimize, rethink or adapt the algorithm. However, the use of 
packages such as NumPy [73] and SciPy [74] (nowadays standard 
dependencies of a vast majority of scientific Python code) helps in 
making a wide range of complex but common operations (such as 
matrix operations, advanced optimization routines, ...) easy to use 
and as efficient as compiled languages, since internally the core 
computational routines are implemented in C, C++ or Fortran. Fur-
thermore, other technologies and libraries exist to speed up Python 
code. We mention here only few examples, used in some OSSCAR 
notebooks: the Numba [75] package, to write Python codes using 
only simple types and arrays and to convert them to C codes on 
the fly with a just-in-time (JIT) compiler; and the Cython [76]
package (and f2py [77], now part of NumPy) to write computa-
tionally expensive routines directly in C (and Fortran, respectively), 
and then call those from Python.

Appendix B. Libraries for visualization and plotting

One of the most typical tools for visualization in scientific ap-
plications are plots in two or three dimensions. Many libraries 
for such common plots are available in Python and are interfaced 
with Jupyter, including matplotlib [78], plotly [79], bq-
plot [80] or ParaView [81].

With the approach that we describe in this paper, we do not 
limit or prescribe which libraries can be employed to develop new 
applications. Nevertheless, we made some considered decisions on 
our first choice libraries, trying to select the smallest set of differ-
ent libraries that can cover use cases most commonly encountered, 
are fast enough for large datasets, and have wide community sup-
port. By favoring reuse of the same libraries in multiple notebooks, 
we provide a consistent user experience to students, and at the 
same time the notebooks become a suite of examples of how to 
interact with the chosen libraries.

In particular, in the OSSCAR notebooks we use matplotlib as 
the main plotting package for two-dimensional (static, animated 
and interactive) plots, such as charts or color plots. As an exam-
ple, the interactive figures in Fig. 1(c) are produced using mat-
plotlib. For the purpose of illustration, in the following we 
show a short, but fully functioning, Python code to demonstrate 
the simple syntax required to generate basic plots.2

We can generate two panels side by side with the following 
code:

%matplotlib notebook
import pylab as plt
fig, axes = plt.subplots(1, 2)

2 Naturally, slightly longer code is needed to achieve more refined results, e.g. to 
change the panels aspect ratio, the color of the plots, etc.

https://www.osscar.org
https://www.osscar.org
https://github.com/osscar-org


D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546

1

1

1

1
2
3
4
5
6
7
8
9
Fig. C.7. Creation of a slider widget (from the ipywidgets package) to enable the 

user to control a (floating point) numerical value. The parameters passed to the 
initializer allow to decide the default initial value and the range (min, max) of 
allowed inputs, together with a textual description of the widget. In subsequent 
cells, it is possible (from Python) to retrieve the current value of the widget, or set 
its value programmatically, using the .value property.

where the first line enables interactive plots, the second imports 
the main plotting module of the matplotlib library, and the 
third generates the empty panels.

The code defines axes as a list of two subplots, with axes[0]
being the left one and axes[1] the right one. We can now plot a 
curve on the left panel with:

axes[0].plot(x, y)

In this instruction, x is a Python list of x coordinates of each of the 
points, and y the corresponding list of y coordinates. Similarly, we 
can use axes[1].plot to plot curves on the right panel.

We also mention that matplotlib figures support dynam-
ical updates. For instance, one can remove all curves from the 
left panel (e.g., when redrawing the figure if a controller value is 
changed by the user) with:

axes[0].clear()

or replace the y data of the first curve (lines[0]) of the right 
panel (axes[1]) with the data in the list new_y via:

axes[1].lines[0].set_ydata(new_y)

In addition, the matplotlib library offers a large number of 
different types of plots, the possibility of showing text and anno-
tations in the plots and more generally to customize almost any 
aspect of the plots. It is also possible to interact with the plots and 
detect, for instance, the position of a mouse click.

While matplotlib can also generate three-dimensional plots, 
in our experience its performance was often not good enough for 
smooth and pleasant interaction (e.g., noticeable latency when ro-
tating or zooming). Therefore, for three-dimensional plots we use 
instead the plotly library, that showed better performance. An 
example is given by the plot of the potential energy surface in 
Fig. 5(b).

Appendix C. An example widget and instantaneous reaction to 
events

Each widget can be created via Python code directly in a note-
book cell. For example, Fig. C.7 shows the code used to create the 
slider to control the depth of the first square well in Fig. 1, and 
retrieve its value programmatically from Python.

Beside being able to check the value of the slider in specific 
points of the code, an essential part of the interactivity comes 
from a very small time delay between user actions (button clicks, 
change of the value of a slider, . . . ) and the adaptive reaction of 
the notebook. In OSSCAR, this is achieved using the traitlets
library [82]. In particular, every time the attributes of a widget are 
modified, the widget emits an event of type “change”. We can then 
define callback functions that are triggered every time there is a 
change, and bind them to the event using the observe method 
of the widget. For instance, in Fig. C.8 we show a code snippet 
defining a callback function slider_value_change to replot 
11
# define the callback function to replot
def slider_value_change(c):

...
axes[0].plot(x, V)
...

# bind the callback, so that it is triggered every time
# that the value of sw1_depth changes
sw1_depth.observe(slider_value_change, names="value")

Fig. C.8. A minimal example of how to define a callback and bind it to any change 
of value of the slider of Fig. C.7.

the function in the figure generated using axes[0].plot dis-
cussed in Appendix B after changes triggered by the sw1_depth
slider.

Finally, we mention that events can be associated to any widget, 
including plots, thus allowing to tune the value of certain param-
eters not only from the controllers section, but also by clicking 
directly on the visualizations (and, in this case, adapting the value 
of the controllers accordingly). This approach allows for the imple-
mentation of reciprocative dynamic linking between components, 
that has been shown to improve representational competence in 
students [83].

References

[1] T. de Jong, M.C. Linn, Z.C. Zacharia, Science 340 (6130) (2013) 305–308.
[2] M. Joffre, Quantum physics online, https://www.quantum -physics .

polytechnique .fr, 2019.
[3] F. Smallenburg, L. Filion, R.M. Alkemade, A. Ulugöl, Soft matter demos, https://

www.softmatterdemos .org, 2022.
[4] Network for Computational Nanotechnology, Nanohub, https://nanohub .org, 

2022.
[5] The LabXchange team, Labxchange, https://www.labxchange .org, 2022.
[6] W. Vallejo, C. Díaz-Uribe, C. Fajardo, ACS Omega (Feb. 2022).
[7] H. Kawasaki, S. Yamasaki, Y. Masuoka, M. Iwasa, S. Fukita, R. Matsuyama, Int. J. 

Environ. Res. Public Health 18 (5) (2021).
[8] M. Youmans, J. Chem. Educ. 97 (9) (2020) 3374–3380.
[9] M.M. Zalat, M.S. Hamed, S.A. Bolbol, PLoS ONE 16 (3) (03 2021).

[10] Z. Almahasees, K. Mohsen, M.O. Amin, Front. Educ. 6 (2021).
[11] J.R. Hoehn, M.F.J. Fox, A. Werth, V. Borish, H.J. Lewandowski, Phys. Rev. Phys. 

Educ. Res. 17 (2021) 020111.
[12] R. Kobayashi, T.P.M. Goumans, N.O. Carstensen, T.M. Soini, N. Marzari, I. Timrov, 

S. Poncé, E.B. Linscott, C.J. Sewell, G. Pizzi, F. Ramirez, M. Bercx, S.P. Huber, C.S. 
Adorf, L. Talirz, J. Chem. Educ. 98 (10) (2021) 3163–3171.

[13] A.V. Yakutovich, K. Eimre, O. Schütt, L. Talirz, C.S. Adorf, C.W. Andersen, E. 
Ditler, D. Du, D. Passerone, B. Smit, N. Marzari, G. Pizzi, C.A. Pignedoli, Comput. 
Mater. Sci. 188 (2021) 110165.

[14] R. Vicente-Saez, C. Martinez-Fuentes, J. Bus. Res. 88 (2018) 428–436.
[15] B. Fecher, S. Friesike, in: Opening Science, Springer, Cham, 2014, pp. 17–47.
[16] E.C. McKiernan, P.E. Bourne, C.T. Brown, S. Buck, A. Kenall, J. Lin, D. McDougall, 

B.A. Nosek, K. Ram, C.K. Soderberg, et al., eLife 5 (2016).
[17] M. Woelfle, P. Olliaro, M.H. Todd, Nat. Chem. 3 (10) (2011) 745–748.
[18] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. 

Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, 
J. development team, in: F. Loizides, B. Scmidt (Eds.), Positioning and Power 
in Academic Publishing: Players, Agents and Agendas, IOS Press, Netherlands, 
2016, pp. 87–90.

[19] Project Jupyter, Jupyter, https://docs .jupyter.org, 2022.
[20] B.E. Granger, F. Pérez, Comput. Sci. Eng. 23 (2) (2021) 7–14.
[21] Project Jupyter, Jupyterlab, https://github .com /jupyterlab /jupyterlab, 2022.
[22] Voila Development Team, Voila, https://github .com /voila -dashboards /voila, 

2022.
[23] V.F. Ochkov, A. Stevens, A.I. Tikhonov, in: 2022 VI International Conference on 

Information Technologies in Engineering Education (Inforino), 2022, pp. 1–5.
[24] A.A. Sutchenkov, A.I. Tikhonov, J. Phys. Conf. Ser. 1691 (1) (2020) 012096.
[25] G. Yin Stokes, How Faculty with Minimal Programming Experience Imple-

mented Jupyter Notebooks in Physical and General Chemistry Courses, Ch. 2, 
pp. 13–27.

[26] A.K. Sharma, C. Thuermer, V. Ruan, Learning Programming through Chemistry 
in a First-Year Scientific Computing Course, Ch. 4, pp. 43–56.

[27] C.J. Weiss, J. Chem. Educ. 94 (5) (2017) 592–597, https://doi .org /10 .1021 /acs .
jchemed .7b00078.

[28] D. Hu, J.N. Ahn, A. Lakatos, J. Bello, J. McTague, J.J. Foley, Integrating Program-
ming to Reinforce Quantum Mechanical Principles in Physical Chemistry, Ch. 7, 
pp. 89–105.

http://refhub.elsevier.com/S0010-4655(22)00265-X/bib44A081AB74C7628C83FC191B6D67C5CFs1
https://www.quantum-physics.polytechnique.fr
https://www.quantum-physics.polytechnique.fr
https://www.softmatterdemos.org
https://www.softmatterdemos.org
https://nanohub.org
https://www.labxchange.org
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib5E76A65CB9FBCDF8E818ADB55183BD09s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib9E8BD799BAEF43BBAD016CB34111B02As1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib9E8BD799BAEF43BBAD016CB34111B02As1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibFCF46DA8827EE0EEE994C848006CAE6As1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibB992DE594CC75FB095B26D0940235E72s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibADCE9B7F6F763BB4E7E850907D31E79Fs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA4857ED7D1145A9616B100F2A600FF0Es1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA4857ED7D1145A9616B100F2A600FF0Es1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib2DEFA3BD82FCD237F230B92FEB684024s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib2DEFA3BD82FCD237F230B92FEB684024s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib2DEFA3BD82FCD237F230B92FEB684024s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib13E89359DBEF8245945540A6463BA11Bs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib13E89359DBEF8245945540A6463BA11Bs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib13E89359DBEF8245945540A6463BA11Bs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibE75871C2F92D9A1BAFBB94AD144C4656s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibFD6E95AF1A538701EDA9EB09F916EE3Es1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibC4DC56854F110C06CC0211687EEB0ECCs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibC4DC56854F110C06CC0211687EEB0ECCs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib37FAEB787249430F961B6BF4E00E9F0Bs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib9F3BC30808FBFC0F66DE387D576A093Ds1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib9F3BC30808FBFC0F66DE387D576A093Ds1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib9F3BC30808FBFC0F66DE387D576A093Ds1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib9F3BC30808FBFC0F66DE387D576A093Ds1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib9F3BC30808FBFC0F66DE387D576A093Ds1
https://docs.jupyter.org
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib03567E1746528EF312026A9D46A2611Es1
https://github.com/jupyterlab/jupyterlab
https://github.com/voila-dashboards/voila
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibDE25F36BB2CAD08BC9ECEC1CE41160DFs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibDE25F36BB2CAD08BC9ECEC1CE41160DFs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib9E24C3B956FCD202D9397B2302C7B9D3s1
https://doi.org/10.1021/acs.jchemed.7b00078
https://doi.org/10.1021/acs.jchemed.7b00078


D. Du, T.J. Baird, S. Bonella et al. Computer Physics Communications 282 (2023) 108546
[29] G.R. Hutchison, Integrating Python into an Undergraduate Mathematics for 
Chemists Course, Ch. 9, pp. 123–134.

[30] J.A. Nash, B.P. Pritchard, Coding, Software Engineering, and Molecular Science 
– Teaching a Multidisciplinary Course to Chemistry Graduate Students, Ch. 11, 
pp. 159–171.

[31] V.W.D. Cruzeiro, X. Gao, V.D. Kleiman, J. Chem. Educ. 96 (8) (2019) 1663–1670.
[32] E.J. Menke, J. Chem. Educ. 97 (10) (2020) 3899–3903.
[33] N. Braun, T. Hauth, C. Pulvermacher, M. Ritter, J. Phys. Conf. Ser. 898 (2017) 

072020.
[34] D. MacIsaac, Phys. Teach. 44 (6) (2006) 398.
[35] M.D. Caballero, N. Chonacky, L. Engelhardt, R.C. Hilborn, M.L. del Puerto, K.R. 

Roos, Phys. Teach. 57 (6) (2019) 397–399, https://doi .org /10 .1119 /1.5124281.
[36] K. Madhavan, L. Zentner, V. Farnsworth, S. Shivarajapura, M. Zentner, N. Denny, 

G. Klimeck, Nanotechnol. Rev. 2 (1) (2013) 107–117.
[37] G. Klimeck, M. McLennan, S.P. Brophy, G.B. Adams III, M.S. Lundstrom, Comput. 

Sci. Eng. 10 (5) (2008) 17–23.
[38] G. Klimeck, M. McLennan, M.S. Lundstrom, G.B. Adams, in: 2008 8th IEEE Con-

ference on Nanotechnology, 2008, pp. 401–404.
[39] G. Grosso, G. Pastori Parravicini, Solid State Physics, Academic Press, Oxford, 

UK, 2013.
[40] R.R. Hake, Am. J. Phys. 66 (1) (1998) 64–74.
[41] C. Crouch, A.P. Fagen, J.P. Callan, E. Mazur, Am. J. Phys. 72 (6) (2004) 835–838.
[42] S. Freeman, S.L. Eddy, M. McDonough, M.K. Smith, N. Okoroafor, H. Jordt, M.P. 

Wenderoth, Proc. Natl. Acad. Sci. 111 (23) (2014) 8410–8415.
[43] J.M. Perkel, Nature 518 (7537) (2015) 125–126.
[44] PyPi Development Team, Pip, https://pypi .org /project /pip, 2021.
[45] Conda Development Team, Conda, https://docs .conda .io, 2021.
[46] J.M. Perkel, Nature 563 (7729) (2018) 145–146.
[47] L.A. Barba, L.J. Barker, D.S. Blank, J. Brown, A.B. Downey, T. George, L.J. Heagy, 

K.T. Mandli, J.K. Moore, D. Lippert, K.E. Niemeyer, R.R. Watkins, R.H. West, E. 
Wickes, C. Willing, M. Zingale, Teaching and learning with Jupyter, https://
jupyter4edu .github .io /jupyter-edu -book, 2019.

[48] J.K. Gilbert, M. Reiner, M. Nakhleh, Visualization: Theory and Practice in Science 
Education, Springer Netherlands, 2008.

[49] H. Nguyen, D.A. Case, A.S. Rose, Bioinformatics 34 (7) (2017) 1241–1242.
[50] Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka, Comput. Mater. Sci. 128 

(2017) 140–184.
[51] D.J. Clarke, M. Jeon, D.J. Stein, N. Moiseyev, E. Kropiwnicki, C. Dai, Z. Xie, M.L. 

Wojciechowicz, S. Litz, J. Hom, J.E. Evangelista, L. Goldman, S. Zhang, C. Yoon, 
T. Ahamed, S. Bhuiyan, M. Cheng, J. Karam, K.M. Jagodnik, I. Shu, A. Lachmann, 
S. Ayling, S.L. Jenkins, A. Ma’ayan, Patterns 2 (3) (2021) 100213.

[52] S. Lau, J. Hug, nbinteract: generate interactive web pages from Jupyter note-
books, Master’s thesis, EECS Department, University of California, Berkeley, 
2018.

[53] Executable Books Project, Thebe, https://thebe .readthedocs .io /en /latest/, 2022.
[54] Bokeh Development Team, Bokeh: Python library for interactive visualization, 

https://bokeh .pydata .org /en /latest, 2018.
[55] Ole Schütt, appmode, https://github .com /oschuett /appmode, 2022.
[56] Jupyter Development Team, nbconvert, https://nbconvert .readthedocs .io, 2022.
[57] Jupyter Book Community, Jupyter book, https://jupyterbook.org, 2022.
[58] B. Kim, G. Henke, J. Stat. Data Sci. Educ. 29 (sup1) (2021) S103–S111.
[59] Docker, Inc., Docker, https://www.docker.com, 2021.
[60] Dokku Development Team, Dokku: the smallest paas implementation you’ve 

ever seen, https://dokku .com, 2021.
[61] L. Talirz, S. Kumbhar, E. Passaro, A.V. Yakutovich, V. Granata, F. Gargiulo, M. 

Borelli, M. Uhrin, S.P. Huber, S. Zoupanos, C.S. Adorf, C.W. Andersen, O. Schütt, 
C.A. Pignedoli, D. Passerone, J. VandeVondele, T.C. Schulthess, B. Smit, G. Pizzi, 
N. Marzari, Sci. Data 7 (1) (2020) 299.

[62] Google LLC, Google Colab, https://colab .research .google .com, 2022.
[63] D. Frenkel, B. Smit, Understanding Molecular Simulation: from Algorithms to 

Applications, vol. 1, Elsevier, San Diego, 2001.
[64] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in 

C, The Art of Scientific Computing, second edition, Cambridge University Press, 
Cambridge, 1992.

[65] S. Ainsworth, in: R. Mayer (Ed.), The Cambridge Handbook of Multimedia 
Learning, Cambridge University Press, 2014, pp. 464–486.

[66] J. Izaac, J. Wang, Computational Quantum Mechanics, Springer, 2018.
[67] R. Shankar, Principles of Quantum Mechanics, Springer Science & Business Me-

dia, 2012.
[68] D.J. Tannor, Introduction to Quantum Mechanics: a Time-Dependent Perspec-

tive, University Science Books, Sausalito, California, 2007.
[69] J. Thijssen, Computational Physics, Cambridge University Press, Delft, 2007.
[70] J.A. Fleck, J. Morris, M. Feit, Appl. Phys. 10 (2) (1976) 129–160.
[71] Osscar contributing guide, https://www.osscar.org /code /contributing .html, 

2022.
[72] C.H. Crouch, E. Mazur, Am. J. Phys. 69 (9) (2001) 970–977.
[73] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cour-

napeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, 
M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P. Peterson, P. 
Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, 
T.E. Oliphant, Nature 585 (7825) (2020) 357–362.

[74] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, 
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, 
J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, 
C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. 
Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. 
Pedregosa, P. van Mulbregt, A. Vijaykumar, A.P. Bardelli, A. Rothberg, A. Hilboll, 
A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C.N. Woods, C. Fulton, C. Masson, C. 
Häggström, C. Fitzgerald, D.A. Nicholson, D.R. Hagen, D.V. Pasechnik, E. Olivetti, 
E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G.A. Price, G.-L. 
Ingold, G.E. Allen, G.R. Lee, H. Audren, I. Probst, J.P. Dietrich, J. Silterra, J.T. Web-
ber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J.L. Schönberger, J.V. de Miranda 
Cardoso, J. Reimer, J. Harrington, J.L.C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, 
K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. 
Pak, N.J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P.A. Brodtkorb, P. Lee, R.T. 
McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. 
More, T. Pudlik, T. Oshima, T.J. Pingel, T.P. Robitaille, T. Spura, T.R. Jones, T. Cera, 
T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y.O. Halchenko, Y. Vázquez-Baeza, Nat. 
Methods 17 (3) (2020) 261–272.

[75] S.K. Lam, A. Pitrou, S. Seibert, in: Proceedings of the Second Workshop on the 
LLVM Compiler Infrastructure in HPC, 2015.

[76] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, K. Smith, Comput. Sci. 
Eng. 13 (2) (2011) 31–39.

[77] NumPy Developers, F2py user guide and reference manual, https://numpy.org /
doc /stable /f2py, 2021.

[78] J.D. Hunter, Comput. Sci. Eng. 9 (3) (2007) 90–95.
[79] Jon Mease, in: Fatih Akici, David Lippa, Dillon Niederhut, M. Pacer (Eds.), Pro-

ceedings of the 17th Python in Science Conference, 2018, pp. 69–76.
[80] bqplot Development Team, bqplot, https://github .com /bqplot /bqplot, 2022.
[81] J. Ahrens, B. Geveci, C. Law, in: C.D. Hansen, C.R. Johnson (Eds.), Visualization 

Handbook, Butterworth-Heinemann, Burlington, 2005, pp. 717–731.
[82] IPython Development Team, Traitlets, https://traitlets .readthedocs .io, 2015.
[83] M. Patwardhan, S. Murthy, Res. Pract. Technol. Enhanc. Learn. 12 (2017) 10.
12

http://refhub.elsevier.com/S0010-4655(22)00265-X/bib422F9511911E7A891896B558641D0438s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibCE135B7CEA936D72FA40CCE78DC3B9E1s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibC3094097454C96E7BA9008D95D5627F0s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibC3094097454C96E7BA9008D95D5627F0s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib3A1A9A0F187C5DCD3AEC38DBF5A935FBs1
https://doi.org/10.1119/1.5124281
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib3E1E2F3F6F70EA4BCD742C0C00C67639s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib3E1E2F3F6F70EA4BCD742C0C00C67639s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib4C6722F87D798430A67EFC1EF37678F4s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib4C6722F87D798430A67EFC1EF37678F4s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib1D792D42CF8FE2C565DD9DB912493743s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib1D792D42CF8FE2C565DD9DB912493743s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib109F94823635495AB52532E93A8F5205s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib109F94823635495AB52532E93A8F5205s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib0F1F9BDDE206680FAC31ED28041B81A4s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib1141055197A48F163EF09193A4F6D1EBs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib95CDE71C90EFA2E43953A02B79255383s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib95CDE71C90EFA2E43953A02B79255383s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib93E6C8594F897E3F6D48DCAA9418D757s1
https://pypi.org/project/pip
https://docs.conda.io
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib94E1F08821B6F9BEFFDCFF3C2CFC9095s1
https://jupyter4edu.github.io/jupyter-edu-book
https://jupyter4edu.github.io/jupyter-edu-book
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibF735FA8897B3253BED340C149904CBDEs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibF735FA8897B3253BED340C149904CBDEs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib974815F1DFD494B8A3DFD3DD36DDE1D4s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibF4550188E86D1136DB34DA184A0826B4s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibF4550188E86D1136DB34DA184A0826B4s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib16EE8DE428EB2E05EB510FEDA1C79AEDs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib16EE8DE428EB2E05EB510FEDA1C79AEDs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib16EE8DE428EB2E05EB510FEDA1C79AEDs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib16EE8DE428EB2E05EB510FEDA1C79AEDs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib5689DA49FA58919CD017BF5DEF8F7209s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib5689DA49FA58919CD017BF5DEF8F7209s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib5689DA49FA58919CD017BF5DEF8F7209s1
https://thebe.readthedocs.io/en/latest/
https://bokeh.pydata.org/en/latest
https://github.com/oschuett/appmode
https://nbconvert.readthedocs.io
https://jupyterbook.org
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib8B23CB46283652F23C7595EF536082CBs1
https://www.docker.com
https://dokku.com
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA9896037C3308363DA7A5B1AB1C61DBDs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA9896037C3308363DA7A5B1AB1C61DBDs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA9896037C3308363DA7A5B1AB1C61DBDs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA9896037C3308363DA7A5B1AB1C61DBDs1
https://colab.research.google.com
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib54BF7BFA778614E96A16C5E811B502C1s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib54BF7BFA778614E96A16C5E811B502C1s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibE6D81BA5F749A0B4902D49961BC3686Cs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibE6D81BA5F749A0B4902D49961BC3686Cs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibE6D81BA5F749A0B4902D49961BC3686Cs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibCB1F7BC43E09BCB957831C64DD6989ABs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibCB1F7BC43E09BCB957831C64DD6989ABs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib401BDD08C930FF7F6328260C1650FD07s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib74768FCFD129EA4E7601A777F1B782F0s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib74768FCFD129EA4E7601A777F1B782F0s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib5877C6D8F0EC64404C621616AD4367ADs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib5877C6D8F0EC64404C621616AD4367ADs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib06337EDC077C477B97072A3AFFFCE311s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib4B2A9BCE9216048F500BB077F661C75Bs1
https://www.osscar.org/code/contributing.html
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA85FB974A9885EA9FF366E53E18D89F6s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA16BA213C32FB2747698DA52D8AC7B85s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA16BA213C32FB2747698DA52D8AC7B85s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA16BA213C32FB2747698DA52D8AC7B85s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA16BA213C32FB2747698DA52D8AC7B85s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibA16BA213C32FB2747698DA52D8AC7B85s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib65583ED7B6DDFEF836276DEA523333AAs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibFF2BE2E6DC8A6B0CF7ACEE25EBB85611s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibFF2BE2E6DC8A6B0CF7ACEE25EBB85611s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib94710BD954EA7954B39BA5FCBDAA6152s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib94710BD954EA7954B39BA5FCBDAA6152s1
https://numpy.org/doc/stable/f2py
https://numpy.org/doc/stable/f2py
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib801DF003B8C5086F21AB02C6986A2449s1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibE31B7912C814CA98116041C9895114CEs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bibE31B7912C814CA98116041C9895114CEs1
https://github.com/bqplot/bqplot
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib983F9AF540FAA9932CBB91CAA452CEEEs1
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib983F9AF540FAA9932CBB91CAA452CEEEs1
https://traitlets.readthedocs.io
http://refhub.elsevier.com/S0010-4655(22)00265-X/bib8DC0DE09769AE2683AD0A3B53A75C420s1

	OSSCAR, an open platform for collaborative development of computational tools for education in science
	1 Introduction
	2 An OSSCAR interactive web application example: a quantum-mechanical double-well potential
	3 Technology to develop interactive web applications
	3.1 Development environment: Python and Jupyter/JupyterLab
	3.2 Widgets: components for interaction
	3.2.1 OSSCAR custom widgets


	4 Convert notebooks into web applications
	5 Deployment on web/cloud servers
	5.1 mybinder.org
	5.2 dokku deployment
	5.3 Institutional JupyterHub servers

	6 OSSCAR notebooks for computational science
	6.1 A library of focused self-contained applications

	7 Documentation, tutorials, and source code to engage teachers and students
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Strategies to speed up Python simulations
	Appendix B Libraries for visualization and plotting
	Appendix C An example widget and instantaneous reaction to events
	References


