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A B S T R A C T   

The present paper develops a Bayesian Belief Network (BBN) for quantification of aggravating actions, as out
comes of inappropriate decisions, to be integrated in probabilistic safety assessment (PSA) models (i.e., the so- 
called errors of commission, EOCs). The BBN connects analyst ratings on influencing factors to the error forc
ing impact of a specific scenario, supporting the CESA-Q method (the Quantification module of the Commission 
Error Search and Assessment method). While contributing to the quantification of EOCs, this paper presents a 
novel process for the quantification of the BBN parameters (the Conditional Probability Distributions, CPDs), 
striving for traceable integration of expert knowledge and (scarce) data, in the form of retrospective analyses of 
operational events involving EOCs. The process combines the functional interpolation method for populating 
CPDs and Bayesian updates to adjust the BBN response to the available evidence. A first, prior BBN is developed, 
then sequentially updated to adjust to two data sets. This allows some intermediate validation and puts forwards 
the steps for future BBN updates as new EOC events (or new analyst assessments) become available.   

1. Introduction 

Integration of the human element in risk analysis is required for a 
realistic and informative risk profile when technical systems involve 
human-machine interactions. In this respect, Human Reliability Analysis 
(HRA) is the discipline to address safety-relevant interactions, potential 
failures and the factors driving performance [1,2]. An important output 
of HRA is the quantification of human failure probabilities, then incor
porated in the overall risk models, e.g., fault trees and event trees of 
Probabilistic Safety Assessment (PSA). 

State-of-the-art HRA addresses failures to perform actions required 
by procedures and training, for example in coping with disturbances and 
accidents [3,4]. Traditionally, these failures are referred to as “Errors of 
Omissions” (EOOs), emphasizing the non-performance of the required 
actions. An important challenge to a more comprehensive risk profile is 
the incorporation of inappropriate actions, not required in the specific 
scenarios, that erroneously or unintentionally, aggravate the state of the 
system (e.g., a nuclear power plant, a chemical plant, an aircraft): ex
amples include terminating running injection pumps, inhibiting auto
matic initiation signals [4–6]. In the HRA and PSA terminology, these 
actions are often referred to as “Errors of Commission” (EOCs). 

Experience has accumulated over the years on how to prioritize the 
identification of inappropriate actions to those that are plausible, 
motivated, and risk-important [6–8]. Of particular concern are the EOCs 
resulting from inappropriate decision-making (mistakes, errors of 
intention, in Reason’s taxonomy [9]); the inappropriate understanding 
at their origin tends to affect the interpretation of the system’s response, 
making these decisions more difficult to reconsider and recover [10]. 
The quantification issue concerning inappropriate actions due to slips or 
lapses (e.g., pushing wrong button in proximity of the correct one) is 
considered of different nature. For these errors, data-based probabilities 
are available (e.g., [11]). In addition, modern system designs have er
gonomic provisions for the prevention of inadvertent activations (e.g., 
activation requires pressing two buttons simultaneously). 

Quantification of probabilities of decision-making failures represents 
an open issue because these decisions are triggered by very specific 
combinations of contextual influences and plant conditions, e.g., 
misleading indications or procedural instructions, training biases, un
expected plant conditions or scenario evolutions, conflicting goals [10, 
12,13]. Instead, traditional HRA methods [1,2] address contextual in
fluences one-by-one, via sets of Performance Shaping Factors (PSFs, e.g., 
procedural guidance, training, human-machine interface). Correspond
ingly, the underlying mathematical models for the quantification of 
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failure probabilities is often multiplicative: each PSF contributes inde
pendently of the other PSFs, with a multiplier to a failure probability in 
nominal performance conditions, e.g., [11,14–16]. 

To address the modeling shortcoming, including but not limited to 
the above, Bayesian Belief Networks (BBNs) [17–19] are becoming 
increasingly popular in HRA research [20,21]. BBNs are probabilistic 
graphical models to represent and quantify relationships among 
different types of interrelated variables. The primary use of BBNs is the 
representation of knowledge and decision support under uncertainty; 
their application is established in diverse areas such as medical diag
nosis and prognosis, engineering, finance, information technology, 
natural sciences [18]. BBNs have a number of attractive features for 
HRA and for risk analysis in general: their intuitive graphical repre
sentation, the possibility of combining diverse sources of information 
(including subjective knowledge), their ability to represent causal ef
fects [19–21]. BBNs allow modeling strong factor effects and in
teractions, provided that these effects can be quantified: this potentially 
overcomes the assumption of some methods of independent factor ef
fects [20]. Examples of BBN applications in HRA are abundant in the 
recent literature: to capture causal relationships among factors influ
encing human failures [21–23], as well as overall accidents [24,25]; to 
incorporate organizational aspects and safety culture in risk analysis 
[26,27], to capture dynamic aspects of human performance [28,29], and 
different types of dependencies (among influencing factors and among 
failures) [30,31]. In [32], Bayesian network models are proposed as the 
foundation of third generation HRA methods, supporting rigorous 
treatment of causality relationships across influencing factors and ag
gregation of multiple data types. 

While contributing to the quantification of EOCs, the present paper 
puts forward a novel process for the quantification of the BBN param
eters (the Conditional Probability Distributions, CPDs), combining 
expert knowledge and (scarce) data. Common to several other studies 
[22–24], the available data is in the form of records of human failures 
and corresponding influencing factors. Differently from the cited work, 
the amount of data is not sufficient for meaningful statistical analysis, e. 
g., correlation analysis as in [22,23], or statistical inference in [24]. 
Another difference with the typical HRA-BBNs literature is that, in the 
present work, the influencing factors are associated multiple possible 

levels and therefore are coded as multi-state nodes (variables) in the 
BBN model. Instead, in most cases the influencing factors are coded as 
binary factors (e.g., present / not present, adequate / not adequate). 
Multi-state nodes increase the number of CPDs to be quantified, further 
increasing the data requirements. On the other hand, as presented in the 
next Section 2, multi-level factors allow the representation of graded 
strengths of error-forcing influence of the context on the personnel de
cision under analysis. 

The solution adopted in the present work involves the use of methods 
for populating BBN CPDs from partial information [33–35], typically 
adopted when expert judgment is the primary source of information for 
the CPDs assessment. The thrust of these methods is to elicit only 
selected model parameters (e.g., selected CPDs or information about 
factor importance) and derive the remaining parameters via formulas or 
algorithms, depending on the method. Their fundamental motivation is 
to avoid eliciting a large number of probabilities, which could lead to 
biases and inconsistencies in the assessments (these issues are presented 
in detail in [36,37]). 

In particular, this paper presents a BBN-based model to support the 
quantification module of the Commission Error Search and Assessment 
(CESA-Q) method [38], developed by some of the authors to address 
decision-related EOCs. Given a specific EOC scenario, the BBN is 
intended to support the assessment of the Error Forcing Impact (EFI) of 
the context on the decision, on a five-level scale. The BBN takes the 
analyst ratings on the CESA-Q performance factors (called “adjustment 
factors”) as inputs. The process devised for building the BBN combines 
operational event analyses (from two data sets, EOC Set I [39] and EOC 
Set II [40]), expert judgment and a CPD filling method, the functional 
interpolation method [35] the latter being particularly suitable for 
medium-sized BBN models (say, not exceeding 20–30 nodes), with 
multistate nodes and dependent factor effects [35]. 

The paper is structured as follows. Section 2, next, gives an overview 
of the CESA-Q method for EOC quantification [38]. Besides briefly 
introducing the method and the two EOC event Sets I and II [39,40], the 
section presents the overall motivation for developing the BBN model. 
Section 3 presents the devised BBN development process, in particular 
the functional interpolation method [35] and the sequential CPD up
dates to Posterior I (based on EOC Set I) and Posterior II (based on EOC 
Set II). Some fundamental concepts about the BBN modeling framework 
are given too. Section 4 presents the implementation of the BBN 
development process, with the main results (all parameters of the 
developed BBN are made available as supplementary material on the 
paper web page). Section 5 discusses the main achievements of the 
paper, with emphasis on the capabilities of the BBN modeling frame
work, on the relevant features of the development process and on the 
future steps for the EOC quantification work. Conclusions are given at 
the end. 

2. CESA-Q: a method for quantifying errors of commission 

The Commission Error Search and Assessment (CESA) method was 
developed with the focus on identification and prioritization of EOCs 
[7]; the CESA-Q module came later, to address EOC quantification [38]. 
CESA-Q focuses on decision EOCs, i.e. for which the inappropriate action 
is committed as a result of a motivated decision (the action is inten
tionally made, and its inappropriateness is not known to the operators). 

CESA-Q aims at a holistic, high-level characterization of the situation 
resulting in the inappropriate decision, from the recognition that deci
sion are strongly influenced by the overall context, as opposed by single 
performance factors (e.g., [10,12,13]). The characterization is done via 
two layers of factors [39]:  

• Situational factors (e.g., misleading indications), which describe at a 
high level why operators did consider a specific option (which then 
may turn out to be inappropriate). 

Nomenclature 

AD adverse distraction (CESA-Q Situational feature) 
AE adverse exception (CESA-Q Situational feature) 
BBN Bayesian belief network 
BP benefit Prospect (CESA-Q adjustment factor) 
CESA-Q commission Error Search and Assessment method - 

Quantification module 
CPD conditional probability distribution 
DP damage potential (CESA-Q adjustment factor) 
EFI error forcing impact 
EOO errors of omissions 
EOC errors of commission 
HRA human reliability analysis 
MI misleading indication or instruction (CESA-Q 

situational feature) 
PR personal redundancy (CESA-Q adjustment factor) 
PSA probabilistic safety assessment 
PSF performance shaping factor 
TP time pressure (CESA-Q adjustment factor) 
VD verification difficulty (CESA-Q adjustment factor) 
VE verification effort (CESA-Q adjustment factor) 
VH verification hints (CESA-Q adjustment factor) 
VM verification means (CESA-Q adjustment factor)  
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• Adjustment factors (e.g., availability of backup indications or sup
port from procedural guidance, time pressure), which characterize 
the strength of the EOC-motivating context. 

In the first layer, four situations are distinguished: misleading in
dications or instructions; an adverse condition (e.g., an earlier fault) that 
makes an action inappropriate (the action would be otherwise appro
priate); a distracting occurrence suggesting the need for an action 
(which, unknown to the operators, has aggravating impact on the course 
of a plant event); deviations from the recognized rule associated with a 
notable benefit and typically no adverse consequences. 

CESA-Q’s situation-based perspective transfers to the second layer, 
the adjustment factors (Table A1 of Appendix A). For example, the 
factors “Verification Hint” (VH) and “Verification Means” (VM) aggre
gate the effects of the procedures, human-machine interface, and 
training to support the verification of the decision. Typical HRA 
methods, addressing non-performance of required actions (EOOs), 
would address separately the adequacy of each of these factors. CESA-Q 
addresses their effect combined and with the specific focus on verifica
tion of the decision. “Factor Benefit Prospect” (BP) is another example, 
weighing how much the potentially positive consequences of the inap
propriate decision may influence the decision. 

The CESA-Q factor framework was developed based on the analysis 
of twenty-six operational events [39], most of which occurred in the 
1990s, with the most recent event in 2000. The eighteen events related 
to situational features “Misleading Indication or Instruction” (MI), 
“Adverse Exception” (AE), “Adverse Distraction” (AD) constitute EOC 
Set I (reported in Table A2 of Appendix A). The rest of the events in [39] 
relate to situational feature “Risky Incentive” and are not addressed in 
the present paper because of their substantially different type of decision 
drivers (a different BBN model may be required to capture these events). 
As reported in Table A2, each entry includes ratings of the eight CESA-Q 
adjustment factors in the specific event situations as well as an evalua
tion of the corresponding error-forcing impact on the five-level scale, see 
column EFI in Table A2 (note the gray columns in Table A2 have been 
added to support the BBN model and are not part of the [39] analysis, 
see Section 3.1). The CESA-Q framework has been recently applied to 
operational events that occurred in the period 2000–2016 [40]: these 
analyses are reported in Table A3 and constitute EOC Set II (except for 
the “Risky Incentive” situations). It is important to note that the two EOC 
sets have been populated by two different analysts (one for EOC Set I and 
one for EOC Set II) and with large time separation (over 10 years be
tween the two sets), therefore some analyst-to-analyst variability may 
exist. 

The concept for EOC quantification in CESA-Q reflects its situation- 
based perspective, and does not adopt the PSF-based multiplicative 
model. As shown in Tables A2 and A3, CESA-Q quantification results in 
the strength of the Error-Forcing Impact (EFI) of the context under 
analysis (on a discrete scale, see Table 1), on the basis of the eight 
adjustment factors. The strength of the impact represents the overall 

belief regarding the positive or negative effects on the EOC probability. 
The probability of committing the error is related to the EFI via the so- 
called reliability index and a functional relationship (Table 1). The 
applicable EFI is determined by the analyst based on an overall context 
evaluation, through the adjustment factors. In its original form [38], this 
is based on a match-and-adjust approach: it involves comparing the EOC 
under analysis with entries from the CESA database (the 26 events of 
[39]). The closest entry in the database in terms of pattern of adjustment 
factor ratings provides the reference probability value for the new 
analysis. Given the limited number of entries in the database, the 
identification of a close match is indeed rare. The present work is 
motivated by the need to support the EFI assessment by an explicit 
model, to reduce the subjectivity of the match-and-adjust approach. The 
applicable EFI, and therefore the error probability via Table 1, directly 
follows through the model from the adjustment factor evaluations 
(which become the model inputs), without need for additional judg
ments by the analyst. The need to combine scarce data with expert 
judgment, the possible dependence in the adjustment factor effects and 
the factor representation on multi-valued scale led to the choice of 
Bayesian Belief Networks as the modeling framework. 

3. The proposed BBN development process 

After a short presentation of the BBN modeling framework, this 
section gives an overview of the BBN development process devised for 
this paper (Fig. 1). The next subsections provide more details on the 
main elements of the process: in Section 3.1, the structure of the BBN 
and of the evidence (EOC Sets I and II); in Section 3.2, the functional 
interpolation method [35]; in Section 3.3, the sequential update to BBN 
Posterior I and II. 

A BBN is a probabilistic graphical model whose structure consists in 
nodes linked by directed arcs [17,18]. Nodes represent random variables 
and arcs between nodes (linking parent nodes to child nodes) indicate 
causal or influential relationships. Typically, discrete states are associ
ated to each node (as an example, Fig. 2 anticipates the CESA-Q BBN). 
The quantitative relationships between the nodes are represented by 
conditional probabilities: each outcome (state) of the child node has a 
conditional probability given each combination of the states of the 
parent nodes. For example, with reference to Fig. 2, a conditional 
probability distribution covering all states of child node “Verification 
(cognitive)” is required for all possible combinations of the states of the 
corresponding parent nodes “Verification Hints”, “Verification Means”, 
“Verification Difficulty”. 

The primary hurdle for BBN development is the quantification of its 
CPDs. The main reason is that, for each parent node, the CPD number 
grows exponentially on the number of child states, thus becoming 
quickly large (as an example, the BBN in Fig. 2 requires the knowledge of 
297=53+5 × 22+32+53 CPDs). Data-rich applications such as medical 
diagnosis and financial applications typically rely on data to build CPDs 
by learning algorithms, also able to deal with possibly incomplete data 
(indeed data may not be available for all CPDs) [18]. For rare-event 
applications, BBNs are typically constructed based on input from 
domain expert, via questionnaires, interviews and panel discussions. 
Again, the challenge is to quantify the large number of CPDs from small 
data sets and expert judgment. The development of filling-up methods, 
or more in general, methods to determine CPDs from limited informa
tion is an important subject of research for BBNs, motivated either 
because of the difficulty to collect statistically significant data covering 
all BBN relationships, or because the elicitation of an excessive number 
of probabilities may become impractical and prone to biases and in
consistencies [33]. A recent review of five fill-up methods has shown 
that the functional interpolation shows the largest modeling flexibility 
[35]. However, the information requirements for this method grow 
exponentially with the model size (the number of BBN nodes), thus 
hindering the application of method for large BBN models. For the 
CESA-Q application presented in this paper, this did not pose difficulties, 

Table 1 
Correspondence of error-forcing impact, reliability index i, mean probability of 
EOC in CESA-Q [38].  

Error-Forcing Impact Reliability index i Mean Prob(EOC|i)1 

Extremely high 0 1 
Very high 1 2.7e-1 
High 2 7.2e-2 
Low 3 1.9e-2 
Very low 4 5.2e-3 
None 5 1.4e-32  

1 The mean probability of an EOC event given a context characterized by 
reliability index i is a function of i: Prob(EOC|i)= exp(-c•i), with the constant c =
1.315, obtained via a statistical analysis of operational events [38]. 

2 EOC probabilities below this value are possible. This value conservatively 
represents the limiting case if no EFI has been identified. 
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due to the relatively small size of the BBN model (Fig. 2). 
The two EOC Sets I and II (Section 2) represent the main empirical 

source for the BBN development (Fig. 1, top left). The sets provide 
patterns of adjustment factor ratings and corresponding error-forcing 
impact to be used to determine the BBN CPDs. The small dimension of 
the sets does not allow for a fully data-driven BBN development. The 
BBN building process devised in this paper is intended to develop the 
BBN around these examples, combining the functional interpolation 
method and expert judgment. In particular, the CPD filling algorithm 
populates the BBN from knowledge of the CPDs at specific, so-called 

“anchor” combinations of the BBN factor states: these anchoring CPDs 
(i.e. the CPDs corresponding to anchor factor state combinations) are 
derived from the EOCs sets, when available, otherwise expert judgment 
(Fig. 1, Box “Anchor CPDs, Functional interpolation”). 

This first application of the algorithm results in a Prior CESA-Q BBN 
(Fig. 1, Box “Prior CESA-Q BBN”). Indeed, the EOC sets include as well 
factor rating combinations that correspond to non-anchor CPDs: these 
are used to inform the corresponding CPDs, interpreting the EOC sets as 
new evidence (“new anchors”) and updating the CPDs through a 
Bayesian parameter estimation (Fig. 1, Box “First update”). As shown in 

Fig. 1. Process for the development of the CESA-Q BBN (tables and figures above are explained in details in the rest of the paper).  
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Fig. 1, and discussed in more detail below in Section 3.3, the updates 
result in two posterior CESA-Q BBNs: Posterior I, updated based on the 
evidence from EOC Set I and Posterior II, obtained updating Posterior I 
based on evidence from EOC Set II. Indeed, mathematically, Posterior II 
can be obtained directly from the Prior CESA-Q BBN, aggregating the 
evidence from both EOC sets. However, the corresponding update was 
kept separate to allow using EOC Set II for validation of the Posterior I 
BBN. Then, Set II is again used to update the CPDs (Fig. 1, Box “Second 
update”), to further adjust the BBN predictions to a larger set of events as 
well as to generalize to analyst-to-analyst differences between Set I and 
Set II (see Section 2). These aspects will be discussed in more details in 
Section 3.3. The rest of this section provides more details on the BBN 
development process. 

3.1. Structure of the CESA-Q BBN and of the evidence (EOC Sets I and II) 

The process starts with the development of the CESA-Q BBN struc
ture, the definition of its nodes and states and the node connections. 
Concerning the BBN input nodes, the most natural choice has been to 
maintain the CESA-Q adjustment factors and levels, see Fig. 2 for the 
result: the eight adjustment factors become the eight BBN input nodes, 
with BBN factor states defined along the adjustment factor scale (see 
Table A1). It is worthwhile noting that the BBN only includes CESA-Q 
adjustment factors and the situational features do not appear; indeed, 
situational features are used in CESA-Q to characterize qualitatively the 
situation drivers, while quantification of the decision failure probability 
(conditional on the situation) is done by applying the adjustment 
factors. 

The BBN structure in Fig. 2 is developed based on the authors’ 
judgment, with the introduction of new, intermediate nodes grouping 
together factors with similar effects on the error-forcing influence. For 
example, node “Verification (cognitive)” groups together the adjust
ments factors related to the cognitive elements of verification that the 
decision is inappropriate (e.g., presence and quality of cues, cognitive 
complexity). Node “Benefit_Damage” aggregates the factors addressing 
incentives to, or not to, make the specific decision. The fundamental 
benefit of the factor aggregation is the large decrease in the CPDs, one 

for each possible parent state combination (about 22,000 if all factors 
are disaggregated, 279=53+5 × 22+32+53 for the developed BBN in 
Fig. 2. The states of the intermediate nodes are given in Fig. 2, defined in 
line with the CESA-Q EFI scale (Fig. 2 also gives abbreviations). 

Once the BBN structure is completed, each EOC set entry (Tables A2 
and A3) needs to be adapted to be used as evidence for the CPDs. Indeed, 
the CPDs relate parent nodes and child nodes (e.g., VH, VM, VD to 
VerCog in Fig. 2), while the EOC sets relate the CESA-Q adjustment 
factors directly to the EFI. As shown in Tables A2 and A3, each EOC case 
has been complemented with the applicable states for each of the three 
intermediate nodes. The selection of the applicable states was done by 
the authors of the present paper after review of the original analyses in 
[39,40]. With the complemented set, each entry brings three pieces of 
evidence, one for each of the three intermediate nodes (“Verification 
(cognitive)”, “Verification”, “EFI”). For each intermediate node, the 
evidence applies to the combinations of the parent states matching the 
EOC case evaluations. For example, for node VerCog, event AE.5 carries 
the following pieces of evidence (see Table A2 for the event and 
Table A1 for the score coding): 

VerCog(VH=V.strong,VM=Mod.,VD=Mod.)= Ex.high 

The evidence is then used to inform the anchor CPDs, when the factor 
rating combinations match the anchor combinations required by the 
interpolation algorithm. Otherwise, they are used in the update process 
to obtain Posterior BBN I and II. 

3.2. Anchor CPDs and fillup by algorithm: prior CESA-Q BBN 

The functional interpolation method populates the missing CPDs in 
three steps [35]. First, the so-called anchor CPDs are approximated by 
functions, described by parameters (for the present work, the mean μ 
and standard deviation σ of the Normal function). Second, the param
eters of the full set of approximating functions are obtained by inter
polating among the anchor ones. In the last step, the approximating 
functions are then discretized back to obtain the full set of CPDs. 
Example applications of the algorithm are presented in Section 4.1. 

The anchor CPDs consist of all combinations of parent states at their 

Fig. 2. Structure and node states of the CESA-Q BBN (abbreviations given in parenthesis, when needed).  
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lowest and highest states. For example, node VerCog requires eight (23 

= 8) CPDs, one for each combination of the three parent nodes. In total, 
the development of the prior BBN requires the quantification of 28 an
chor CPDs (23 = 8 for VerCog, 23 = 8 for Ver, 22 = 4 for Benefit_Damage, 
and 23 = 8 for EFI). The identification of the EOC set entries relevant to 
anchor CPDs and the quantification of the expert-based anchors are 
presented in Section 4.1. 

Given the small size of the EOC Set I, the conversion of evidence from 
Table A2 into anchor CPDs cannot be done via statistical analysis. 
Therefore, the child node state corresponding to a particular combina
tion is interpreted as the most likely state, with some likelihood given to 
the other states as well. For example, for anchor combination 
VH=VM=VD=”Success”, EOC case AE.1 provides evidence of Ver
Cog=“Very low” (Table A2). This evidence is converted into about 90% 
probability for state “Very low”, 10% probability for state “Low”, and 
some residuals (0.1%) for the other states. The general thrust for these 
values is to give about 10% likelihood that the evidence is incorrect by 
one level (e.g., “Low” instead of “Very Low”) in both directions. 

The parameters of the approximating functions are obtained by 
minimizing the sum of the squared difference between each value of the 
anchor CPDs and the corresponding value of the Normal function 
(appropriately normalized so that the values sum to 1). The Normal 
function is defined on an underlying continuous scale: the scale ranges 
from -∞ to +∞ with the parent node states corresponding to integer 
values above 1. For example, for parent “Verification Difficulty”, the 
“Not EF”, “Slight”, “Mod.”, “Strong” and “V. Strong” states correspond to 
the values of 1, 2, 3, 4 and 5, respectively (similarly, for the other un
derlying factor scales). This underlying scale is only used for the inter
polation, and, given the linearity of the interpolation across the states, 
has no effect on the final CPDs produced. The reader can refer to [35] for 
more details. 

3.3. Bayesian update of the CPDs and derivation of posterior I and II 
CESA-Q BBNs 

Once the Prior BBN is built, the actual entries of EOC Set I (or II in the 
subsequent stage) are used to adapt the BBN response to the additional 
evidence. The process for doing this is the same for both EOC Sets I and 
II. The idea is to apply the classical Bayesian estimation update to 
selected CPDs of the Prior BBN, based on the evidence from the EOC set. 

For each EOC set entry, and for each of the intermediate nodes, the 
CPDs of the parent state combinations corresponding to the entry are 
selected. The CPDs of the Prior BBN become themselves prior informa
tion about the child state, to be updated based on the evidence. As an 
example, take EOC event AE.9 from Table A2, for node “Verification 
(cognitive)”. The EOC entry brings the evidence of “Verification (cog
nitive)”=”High”, for the parent state combination VH=”Success-forc
ing” (score 1 in Table A2), VM=”Success-forcing” (score 1), 

VD=”Moderately error-forcing” (score 0.5). 
The update itself is done according to the Bayesian estimation model 

for uncertain evidence presented originally by [41] and specified for 
human reliability applications by [42]. The observed evidence (e.g., 
“Verification (cognitive)”=”High”) is interpreted as a random variable, 
associated itself an uncertainty distribution which models variability in 
the evidence and in its interpretation. The assumption is that, for a 
particular observation, a true value exists (i.e. an applicable parent 
state), but the assessed evidence may be different, e.g., due to subjec
tivity of the interpretation. For the work presented in this paper, the 
uncertainty distribution represents the probability that the evidence is 
interpreted as one state (e.g., “High”), given the real state is any of the 
other ones. The distribution is reported in Table 2: for each of the 
assessed states, the distribution is centered on the real ones, therefore 
representing an unbiased estimate. Then, about 10% probability is 
associated to incorrect estimation by one state (e.g., assessed as “High”, 
when the real state would be “Very High”). Larger deviations are 
assigned probability of 0.001. The specific values were chosen to allow 
comparable weight with the prior distributions at the anchor positions 
and resulting prior CPDs (see Section 3.2 and uncertainty distributions 
in Fig. 5). In the Bayesian update process, the likelihood of the evidence 
is then calculated by combining the probability that the child node 
would manifest as one of its possible states (i.e. the CPD), with the 
probability of observing the particular evidence, as presented in [41,42]. 
See Section 4.2 for an example update. 

It is worthwhile mentioning the difference between this imple
mentation of the Bayesian update and a similar one from [43], also 
recently developed to incorporate new empirical evidence into prior 
knowledge about human error probabilities. In particular, the most 
interesting difference is in the type and, consequently, in the appearance 
of the evidence. The present case addresses operational events, which 
constitute single manifestations of failures in specific contexts, as 
explained in Ch. 3.1. The evidence from each event (the corresponding 
EFI) is then associated a distribution to model variability and uncer
tainty of the evidence itself, as presented above and in more details in 
[42]. In the study from [43], evidence is collected from simulator data, 
representing multiple manifestations of the same context, including 
failures and successes by different operating crews. Therefore, evidence 
comes in the form of number of failures over number of successes and 
the evidence uncertainty is related to the statistical uncertainly due to 
the sample size. 

The evidence from the EOC set is not only used to update the cor
responding CPDs, but can be used to adapt the BBN response at large, 
also adapting the CPDs of neighboring state combinations. This is 
important especially in case the difference in the EOC set evidence and 
the Prior BBN response is very large: this may suggest that the linear 
interpolation along all parent states does not represent the actual 
behavior. This step is also important because the change of single CPDs 
may introduce non-coherent BBN behavior (e.g., if one input becomes 
more error-forcing, the BBN output EFI state cannot become less error- 
forcing). Of course, large differences in the EOC set evidence and the 
Prior BBN response may also suggest the need to revisit the expert 
judgment based anchors, such that the Prior BBN reflects better the 
whole evidence in the first place. Indeed some iteration in the definition 
of the anchors and the BBN response over the whole EOC set may often 
be necessary (as it was for the present work). Operatively, the adapta
tion of the BBN to the updated CPDs is then done by converting the 
posterior CPDs to Normal approximating functions (the parameters μ an 
σ of each function are identifying by least square errors between the 
approximation and the CPD). Then, the new values of the μ’s are used as 
the additional anchor values, and the interpolation operates piecewise 
including the original and additional anchors. For the σ’s, only the ones 
relevant to the EOC set are updated, while all others are kept at their 
prior value. The next Section 4.2 provides an example concerning 
“Verification (cognitive)”. 

Table 2 
Distribution for representation of uncertain evidence. Probability that evidence 
is assessed as represented by one state (e.g., “Very low” on one row), given 
different real states (each column of the “Very low” row).    

Real state of evidence   

Very 
Low 

Low High Very 
high 

Ex. 
high 

Assessed state for 
evidence 

Very 
low 

0.9(1) 0.1 1e-3 1e-3 1e-3 

Low 0.1 0.8 0.1 1e-3 1e-3 
High 1e-3 0.1 0.8 0.1 1e-3 
Very 
high 

1e-3 1e- 
3 

0.1 0.8 0.1 

Ex. 
high 

1e-3 1e- 
3 

1e-3 0.1 0.9 

(1) Values in columns do not sum to 1 because of approximation (applies to all 
columns of the table). 
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4. BBN development implementation 

4.1. Prior CESA-Q BBN 

For simplicity of the presentation, the details of the BBN develop
ment are given with reference to the intermediate node “Verification 

(cognitive)”, which aggregates the cognitive aspects connected with the 
verification of the decision. All parameters μ and σ and the corre
sponding CPDs of the developed BBNs are available as supplementary 
material on the paper web page. 

The anchors required for the “Verification (cognitive)” intermediate 
node are reported in Table 3. The table shows that two of the anchors are 
based on EOC Set I, both relating to all factor states at the same extreme 
values (either all with negative or positive influence, Anchors 1 and 8, 
respectively). The remaining, judgment-based, anchors were derived 
based on the following considerations:  

• If “Verification Hints” is in its most negative state (“V. strong”), then 
“Verification (cognitive)” is in its “Extremely high” (error-forcing 
impact) state, independently on the state of the other factors (An
chors 2–4).  

• When “Verification Hints” is in its most positive state (“Success”): 

○ if both other factors have their strongest negative influence, then 
“Verification (cognitive)” is in its “Extremely high” (error-forcing 
impact) state (Anchor 5). 
○ If only one of the other two factors is in its most negative state, then 
“Verification (cognitive)” is in its “Very high” (error-forcing impact) 
state (Anchors 6, 7). 

The above rules reflect the strong importance of “Verification Hints” 
to result in an error-forcing condition. Given the lack of hints to verify 

Table 3 
Anchors for intermediate node “Verification (cognitive)”: combinations of the 
parent node states, corresponding evidence and basis.   

Anchor combinations of the parent 
node states 

Evidence for CPD of VerCog 

Anchor # VH1 VM VD State Basis2 

1 V. strong V. strong V. strong Ex. high AE.8 
2 V. strong V. strong Not EF Ex. high Expert Judgment 
3 V. strong Success V. strong Ex. high Expert Judgment 
4 V. strong Success Not EF Ex. high Expert Judgment 
5 Success V. strong V. strong Ex. high Expert Judgment 
6 Success V. strong Not EF Very high Expert Judgment 
7 Success Success V. strong Very high Expert Judgment 
8 Success Success Not EF Very low AE.2, AE.1, AE.6 
8*3 Slight Success Not EF Very low Expert Judgment 
9*3 Success Slight Not EF Very low Expert Judgment  

1 Abbreviations for nodes and states given in Fig. 2. 
2 Basis: ID from EOC Set I (see Table A2) or Expert Judgment. 
3 Anchors added to incorporate success-forcing effect of “Verification Means” 

and “Verification Hints” in their most positive state (see definition in Table A1). 

Table 4 
Prior CESA-Q BBN, node “Verification (cognitive)”: values of the μ parameter of the CPD approximating functions.  

(1) Scale for parameter μ: 1 - Very low, 2 – Low, 3 – High, 4 – Very high, 5 – Ex. high. 
(2) Dark gray cells identify anchor combinations of parent states. In parenthesis: (anchor # from Table 3, basis for anchor: expert judgment, EJ, or EOC Set I event). 
(3) (ID event, value) outside dark gray cells identifies non-anchor data from EOC Set I and corresponding VerCog value on scale(1). 
(4) Multiple entries: (AD.1, 3), (AD.4, 3), (AE.3, 4). 
(5) Multiple entries: (AD.3, 3), (AD.5, 3), (MI.2, 3). 
(6) Light gray cells show examples of interpolation directions. Along VM: 1.0, 2.0, 3.0, 4.0; along VD: 1.00, 1.75, 2.50, 3.25, 4.00. 
(7) Multiple entries: (AE.1, 1), (AE.2. 1), (AE.6, 1). 
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the decision (see VH definition in Table A1), the EOC is deemed as 
certain. 

Note from Table 3 the two additional anchors 8* and 9*, positioned 
in non-extreme node states (nodes VH and VM at “Slightly error-forcing” 
for anchors 8* and 9*, respectively). These anchors were added to reflect 
the success-forcing effect of VH and VM at their most positive state 
(“Success-forcing”, Table A1). Indeed, as shown in Table 3, both Anchors 
8* and 9* force the “Verification (cognitive)” state to “Very low”, 
compensating the slightly error-forcing effect of one factor with the 
success-forcing effect of the other. 

The anchor evidence from Table 3 is converted into CPD approxi
mating functions (Normal functions), with the parameters μ corre
sponding to the numerical value on the 1 to 5 scale (for the five states of 
“Verification (cognitive)” and σ equal to 0.5. The μ values for the anchor 
combinations are reported in Table 4 in the dark gray cells. The value of 
0.5 for σ was determined to allow reasonable uncertainty on the anchor 
judgment. Fig. 3 shows the effect for node “Verification (cognitive)”, 
given VH = “Success” and VM = “Success”. The figure shows the two 
Anchors 7 and 8 (filled bars in the figure, at VD = “Very high”, value 4 in 
Figure, and VD = “Very low”, value 1 in Figure, respectively), with 
corresponding parameter μ equal to 4 and 1, respectively (Tables 3 and 
4). As shown by the two anchor CPDs, the uncertainty set by σ=0.5 
corresponds to about 0.1 probability to the level below or above the 
corresponding one. 

The results of the application of the interpolation algorithm are 
presented in Table 4, concerning the values of the μ parameter of the 
CPD approximating functions for node “Verification (cognitive)”. The 
table shows the interpolation along all the input factor directions: e.g., 
light shaded cells show interpolations along Verification Difficulty, with 
the values 1.00 (at anchor 8), 1.75, 2.50, 3.25, 4.00 (at anchor 7) and 
along Verification Means, with the values 1.00 (at anchor 9*), 2.00, 
3.00, 4.00 (at anchor 6). Fig. 3 shows the CPD results along the VD di
rection, exemplifying the gradual shift of the CPDs within the con
straining anchors. 

The definition of the anchors and the application of the algorithm 
was done in similar way for the other nodes “Verification” and “EFI”. For 
node “Verification”, the interpolation operates only along the direction 
of “Verification (cognitive)”, because the other two nodes are binary 
(“Personal Redundancy” and “Verification Effort”), therefore only an
chor CPDs exist. For node “EFI”, the interpolation along the direction of 
node “Verification” is performed with an additional constraint resulting 
from the definitions of the states of the two other nodes entering “EFI”. 
In particular, the combination of factors and states “Benefit_Dama
ge”=”Neutral” and “Time Pressure”=”Not Error-Forcing” should have 
no effect on the error-forcing impact in addition to the effect of node 
“Verification” alone. This is why for that combination of states the 
values of parameter μ for EFI match the values for node “Verification”. 
Finally, for node “Benefit_Damage”, the whole set of CPDs was quanti
fied with expert judgment because of the small number of CPDs. This 
node was not subjected to the subsequent updates (all CPDs and pa
rameters of the approximating functions are included as the supple
mentary material on the paper web page). 

With the whole set of CPDs completed, the Prior CESA-Q BBN is then 
applied to the EOC cases of Set I, to adjust its output to the available 
evidence also for non-anchor factor combinations. Fig. 4 (top) shows the 
response of the Prior CESA-Q BBN on the Set I analysis cases (“□” 
indicate the target EFI, “x” indicate EFI state with highest likelihood 
according to the BBN). The events in the figure are sorted by the EFI 
(obtained by converting the reliability index assigned to each of them in 
[38]), and then by EFI prediction by the BBN (highest to lowest). 
Therefore, the generally decreasing trend of the BBN predictions sug
gests its overall ability to discriminate across different difficulty levels. 
In four cases, the CESA-Q BBN bounds (50% confidence bounds) do not 
cover the target EFI assignment, in line with the expectation from a 50% 
confidence interval. In seven cases, the most likely EFI level for the BBN 
does not match the target EFI. It has to be noted that none of these cases 
was used as anchor evidence; therefore some mismatch in the pre
dictions is not surprising. 

Fig. 3. Quantification of the CPDs via functional interpolation algorithm. Example for “Verification (cognitive), given VH = “Success”, VM = “Success”. The figure 
shows the five CPDs corresponding to the different states of VD. Filled bars: anchors; Empty bars: interpolated. Numerical scale for VerCog: 1 - Very low, 2 – Low, 3 – 
High, 4 – Very high, 5 – Ex. High; numerical scale for VD: 1 – Not EF, 2 – Slight, 3 – Mod., 4 – Strong, 5 – V. Strong. 
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In Fig. 4 (top) a relatively strong mismatch can be seen for event 
AD.4, at the break in the trend that can be seen in the center of the 
figure. The reason for the mismatch can be understood by comparing 

AE.3 and AD.4. Based on the target EFI, AE.3 has a higher EFI (higher 
error forcing index or probability of occurrence) than AD.4. The prior 
BBN model instead predicts a higher EFI for AD.4. Examining the 

Fig. 4. Comparison of the CESA-Q BBN results vs. error forcing impact from EOC Set I [39]. Events ordered by target EFI (Table A2), then by mean EFI from CESA-Q 
BBN. Top: Prior BBN, bottom: Posterior I BBN. Error bars identify 50% confidence bounds. 

Fig. 5. Assessment of the CESA-Q BBN on one EOC Set I case: AE.9, on nodes “Verification (cognitive)”, “Verification” and “Error-forcing impact”. Filled bars: Prior 
BBN, empty bars: Posterior I BBN. AgenaRisk [44] software used for all BBN runs. 
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adjustment factor evaluations for the two events that underlie the target 
EFIs in Table A2, the adjustments factors are slightly better for AE.3 than 
for AD.4 (values between 0 and 1, larger values are reliability-enhancing 
or more favorable) while the more holistic target EFI assignments 

indicate that AE.3 is more error-forcing. This mismatch is not the effect 
of an inconsistency within EOC Set I. It is worth noting that the two 
events AE.3 and AD.4 belong to different types of error-forcing situa
tions (Adverse Exception and Adverse Distraction, respectively); 
consequently, a single function (the BBN) may not adequately represent 
the effect of the adjustment factors for the two types of situations. A 
potential solution would be to develop multiple models rather than a 
single model; retaining a single BBN for all cases was preferred for two 
reasons. First, this issue arose only for one case. Second, the multiple 
models would each have considerably weaker data supports while 
requiring additional anchor evaluations. 

The origin of the mismatches between EOC Set I and the Prior CESA- 
Q BBN can be traced by taking, as an example, case AE.9. For AE.9, the 
target EFI value is “High”, while the Prior BBN returns lower values 
(mean value around “Low”, most likely value “Very low”, see also Fig. 4, 
top). The Prior BBN response on nodes “Verification (cognitive)”, 
“Verification” and “Error-forcing impact” is shown in Fig. 5 (filled bars). 
Taking node “Verification (cognitive)” as example, the BBN response 
gives equal probabilities to the two states “High” and “Low”. This 
assessment is the result of the CPD for the corresponding factor combi
nation (VH= Success, VM= Success, VD= Mod.). The CPD, in turn, is the 
result of the parameter μ = 2.5 (Table 4). Still from Table 4, it can be 
seen that the EOC Set I value for “Verification (cognitive)” AE.9 is 3 
(“High”). The underestimation proceeds along the subsequent node of 
the BBN (“Verification”), producing an overall underestimated EFI value 
(last graph on the right in Fig. 5, filled bars). In Section 4.2, EOC Set I is 
used to update the CPDs of the BBN, adding this evidence to the prior 
knowledge. 

Fig. 6. Example update of CPDs for event AE.9, node “Verification (Cogni
tive)”, given VH = “Success”, VM = “Success”, VD=”Moderate”. Approximating 
function parameters: Prior μ = 2.5, σ = 0.5; Posterior I μ = 2.7, σ = 0.4. 

Table 5 
. Posterior I CESA-Q BBN, node “Verification (cognitive)”: values of the μ parameter of the CPD approximating functions.  

(1) Scale for parameter μ: 1 - Very low, 2 – Low, 3 – High, 4 – Very high, 5 – Ex. high. 
(2)Dark gray cells identify anchor combinations of parent states. 
(3)(ID event, value) outside dark cells identifies non-anchor data from EOC Set I and corresponding VerCog value on scale(1). 
(4)Multiple entries: (AD.1, 3), (AD.4, 3), (AE.3, 4). 
(5)Multiple entries: (AD.3, 3), (AD.5, 3), (MI.2, 3). 
(6)Multiple entries: (AE.1, 1), (AE.2. 1), (AE.6, 1). 
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4.2. Posterior I CESA-Q BBN 

The process for the update to Posterior I is presented still with 
reference to EOC event AE.9. For node “Verification (cognitive)”, the 
EOC entry brings the evidence of “Verification (cognitive)”=”High”, for 
the parent state combination VH=Success, VM=Success, VD=Mod. 
(Table A2). Fig. 6 shows the effect of the evidence on the CPDs, which 
after the update of the parameters μ and σ correspondingly shifts mass 
towards the evidence (see also the increase in parameter μ from 2.5 in 
the Prior to the value 2.7 of Posterior I). Fig. 5 (empty bars) shows the 
effect of the updated CPDs at “Verification (cognitive)” and at “Verifi
cation” to result in EFI distributed closer to the target value “High”. 

The updated values of parameter μ of the approximating functions 
become new anchors for interpolation. In Table 5, the μ values in cor
respondence of EOC events, (ID event, value) in Table 5 are the result of 
the update. The rest of the values are obtained via piecewise interpo
lation across the original and the newly determined anchors. The last 
row of Table 5 shows an example: the new anchor μ = 2.7 becomes an 
additional interpolation point and the other two intermediate values 
(corresponding to VD= Slight and VD = Strong) are obtained as the 
averages of the two neighboring cells. Table 5 also shows instances of 
the need to repeat with the interpolation after the update, because of 
possible non-coherent behavior of the posterior BBN. See the cell in 
Table 5 right above the one corresponding to AE.9 (VH=Success, 
VM=Slight, VD=Moderate), with μ = 2.95 (Posterior I) and μ = 2.63 
(Prior, Table 4). If the prior value would not be recalculated, moving 
from this cell down to the AE.9 cell would result in an increase of error 
forcing impact (to 2.7, Table 5) while factor VH becomes less error 
forcing (from “Slight” to “Success”), thus representing a non-coherent 
behavior. 

Fig. 4 (bottom) shows the Posterior I BBN response on EOC Set I. The 

effect of the update to reproduce better the target EFI impact is evident. 
As for the Prior BBN, the decreasing trend interrupts at AD.4, due to the 
imposed coherent response of the BBN. The smaller interruptions of the 
decreasing trend (e.g., between MI.1 and MI.2) appear because, to ease 
comparison of the results, the events in Fig. 4 (bottom) are kept in the 
same order as in Fig. 4 (top): as an effect of the update, the EFI mean also 
changes. At this stage of the process in Fig. 1, Posterior I BBN represents 
a model that acceptably reproduces EOC Set I. As a next step in the 
process, the BBN is tested on EOC Set II, which has not yet been used for 
the BBN development. 

4.3. Posterior II CESA-Q BBN 

The response of Posterior I BBN on EOC Set II is shown in Fig. 7 (top). 
For five out of the eleven EOC events in the set, the BBN prediction 
interval (50% confidence) covers the target EFI values. In these cases, 
the most likely EFI value as per the BBN prediction matches the target 
value. In the remaining six cases, the BBN predictions are off by one EFI 
level at most. The fact that no large differences exist (e.g., EFI pre
dictions off by two or more levels) is also visible by the generally 
decreasing trend of the BBN predictions: similar to the considerations in 
Sections 4.1, 4.2 this suggests the general ability of the model to 
discriminate the different levels of error-forcing impact over their 
possible spectrum. Fig. 7 (top) shows acceptable validity of the Posterior 
I BBN to reproduce the assessments in EOC Set II. 

The final stage for the CESA-Q BBN development is to update the 
model response to EOC Set II, in the same way as done for the first up
date to Set I. The final set of CPD approximating function parameters μ is 
reported in Table 6. The response of the CESA-Q BBN to the EOC set is 
given by Fig. 7 (bottom). Overall, as expected, the response of the BBN 
adjusts to the evidence in the set. In terms of actual BBN predictions, 

Fig. 7. Comparison of the CESA-Q BBN results vs. error forcing impact from EOC Set I [40]. Events ordered by target EFI (Table A3), then by mean EFI from CESA-Q 
BBN. Top: Posterior I BBN, bottom: Posterior II BBN. Error bars identify 50% confidence bounds. 
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Fig. 7 distinguishes three behaviors. First, new evidence in Set II re
inforces the earlier belief on the EFI impact, thus decreasing the 
response uncertainty (see for example case MI*.3, where the BBN 
response narrows to the EFI of “Low”). Second, new evidence moves the 
earlier belief to different EFI levels, thus increasing the response un
certainty to envelop the new evidence (see for example the case of 
AE*.4). The last case is when multiple events provide different evidence 
for the same factor configuration. See for example the case of MI*.2 and 
MI*.4. For the same factor configuration Ver=High, BD=Neutral, 
VE=NEF, the evidence for node EFI for MI*.2 and MI*.4 is EFI=High and 
EFI=Very high, respectively (Table A3). In this last case, the resulting 
updated CPD considers the different evidences so that in Fig. 7 the effect 
on the single event is not necessarily as evident as in the first two cases 
(similar situations occur for AD*.1 and AE*.3). 

The model underlying Posterior II represents our updated state of 
knowledge about CESA-Q factor influences on the EFI, based on the two 
EOC sets. To give some insights in the effect of the update, light gray 
cells in Table 6 identify changes in the μ values above 0.3 (absolute) 
between the Posterior II and the Prior BBN models (with reference to 
node “Verification (cognitive)”). The largest difference was found for the 
combination with all factors at their “Moderately error-forcing” state 
(0.48) and, in general, the area around this combination exhibits the 
largest differences. This is the effect of the evidences by AD.2, AD.3, 
AD.5, MI.2 from EOC Set I and event AE*.2 from EOC Set II. All these 
events suggest lower error-forcing impact for “Verification (cognitive)”, 

compared to the one implied by the Prior BBN (see all events associated 
to state “High”, while prior values would suggest “Very high”). 

5. Discussion 

In this section, three important elements of the present paper are 
further discussed: the choice of the BBN modeling framework, the BBN 
development process, and the envisioned next steps to enhance the 
CESA-Q method. 

The CESA-Q BBN constitutes an example of the modeling capabilities 
of BBNs and of their attractiveness for HRA applications. Adjustment 
factors do not have the same effect independently of the other factors. 
For example, saturation of the error-forcing strength is a typical effect 
underlying the CESA-Q model. Consider the effect of “Verification Dif
ficulty”, depending on “Verification Hints” (“Verification Means” is kept 
at “Success” for simplicity). Referring to Table 6, when “Verification 
Hints” is in its “Success” state and “Verification Difficulty” changes from 
its “Success” state to “V. strong”, the value of μ for the child state 
changes of three levels (from 1 to 4, i.e., from around “Very low” to 
around “Very high”). When “Verification hints” is “Mod.”, the same 
change in “Verification Difficulty” results in 2.5 levels (from 2.1 to 4.6, 
from around “Low” to somewhere in between “Very high” and “Ex. 
high”. When “Verification Hints” is “Extremely high error-forcing”, 
“Verification Difficulty” has no effect, since the first factor is enough to 
result in (almost) certain “Extremely high error-forcing” state for the 

Table 6 
Posterior II CESA-Q BBN, node “Verification (cognitive)”: values of the μ parameter of the CPD approximating functions.  

(1) Scale for parameter μ: 1 - Very low, 2 – Low, 3 – High, 4 – Very high, 5 – Ex. high. 
(2) Dark gray cells identify anchor combinations of parent states. 
(3) (ID event, value) outside dark cells identifies non-anchor data from EOC Sets I and II and corresponding VerCog value on scale(1). 
(4) Light gray cells identify changes in the μ values above 0.3 (absolute) between the Posterior II and the Prior BBN. 
(5) Multiple entries: (AD.1, 3), (AD.4, 3), (AE.3, 4). 
(6) Multiple entries: (MI.1,4), (AD*.1, 4). 
(7) Multiple entries: (AD.3, 3), (AD.5, 3), (MI.2, 3), (AE*.2, 3). 
(8) Multiple entries: (MI.3, 3), AE*.4, 2). 
(9) Multiple entries: (AE.1, 1), (AE.2. 1), (AE.6, 1). 
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child node. 
Another recurrent effect in the CESA-Q BBN is compensation be

tween error-forcing and success-forcing impact. As already discussed in 
4.1, the two anchors 8* and 9* represent the compensatory effect of one 
of the two factors “Verification Hints” and “Verification Means” when in 
their “Success-forcing” state, when the other is “Slightly error-forcing”. 
Effects of compensation by “Verification Means” in its “Success-forcing” 
state are also visible in Anchors 6 and 7 (Table 3) when one of VM and 
VD is in their most negative state (VerCog state set to “Very high”). 
However, no compensation is modeled if both VM and VD are in their 
most negative state (VerCog state set to “Ex. high”, Anchor 5 Table 3). 

The above effect demonstrates the flexibility of the BBN framework 
with respect to the typical, multiplier-based HRA models, according to 
which the effect (i.e. the multiplier) of one factor is independent on the 
state of the others. Another typical HRA modeling framework are de
cision trees [45,46]. Indeed, decision trees can model these dependence 
effects because the result of each branching combination is not neces
sarily bound to a simple calculation model (like the multiplicative one). 
Yet, decision trees are generally implemented on binary factors, thus not 
allowing representing graded influences as BBNs do. 

Concerning the overall process for the BBN development, traceability 
in the use of evidence and expert judgment has been one of the driving 
features. Given the scarcity of the evidence, the choice has been to 
combine the BBN model with a Bayesian update of selected CPDs. How 
the EOC set evidence enters as the anchors and the subsequent updates is 
clearly identifiable through the process, e.g., via the various Tables 4–6. 
Expert judgment enters mainly in the anchor assessments. It is worth
while to mention that the judgment is not in the form of CPDs, but in the 
form of the most likely corresponding level (score) of a factor. This is to 
avoid direct assessment of probabilities, which besides its challenges, 
could additionally hinder transparency (it is easier to justify and inter
pret a statement on the most likely state, then a statement on the 
probability distribution). Uncertainty on the judgement is indeed 
considered in the process, but externally to the judgment (i.e. via the 
distribution in Table 2). This eventually allows for sensitivity analysis of 
the model on the expert assessments. A consequence of traceability is the 
ease to add new evidence or additional judgment to the model. 
Depending on the cases, these would add to the existing anchors, or 
determine a new Posterior model, following the same steps presented in 
the papers. Indeed, the limited size of the CESA-Q BBN helps in the 
traceability of the development steps: for larger BBNs it would be more 
difficult to follow each process step and visualize it in tables such as 
Tables 4 and 5. On the other hand, as already mentioned, the functional 
interpolation method is suitable for medium-sized BBNs (e.g., 20 nodes); 
for much larger BBNs, a different development concept may be required, 
because of the combinatorial increase in information requirements by 
the functional interpolation algorithm. 

Another worthwhile comment concerns the fact that the develop
ment process as shown in Fig. 1 foresees the use of two data sets. Having 
two sets is not a mathematical prerequisite, because the Bayesian update 
process does not depend on how the evidence is aggregated: one could 
obtain exactly the same result (Posterior II BBN) by updating the Prior 
BBN with only one set aggregating Set I and II. This allows the appli
cation of the process also in case of only one set being available as ev
idence, i.e. resulting directly in the final BBN, without the intermediate 
validation step. However, in case only one set would be available, 
depending on the size and structure of the set, it may still be worth 
splitting the set in two subsets, as common in the application of many 
learning algorithms, and still attempt intermediate validation. 

The CESA-Q BBN links the adjustment factor ratings to the distri
bution of the applicable EFI. Through the EFI level-probability rela
tionship of Table 1, this translates in a probability distribution that can 
be used for probabilistic safety assessment applications. Different ap
proaches are possible for the actual conversion into a probability dis
tribution, e.g., weighting each EFI contribution (each associated an 
uncertainty distribution of the error probability) or applying directly the 

most likely level. These aspects have not been explored by the present 
paper, which has focused on the BBN development. Work is ongoing to 
integrate the present work into the CESA-Q method [38] for EOC 
analysis and quantification. Still related to the conversion of the EFI 
levels on the probability scale, the applicability of recent data collection 
initiatives [47–49] is under evaluation, to validate or eventually update 
the current relationship (Table 1). 

6. Conclusions 

This paper contributes to quantification of decision-related EOCs, 
with a BBN model providing the error-forcing impact of a specific situ
ation, for given ratings of the influencing factors. The model is tailored 
to the CESA-Q method, but the process for its development is generally 
applicable beyond EOCs and HRA. The BBN modeling framework allows 
capturing diverse influencing factor interactions, e.g., saturation and 
compensation of influences, going beyond the capabilities of the tradi
tional multiplier-based models used in HRA. 

Besides the actual BBN to support the EFI assessment, a contribution 
of the present work is the BBN development process itself. Two sets of 
operational event analyses represent the main empirical source for the 
BBN development. The sets provide patterns of factor ratings and cor
responding error-forcing impact to be used to determine the BBN pa
rameters. The BBN process develops the BBN around these examples, 
combining the functional interpolation method (a CPD filling algorithm) 
and expert judgment. The paper establishes a traceable process, in the 
use of the empirical basis and of the expert judgment. Traceability in all 
steps allows review of the process by other parties and, eventually, 
fosters the acceptance of the model. Traceability also allows the possi
bility to incorporate new evidence as it becomes available as well as 
different expert judgment assessments. The proposed process aligns well 
with the elements from [32] of third generation HRA methods, espe
cially concerning the use of Bayesian parameter updating methods to 
formally incorporate additional and diverse novel evidence. Indeed, 
while the process is specified for operational event data, it can be 
directly extended to any form of data, which can be treated by a 
Bayesian update framework. 

The two EOC sets have been populated by two different principal 
analysts and with large time separation (over 10 years between the two 
sets): fitting the BBN model to both sets makes its predictions less 
analyst-dependent and improves its generalization capability. The BBN 
development process is multi-stage. A first, Prior BBN is developed 
applying the interpolation method with input from expert judgment and 
evidence from EOC Set I related to the method anchors. The BBN is then 
updated to adjust to the whole EOC Set I (obtaining Posterior I BBN) and 
then to EOC Set II (obtaining Posterior II BBN). This allows intermediate 
validation (comparing the predictions of Posterior I BBN on EOC Set II) 
and puts forwards the steps for future BBN updates as new EOC events 
(or new analyst assessments) become available. 

Having established a model to link influencing factor ratings and EFI, 
the next step for the EOC quantification model is to calibrate the EFI 
levels on failure probabilities. Future work will review the original 
CESA-Q calibration in view of new data becoming available through the 
on-going data collection activities [47–49]. 
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Appendix A. CESA-Q: scaling guidance and EOC Sets I and II 

See Table A1 
See Table A2 
See Table A3 

Table A1 
CESA-Q scaling guidance [38].  

Factor1, 

2 
Scores (levels)2 Situational features 

VH 0 (very strongly error- 
forcing) 

no hint to verify adequacy of motivated action; need to verify is clearly out of mind 

0.2 (strongly error-forcing) unspecific or weak hint to verify under normal operating conditions: occasional checking practice (e.g., verify success of preceding action 
before proceeding with the next action, although this verification is not explicitly cued); or indication that something is deviant with rather 
weak association to required checking 
strongly degraded hint to verify; e.g., by urgency to act due to high time pressure 

0.5 (moderately error- 
forcing) 

unspecific or weak hint to verify under emergency conditions, and verification subject (such as backup display of reactor pressure) relates to 
a safety parameter 

0.8 (slightly error-forcing) viable but slightly degraded hint to verify; e.g., alarm with some ambiguity potential 
1 (success-forcing) viable hint (e.g., clear instruction, alarm, feedback or warning tag) to verify adequacy of motivated action 

VM 0 (very strongly error- 
forcing) 

missing or essentially degraded (visibility, readability) indications of inadequacy of motivated action 

0.5 (moderately error- 
forcing) 

degraded indications of inadequacy of motivated action: main indication unavailable, but backup indication available; or some visibility or 
readability problems 

1 (success-forcing) main indication available and clearly visible 
VD N/A relevant indications unavailable or major degradation of visibility 

0 (very strongly error- 
forcing) 

implication of indications (which allow to identify inadequacy of motivated action) is totally unclear (e.g., due to major deficiency in 
training) 

0.5 (moderately error- 
forcing) 

complex (knowledge-based) reasoning required to identify implication, e.g., due to the presence of conflicting information and poor or 
missing priority rules, or due to complexity of the rule on indication’s implication, or due to masking events 

0.8 (slightly error-forcing) cognitive requirement slightly increased; e.g., rule is clear but an unexpected parameter value leads to a deviation from the base case of 
trained rule application 

1 (not error-forcing) implication of indications (of inadequacy of motivated action) is rather clear; identifiable from skill-based association, or written or 
recallable rule 

VE N/A relevant indications unavailable or major degradation of visibility 
0 (error-forcing) high physical effort (e.g., going to another location, or implementing specific valve alignments) required for verifying adequacy of 

motivated action 
1 (not error-forcing) negligible physical effort required for verification (e.g., by referring to display in the vicinity) 

TP 0 (very strongly error- 
forcing) 

extremely high time pressure; decision time window (TW) in the order of seconds (typically) to deal with a potentially conflicting goal of 
viable concern 

0.2 (strongly error-forcing) high time pressure; e.g., decision TW in the order of 1 min (typically) to deal with a potentially conflicting goal of viable concern 
0.5 (moderately error- 
forcing) 

moderate time pressure; e.g., decision TW in the order of 10 min (typically) available to deal with a potentially conflicting goal of viable 
concern; or slight urgency to act in order to meet the outage schedule 

1 (not error-forcing) no urgency to act; motivated action is not associated with a time constraint 
BP 0 (very strongly error- 

forcing) 
very high benefit clearly associated with motivated action because of management’s expectations, e.g., practice for criticizing operators in 
case of economical loss due to rule compliance 

0.5 (moderately error- 
forcing) 

high benefit clearly associated with motivated action because of major concurrent safety or operational goal; e.g., prospect of maintaining 
viable safety function, or prospect of prevention of major economical loss like plant shutdown for months 

1 (not error-forcing) no particular benefit prospect 
DP 0 (not success-forcing) no particular damage potential in association with motivated action 

0.5 (moderately success- 
forcing) 

immediate equipment damage potential of drastic (aversion-forcing) nature; e.g., fire 

1 (very strongly success- 
forcing) 

immediate person injury potential of drastic (aversion-forcing) nature; e.g., high pressure steam escape close to place of work 

PR 0 (not success-forcing) no personal redundancy 
degraded personal redundancy; e.g., mainly restricted to formal checking requirement, or limited efficiency with respect to possible error 
modes covered by checking 

1 (success-forcing) personal redundancy available (and nominally effective)  

1 Adjustment factor abbreviations: Verification hint (VH); Verification means (VM); Verification difficulty (VD); Verification effort (VE); Time pressure (TP); Benefit 
prospect (BP); Damage potential (DP); Personal redundancy (PR). 

2 This table maintains the original CESA-Q nomenclature of “Factors” and “Scores”. In the BBN implementation, these become “Nodes” and “States”. 
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Table A2 
EOC cases Set I [38,39].  

(1) The event coding reflects the dominant situational feature (MI: Misleading Indication or Instruction, AE: Adverse Exception, AD: Adverse Distraction). 
(2) Coding for adjustment factors: VH: Verification Hints, VM: Verification Means, VD: Verification Difficulty, PR: Personal Redundancy, VE: Verification Effort, BP: 
Benefit Prospect, DP: Damage Potential, TP: Time pressure. Coding for scores in Table A2. 
(3) In shaded cells, BBN nodes. VerCog: Verification (cognitive), Ver: Verification, BD: Benefit_Damage identify the BBN intermediate nodes added to group the 
adjustment factor effects. These factors do not appear in the original CESA-Q framework and have been introduced for the BBN model, see Section 3.1. 
(4) See Fig. 2 for the definition of the states of the BBN intermediate nodes. 
(5) Error Forcing Impact (EFI) levels are given in Table 1. 
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