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A B S T R A C T   

With the ongoing efforts to collect new data for Human Reliability Analysis (HRA) (in particular, from nuclear 
power plant control room simulators), it becomes important that the coming data will be processed traceably, 
addressing its underlying variability, eventually in combination with expert judgment. In this direction, this 
work presents a two-stage Bayesian model to integrate expert-elicited probability estimates and empirical evi-
dence from simulator data in the quantification of HEP values and of the associated variability distributions. The 
general aim is to provide a data aggregation framework able to mathematically combine diverse information 
sources throughout the HEP estimation process, in a systematic and reproducible way, contributing to 
strengthening the empirical basis of future HRA methods. The Bayesian model can be used to produce reference 
values and bounds for HRA methods as well as to improve the quality of plant-specific HEP estimates for use in 
Probabilistic Safety Assessment applications. The model is first verified with artificial data and then applied to 
quantify the HEP of human failure events from literature. Model sensitivity to biases in expert estimates is also 
investigated.   

1. Introduction 

As part of Probabilistic Safety Assessment (PSA), Human Reliability 
Analysis (HRA) addresses the contribution of human failures to risk in 
complex technical systems, e.g. nuclear power plants, chemical and 
aerospace systems (Kirwan, 1994; Podofillini, 2017; Spurgin, 2010). 
HRA methods support the identification of the safety–critical tasks 
performed by the personnel, the characterization of the contextual fac-
tors influencing performance, and the assessment of the task failure 
probabilities (referred as Human Error Probabilities, HEPs). 

The estimation of HEP values is supported by quantitative models 
that represent the operational tasks and the context-related influencing 
factors via categories (typically, of task types and of Performance 
Shaping Factors, PSFs), and relate these categories to values of failure 
probability. The HRA models (e.g. Gertman et al., 2005; Hollnagel, 
1998; Swain and Guttman, 1983; Whaley et al., 2011; Williams, 1986, 
1988, 2015; Xing et al., 2017) are parametrized on reference HEP 
values: these provide baseline HEP values, e.g. the HEP corresponding to 
tasks performed under optimal/nominal performance conditions, as 
well as the PSF’s effect, typically as multipliers to the baseline. 
Advanced HRA models, such as based on Bayesian Belief Networks 

(BBNs) (Groth and Mosleh, 2012; Mkrtchyan et al., 2015; Shirley et al., 
2020; Sundarmurthi and Smidts, 2019; Zhao and Smidts, 2019), require 
reference HEP values too, for example to inform the BBN Conditional 
Probability Distributions (CPDs). 

The data underlying the reference HEP values is generally obtained 
by combining empirical evidence and expert judgment (Kirwan, 1994; 
Podofillini, 2017; Spurgin, 2010). Empirical data has been traditionally 
gathered from a variety of information sources: licensee event reports, 
retrospective analyses of accidents and operational events, human fac-
tors and behavioral science experiments (Hallbert and Kolaczkowski, 
2007). Similarly, judgment has typically assumed different forms, e.g. 
quantitative probability estimates and/or qualitative statement on the 
importance of influencing factors (Hallbert and Kolaczkowski, 2007). In 
addition, an overarching contribution of expert judgment exists in the 
evaluation of the suitability of the different data sources to the specific 
HRA model development. 

Due to the general lack of data, its diversity and its often uncertain 
quality, there has been very limited traceability in the aggregation of the 
various data sources, as well as in their combination with expert judg-
ment. For instance, quoting the THERP Handbook (Swain and Guttman, 
1983): “the data underlying THERP’s model is mostly coming from 
human factor experiments and field studies (…). The probability values 
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are generally derived data, in the sense that they contain much 
extrapolation and judgment”. The result is that it is difficult to determine 
to what extent the HEP values produced by HRA models are empirically- 
based. Also, in absence of a traceable process, it is not clear how to 
incorporate new data eventually becoming available to feed HRA 
models. Despite the data collection challenges, important attempts to 
validate HRA methods have been performed in the past, e.g. by Kirwan 
(1997a, 1997b), and more recently from the International (Forester 
et al., 2014) and US (Forester et al., 2016) HRA Empirical Studies. These 
studies demonstrate the usefulness of HRA methods and the trustwor-
thiness of the produced HEPs (at least for some types of operator tasks), 
beyond the limitations of the HRA data processing. However, with the 
recent emphasis to improve the empirical basis of HRA methods (Hall-
bert et al., 2013; Forester et al., 2014, 2016) and the modern ongoing 
data collection programs (Chang et al., 2014; Park et al., 2013), it be-
comes important that methods for data integration are ready to 
accommodate sustained data generation: on the long term, these pro-
grams are expected to produce a significant amount of new observations, 
that can be used to empirically-inform reference HEP values and bounds 
of HRA models. Some preliminary studies (Azarm et al., 2018; Chang 

and Franklin, 2018; Groth et al., 2014; Groth, 2018; Kim et al., 2018; 
Jung et al., 2020; Nelson and Grantom, 2018) have been performed to 
assess the feasibility of estimating HEP values; however, these studies 
have not addressed the incorporation of data and expert judgment in the 
HEP calculation. 

The current amount of data collected by the on-going initiatives 
(Chang et al., 2014; Park et al., 2013, Chang et al., 2022, Kim et al., 
2022) is still not sufficient to derive statistically-significant HEP esti-
mates for the entire spectrum of task and PSF categories of HRA models. 
Hence, the incorporation of expert judgment will still play an important 
role for future HRA, also in consideration that current simulators are not 
suited for data collection for all scenarios of interest for PSA applications 
(e.g. tasks in response to events external to the plant such as seismic 
events and tasks in severe accident situations) (Apostolakis, 1986). 

The general goal of the present paper is to contribute to the devel-
opment of HRA data aggregation models to traceably process diverse 
data sources, including expert judgment (Groth et al., 2019; Mosleh and 
Chang, 2004). In particular, this paper presents a Bayesian two-stage 
model to integrate judgment (in the form of expert-elicited failure 
probability estimates) and simulator data, in the quantification of HEP 

Nomenclature 

F: combination of taxonomy categories (e.g. task type and 
Performance Shaping Factor levels/ratings), referred as 
“constellation”. 

fF

(
pt|F|θF

)
parametric variability function, modelling HEP 

population variability across the task/context realizations 
within the given F. 

θF set of (unknown) parameters of the variability function 

fF

(
pt|F|θF

)
. 

pt|F task-, context-specific HEP variable. 
t|F: index for the task/context realization within the given F. 
pi specific numerical value of pt|F associated to the i-th 

realization of F. 
{ki,Ni} number of ki failures on Ni crew observations of the i-th 

task/context realization associated to F (i.e. the piece of 
evidence ES,i). i = {1, 2 …, m}, where mtotal number of 
realizations in the dataset. 

{ktot,Ntot} total number of failures and observations for F (“lumped 
data”). 

p̃t|F point estimate of the task-, context-specific HEP value 
provided by the domain expert (p̃i: point estimate for the i- 
th task/context realization). 

gF(p̃t|F|pt|F) probability function modelling the analyst’s belief in the 
expert’s ability to provide a correct estimate of pt|F 
(represented by the lognormal error model from 
references, Mosleh (1992), Podofillini and Dang (2013)). 

σi logarithmic standard deviation of gF(p̃t|F|pt|F) reflecting 
analyst’s confidence on the specific estimate ̃pi provided by 
the expert. Alternatively expressed as error factor EFi, 
forms the piece of evidence EJ,i: {p̃i,EFi}. 

LN(…) lognormal distribution. 
{ES|F,EJ|F} evidence for the constellation F, entering Stage I of the 

Bayesian model. 
π0(θF|E0) prior distribution of Stage I, representing the knowledge 

of the set of parameters θF before collecting the evidence {
ES|F,EJ|F}. E0: prior knowledge of θF. 

π
(
θF|ES|F,EJ|F

)
posterior distribution of Stage I, representing the 

knowledge of the set of parameters θF after collecting the 
evidence {ES|F,EJ|F}. 

L
(
ES|F,EJ|F|θF

)
likelihood function of Stage I, i.e. the probability 

density that evidence {ES|F,EJ|F} is observed. 

PF

(
pt|F

)
estimated HEP population variability distribution for the 

constellation F (used as prior distribution in Stage II). 
{kHFE,NHFE} the piece of evidence ES|HFE, where kHFE is the number of 

failures observed over NHFE crew observations collected for 
the given human failure event (HFE) in the specific plant- 
simulator. 

{p̃HFE,EFHFE} the piece of evidence EJ|HFE, where p̃HFE is the expert 
estimate on the HEP value of the given HFE, and EFHFE the 
associated confidence level. 

{ES|HFE,EJ|HFE} evidence for the given HFE, entering Stage II of the 
Bayesian model. 

π
(

pt|F|ES|HFE,EJ|HFE

)
posterior distribution of Stage 2, representing 

the knowledge of the HEP value of the given HFE after 
collecting the evidence {ES|HFE,EJ|HFE}. For simplicity, the 
posterior is referred as HEP uncertainty distribution 
PHFE(HEP). 

LHFE

(
ES|HFE,EJ|HFE|pt|F

)
likelihood function of Stage II, i.e. the 

probability density that evidence {ES|HFE, EJ|HFE} is 
observed. 

{μF,σF} parameters of the lognormal variability distribution (mean 
and standard deviation) used in the numerical application 
of Stage I. 

{HEP5,HEP95} recommended HEP bounds for F from HRA 
literature, used as prior information to construct the 
lognormal informative prior for μF, i.e. π0(μF). 

{μμF
, σμF} parameters (mean and standard deviation) of π0(μF). 

{α, β} shape parameters of the beta prior distributions in the 
conjugate beta-binomial model with lumped data. 

b bias factor. 
Er

S|F r-th replicated dataset {Er
S|F = (kr

i , Ni), i = 1,⋯m; r = 1,
⋯R}, where R is the total number of replicates. 

{T(Er
S|F),T(ES|F)} generic test quantities associated to Er

S|F and ES|F, 
respectively. 

{kr
,k} mean values of the replicated kr

i and the observed ki, 
respectively. 

pB Bayesian p-value, i.e. the probability P(T(Er
S|F) ≥ T(ES|F)).  
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values. The two stages of the developed Bayesian model address 
different purposes. The first stage aims at producing reference HEP 
values and bounds to feed HRA methods (e.g. to parametrize task and 
PSF categories or to inform BBN’s CPDs). The product of the first stage is 
a population distribution, to represent the diversity of data types and 
sources, plant-to-plant and crew-to-crew variability, as well as vari-
ability within the HRA method categories (e.g. of task types and PSFs). 
The second stage utilizes plant-specific information (again data and 
judgement) to produce plant-specific HEPs, updating the generic dis-
tributions from the first stage, eventually to be used in plant-specific 
PSAs, in a manner similar to Groth et al. (2014), Kubicek and Dolezal 
(2020), Garg et al. (2022), where simulator data is used to enhance HEP 
results from HRA methods. 

Bayesian inference methods (Siu and Kelly, 1998) represent a natural 
framework to formally treat expert-elicited estimates and combine these 
with empirical data in the estimation of PSA-related quantities (e.g. a 
single probability value, or the parameters of a population distribution) 
(Apostolakis 1990; Hallbert and Kolaczkowski, 2007; Mosleh and Smith, 
2007); their use has been well-established over the years by different 
PSA applications (Apostolakis and Mosleh, 1979; Droguett et al., 2004; 
Mosleh and Apostolakis, 1986; Mosleh, 1992; Podofillini and Dang, 
2013). Similarly to the present work, Apostolakis and Mosleh (1979) 
and Droguett et al. (2004) adopt Bayesian two-stage approaches for the 
aggregation of expert opinions and reliability data (possibly sparse and 
from diverse plants) to derive generic population variability distribu-
tions of reliability parameters (e.g. core melt frequency of nuclear power 
reactors, Apostolakis and Mosleh, 1979; pump failure rate, Droguett 
et al., 2004), and support parameter estimation for plant-specific com-
ponents. In this regard, the application performed in this work repre-
sents a first-of-a-kind attempt to explore the use of Bayesian two-stage 
models in a practical HRA problem. 

The paper is structured as follows. Section 2 presents the concepts 
and the general formulation of the combined use of expert estimates and 
simulator data to represent HEP population variability. Section 3 

describes the structure of the developed Bayesian two-stage model and 
its implementation with lognormal distributions for use in the numerical 
application. The model is verified with artificially-generated data, to 
analyze the effects of judgment incorporation on the HEP estimates and 
investigate model sensitivity to biases in expert judgment. Then, Section 
4 applies the model to data from the HRA Empirical Studies (Forester 
et al., 2014, 2016). The results are further discussed in Section 5, 
together with recommendations and insights on the applicability of the 
developed model. Conclusions are given at closure. 

2. Integrated use of data and expert estimates in modelling HEP 
population variability: Concepts and mathematical formulation 

2.1. Concept: Data and expert opinions as “mixed evidence” for HEP 
estimation 

Fig. 1 gives an overview of how the work presented in this paper fits 
in the HRA method development and application processes. The figure 
focuses on the data used to develop HRA models: other aspects of model 
development (e.g. development of task and PSF taxonomies) are not 
shown. The upper part of the figure addresses the HRA method devel-
opment. Data is typically diverse by type (e.g. simulator data and expert 
judgment) and by subject (collections on different accident scenarios, 
crews, personnel tasks). This data is used to determine reference HEP 
values for combinations (“constellations”) of task and PSF categories, 
specific for the different HRA methods (shaded box in Fig. 1). The 
generic constellation F = {F1, F2, …} of categories F1, F2,…, may 
represent a diagnosis task under nominal conditions, or the constellation 
required to assess PSFs multipliers, or the factor combination for CPDs in 
a Bayesian Belief Network (Groth and Mosleh, 2012; Mkrtchyan et al., 
2015; Shirley et al., 2020; Sundarmurthi and Smidts, 2019; Zhao and 
Smidts, 2019). 

In the derivation of reference values for the given F, it becomes 
important to represent the spectrum of “population variability” (e.g. 

Fig. 1. Concept for use of reference HEP values and its application in the present work.  
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plant-to-plant, task-to-task, crew-to-crew) intrinsic to the data sources 
and subjects, to avoid overconfidence in HRA model results (Greco et al., 
2021a). In the present work, this is done via population variability 
distributions obtained in the first stage, building on the Bayesian 
approach presented by the authors in recent work (Greco et al., 2021a). 
The modelling approach in Greco et al. (2021a) applies to simulator 
data, while the present work addresses both data and expert judgment, 
integrated as “mixed evidence” in the Bayesian model (subsection 2.2). 

HRA applications (lower part of Fig. 1) typically address specific 
Human Failure Events (HFEs), analyzed in plant-, scenario-, and task- 
specific contexts. The context analysis determines the representative 
task and PSF categories. In this sense, the conventional HRA analyses 
produce context-specific HEPs, but based on generic data (because of the 
diverse data feeding HRA models). The present work considers the case 
that plant-specific data is also available to inform the HEP estimate, for 
example from simulator training sessions and expert judgment 
addressing the specific HFE of interest. This plant-specific evidence can 
be incorporated in the HEP estimate (and incorporated in the plant PSA) 
via the second stage of the Bayesian model presented in this paper, thus 
obtaining context-specific HEPs, based on both generic and plant- 
specific data (shown as “Long-term concept” in Fig. 1). Since the focus 
of the present work is on the Bayesian process, this paper will apply the 
second stage to the same constellations F used for the demonstration of 
the first stage of the Bayesian model (“This work (demonstration)” in 
Fig. 1). In practice, the present paper does not address the intermediate 
step of HRA method development. 

Within the diversity of the information sources potentially available 
(upper left box in Fig. 1), this paper addresses the type of data shown in 
Table 1, i.e. from main control room simulators and from a specific 
fashion of expert judgment, i.e. direct HEP elicitation (eventually via the 
application of an existing HRA method). As an example, Table 1 reports 
data pertaining to the constellation (F) of the following taxonomy cat-
egories: task type “understanding the situation/problem” (F1), with PSF 
“information quality” rated as “missing/masked” (F2), taking the 
example naming from the Scenario Authoring Characterization And 
Debriefing Application (SACADA, Chang et al., 2014) taxonomy. The 
simulator records (i.e. the rows in Table 1) are collected from different 
task realizations (e.g. in Table 1, “identification of faulted steam 
generator”) performed by operating crews in different scenarios (e.g. in 
Table 1, a Steam Generator Tube Rupture, SGTR, and a Small break Loss 
Of Coolant Accident, SLOCA) that are simulated in different plants, 
hence under different design of human–machine interfaces, training 
programs, and procedural guidance (representing the subject diversity 
from Fig. 1). For each record, the simulator data is in the form of number 
of task failures and observations (respectively, ki and Ni in Table 1). For 
each record (Table 1), in addition to these failure counts, it is assumed to 
have HEP estimates derived from domain experts, e.g. via direct 

elicitation or through the application of an HRA method (Mosleh and 
Smith, 2007). Such estimates (the ̃pi’s in Table 1, with associated level of 
confidence EFi as presented in the next Section 2.2) reflect the experts’ 
state of knowledge on the HEP for the specific task realization (e.g. 
“identification of faulted steam generator”) in the specific operational 
context (e.g. “failure of secondary radiation indications”) (Podofillini 
and Dang, 2013; Siu and Kelly, 1998). Note that how to elicit HEP es-
timates from experts is not within the scope of the present work: formal 
approaches for judgment elicitation can be found in literature, for HRA 
(Forester et al., 2004) as well as outside HRA field (Cooke, 1991; 
O’Hagan et al., 2006). 

2.2. HEP population variability within F: Mathematical formulation and 
modelling assumptions 

The quantity of interest is the HEP associated to the given constel-
lation F of task and PSF categories adopted by the specific data collec-
tion taxonomy, namely: HEP = HEP(F). Fig. 2 provides a sketch of the 
mathematical formulation of HEP(F); each task/context realization (i.e. 
each row of Table 1) associated to the given F is characterized by a 
unique HEP, modelled in Fig. 2 by the variable pt|F (with “t” indicating 
the dependence on the specific task realization). Accordingly, the six 
realizations of F contained in Table 1 are associated to six different 
values of the variable pt|F. The population variability across the different 
task-, context-specific pt|F values is (Fig. 2, top): 

pt|F fF

(
pt|F|θF

)
(1) 

where θF represents the vector of unknown parameters (e.g. in the 
numerical application in Section 4, the mean and standard deviation of a 
lognormal variability distribution). The population parameters θF are 
inferred in the first stage of the developed Bayesian model (subsection 
3.2). 

For the i-th realization, the specific value pi is informed by combining 
the empirical data (Fig. 2, bottom left: the count of failures ki over Ni 
crew observations) with the corresponding expert-elicited failure prob-
ability estimate (Fig. 2, bottom right: the point estimate p̃i). For ease of 
discussion, we assume that a single estimate ̃pi is available, either from a 
single expert or aggregated across multiple experts (the methods in 
Podofillini and Dang, 2013, and Cooke, 1991, can be used to aggregate 
estimates). The probabilistic relationship between pt|F and the associ-
ated failure data - e.g. for the i-th realization, between pi and the pair (ki, 
Ni) in Fig. 2 (bottom left) - is modelled as a binomial aleatory process. 
Whereas the probabilistic relationship between pt|F and the corre-
sponding expert estimate p̃t|F - e.g. for the i-th realization, between pi 

and p̃i in Fig. 2 (bottom right) - is captured by the function (as in 
Podofillini and Dang, 2013): 

Table 1 
Hypothetical simulator and expert-elicited data for different tasks and operational contexts, for constellation (F) (the examples of task and PSF categories are taken 
from SACADA taxonomy, Chang et al. 2014, for illustration purpose).  

F: task type = “understanding the situation/problem”, PSF “information quality” = “missing/masked” (taxonomy from SACADA, Chang et al., 2014) 
Scenario Operational context Task Plant 

simulator 
Failures 
(ki) 

Observations 
(Ni) 

Expert estimates 
(p̃i) 

Confidence 
(EFi) 

SGTR Failure of secondary radiation 
indications 

Identification of faulted steam 
generator 

A 0 4 5.46e-02 3 

SGTR Radiation alarms already activated by 
early releases 

Identification of faulted steam 
generator 

B 0 3 3.20e-02 5 

SGTR Failure of secondary radiation 
indications 

Identification of faulted steam 
generator 

C 1 5 1.15e-01 5 

SGTR (…) (…) (…) (…) (…) (…)  
SLOCA No indications on leaks’ specific 

location 
Identification of leak source A 0 1 2.10e-02 7 

SLOCA No indications on leaks’ specific 
location 

Identification of leak source D 0 2 7.20e-03 5 

SLOCA (…) (…) (…) (…) (…) (…)      
ktot = 1 Ntot = 25    
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p̃t|F gF(p̃t|F|pt|F) (2) 

expressing the probability density that the given expert provides the 
value ̃pt|F as point estimate, given that the true failure probability value 
is pt|F. The function gF(p̃t|F|pt|F) models the analyst’s belief in the expert’s 
ability to provide a correct estimate of pt|F: different options for gF(p̃t|F|

pt|F) are available in the PSA literature (Mosleh and Apostolakis, 1986; 
Mosleh, 1992), to account for expert’s level of experience, known biases, 
as well as any dependence to other experts (Mosleh, 1992). For the 
purposes of the present work, we assume the experts are independent (e. 
g. the p̃i’s in Table 1 are independent estimates) and provide unbiased 
failure probability estimates for the assessed task/context realizations. 
Under these hypotheses, the lognormal error model from Mosleh (1992) 
is chosen to represent gF(p̃t|F|pt|F) in eq. (2), formally: 

p̃t|F gF

(

p̃t|F|pt|F

)

= LN

⎛

⎝p̃t|F|pt|f , σi

⎞

⎠ =

LN

⎛

⎝p̃t|F|pt|f , 1.645− 1log(EFi)

⎞

⎠(2bis). 

where LN is used to denote a lognormal distribution. According to eq. 
2bis, ̃pi (i.e. the specific ̃pt|F value for the i-th realization of F in Table 1) 
is expected to be lognormally distributed around the true value pi (Fig. 2, 
bottom right), with a logarithmic standard deviation σi that reflects the 
analyst’s confidence on the given expert (note σi in eq. 2bis can be 
alternatively expressed in terms of error factor1 EFi, as in Table 1). For 

instance, in case σi is taken equal to zero (i.e. EFi is equal to one), the 
function gF(p̃t|F|pt|F) becomes a delta function: the elicited ̃pi matches the 
real value pi (“perfect expert”, Mosleh, 1992); in the general case of 
“imperfect experts”, the larger the σi(and correspondingly the EFi), the 
lower the confidence in the expert’s ability to estimate pi. 

Note that, compared to the HEP variability formulation in Greco 

et al. (2021a), the function fF

(
pt|F|θF

)
does not distinguish the crew-to- 

crew variability component from the other sources of population vari-
ability (e.g. task-to-task, plant-to-plant) within the constellation F. The 
variable pt|F in eq. (1) represents indeed the failure probability of an 
“average crew” in performing the given task-, context-specific realiza-
tion of F: for instance, with reference to Table 1, the four crew obser-
vations available for the first realization (i.e. the first row of Table 1) are 
associated to the same pt|F value, independently of the specific crew 
involved. Simply put, the approach in Greco et al. (2021a) assumes 
different failure probabilities per each crew, while the present paper per 
each task/context realization, aggregating different behavioral charac-
teristics across crews (e.g. in teamwork, decision-making, communica-
tion strategies) in the crew-generic pt|F variable. The explicit treatment 
of crew-to-crew variability within F is outside the scope of the present 
work (this aspect is further discussed in Section 5). 

2.3. The Bayesian two-stage model for HEP quantification 

This section presents the Bayesian two-stage model for HEP quanti-
fication. First, the section introduces the general equations underlying 
each stage (subsection 3.1). The specific formulation with lognormal 
variability distributions adopted in the numerical application to case 
study (Section 4) is provided in subsection 3.2 and then tested with 
artificially-generated data in subsection 3.3. 

Fig. 2. Mathematical formulation of HEP(F) adopted in this work (adapted from Greco et al., 2021a, and extended to incorporate expert estimates). Top: continuous 
parametric distribution for pt|F, with unknown parameters θF. Bottom left: binomial aleatory process (failures ki and observations Ni) for the i-th task, governed by the 
associated HEP value (pi). Bottom right: probability distribution representing the expert estimate p̃i and associate accuracy. 

1 In PSA/HRA, the error factor is a commonly-adopted measure of dispersion 
for characterizing the spread of a lognormal distribution. Typically, the EF is 
expressed by the square root of the ratio 95th/5th percentiles. 
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2.4. General formulation 

The flowchart in Fig. 3 gives an overview of the inference steps 
(“Bayesian update” in Fig. 3) throughout the two-stage model. The 
structure of both stages is based on the general formulation of the 
Bayesian update (Mosleh and Smith, 2007): 

π(x|E) = A− 1L(E|x)π0(x|E0) (3) 

where: 

• x is the unknown quantity (e.g. a probability value, or a set of pa-
rameters) of the inference problem;  

• π0 and π are the prior and posterior probability functions for ×
modelling the state of knowledge of the analyst on the investigated 
quantity, before and after the evidence E is collected, respectively 
(with E0 expressing the prior evidence of ×, if available);  

• L(E|x) is the likelihood function, representing the probability density 
that the evidence E is observed;  

• E is the available evidence for the quantity × (“Information sources” 
in Fig. 3);  

• A− 1 =
∫

L(E|x)π0(x|E0)dx, the denominator of eq. (3), normalizes the 
(updated) posterior distribution π to a probability density function. 

In the first stage of the model (“Stage I” in Fig. 3, blue box), the 
quantity × in eq. (3) is represented by the set of parameters θF of 

fF

(
pt|F|θF

)
, of unknown values. The evidence (E in eq. (3)) for Stage I 

(Fig. 3, blue box) comes from the following information sources:  

• human failure data from plant simulators (ES|F in Fig. 3, blue box), 
from different task/context realizations of F. Considering m re-
alizations (m different records in Table 1), the evidence ES|F is 
expressed as the set of pairs {ES,i = (ki, Ni), i = 1, 2, … m} of ki 

failures on Ni observations for the i-th realization. Each pair ES,i =

(ki,Ni) informs the specific pt|F value associated to the i-th realization 
(i.e. pi in Fig. 2).  

• judgment-based probability estimates by domain experts (EJ|F in 
Fig. 3, blue box), in the form of point estimates (i.e. ̃pt|F in eq. (2)) of 
the task-, context-specific pt|F values. The evidence EJ|F is then 
expressed as the set of pairs {EJ,i = (p̃i,EFi), i = 1, 2, … m}, where 
EFi = e1.645σi represents the analyst’s confidence on the accuracy of 
p̃i, see eq. 2bis. 

From eq. (3), the Bayesian update for Stage I can be written as: 

π
(
θF|ES|F,EJ|F

)
=

L
(
ES|F,EJ|F|θF

)
π0(θF|E0)

∫

θF
L
(
ES|F,EJ|F|θF

)
π0(θF|E0)dθF

(4) 

The core element of eq. (4) is the likelihood term, i.e. L
(
ES|F,EJ|F|θF

)
: 

here, simulator data ES|F and expert estimates EJ|F (i.e. the mixed evi-
dence for the task-, context-specific pt|F values) update the prior 

Fig. 3. Flowchart of the inference process in the developed Bayesian two-stage model. Stage I (blue box): estimation of the HEP population variability distribution 

associated to the given constellation F of task type / PSF ratings, i.e. PF

(
pt|F

)
. Stage II (red box): estimation of the HEP uncertainty distribution for the plant-specific 

human failure event, i.e. PHFE(HEP). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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probability distribution π0(θF|E0) to the posterior π
(
θF|ES|F,EJ|F

)
. 

For the i-th task/context realization, the likelihood of observing the 
evidence ES,i,EJ,i is: 

Li
(
ES,i,EJ,i|θF

)
=

∫

pt|F

Bin
(

k = ki|pt|F,Ni

)
gF

(

p̃t|F|pt|F

)

fF

(
pt|F|θF

)
dpt|F =

∫

pt|F

Bin
(

k = ki|pt|F,Ni

)
LN

(

p̃i|pt|f , σi

)

fF

(
pt|F|θF

)
dpt|F (5) 

where:  

• fF

(
pt|F|θF

)
is the probability density that the failure probability of 

the i-th specific realization is pt|F; 

• the binomial distribution Bin
(

k = ki|pt|F,Ni

)
expresses the proba-

bility of observing ki failures over Ni trials of the specific i-th reali-
zation (Fig. 2, bottom left);  

• the probability distribution gF(p̃t|F|pt|F) (specifically LN

(

p̃i|pt|f , σi

)

) 

expresses the probability (density) that the expert’s estimate is ̃pt|F =

p̃i, given that the true failure probability value of the i-th realization 
is pt|F (Fig. 2, bottom right);  

• the likelihood of the evidence is then obtained by averaging the 

expression Bin
(

k = ki|pt|F,Ni

)
LN

(

p̃i|pt|f , σi

)

over the variability 

function fF

(
pt|F|θF

)
. 

In particular cases where only one type of evidence is available for 

the i-th realization, i.e. ES,i or EJ,i, eq. (5) reduces to 
∫

pt|F
Bin
(

k = ki|pt|F,

Ni

)
fF

(
pt|F|θF

)
dpt|F or 

∫

pt|F
LN

(

p̃i|pt|f , σi

)

fF

(
pt|F|θF

)
dpt|F, respectively. 

Extending eq. (5) to the set of m task/context realizations of the 
constellation F, the likelihood term in eq. (4) becomes: 

L
(
ES|F,EJ|F|θF

)
=
∏m

i=1
Li
(
ES,i,EJ,i|θF

)
=

∏m

i=1

∫

pt|F

Bin
(

k = ki|pt|F,Ni

)
LN

(

p̃i|pt|f , σi

)

fF

(
pt|F|θF

)
dpt|F (6) 

The posterior degree of belief on the parameters of the HEP popu-
lation variability distribution for the generic constellation F, i.e. 
π
(
θF|ES|F, EJ|F

)
in Fig. 3 (blue box), is then obtained by substituting eq. 

(6) into the likelihood term of eq. (4). We consider that prior knowledge 
(E0) relevant to F is available from HRA methods (e.g. in Fig. 3, blue box: 
upper/lower bounds of HEP(F) from Technique for Human Error Rate 
Prediction, THERP, database, Swain and Guttman, 1983) and can be 
used to construct the prior distribution π0(θF|E0) in eq. (4). 

The posterior π
(
θF|ES|F,EJ|F

)
computed by the Bayesian update in eq. 

(4) is finally used to derive the expected HEP population variability 

distribution for the constellation F, namely PF

(
pt|F

)
in Fig. 3 (blue box), 

by weighting the parametric variability distribution fF

(
pt|F|θF

)
by 

π
(
θF|ES|F, EJ|F

)
; formally: 

PF

(
pt|F

)
=

∫

θF

fF

(
pt|F|θF

)
π
(
θF|ES|F,EJ|F

)
dθF (7) 

The produced PF

(
pt|F

)
’s are used in the second stage of the model 

(“Stage II” in Fig. 3, red box) as prior state of knowledge on the failure 
probability of plant-specific Human Failure Events (HFEs), as typically 
referred to in plant-specific PSA studies. The quantity of interest (i.e. the 
× in eq. (3)) in Stage II is the unknown HEP value associated to the 
specific HFE. The concept underlying the Bayesian update in Stage II 
(Fig. 3, red box) is that, in lack of plant-specific evidence, the HEP is 
represented by the Stage I variability distribution associated to the 
applicable context (represented by the given F). If evidence becomes 
available for the specific HFE, this is then used in Stage II to update the 

generic prior PF

(
pt|F

)
and incorporate the plant-specific evidence 

(Fig. 3, red box):  

• ES|HFE: human performance data, expressed as ES|HFE = (kHFE,NHFE), 
where kHFE is the number of failures observed over NHFE crew ob-
servations, collected in the plant simulator for the specific HFE 
(hence the pedix S|HFE);  

• EJ|HFE: judgment-based evidence, in the form EJ|HFE = (p̃HFE, EFHFE), 
where p̃HFE is the point estimate of the HEP value provided by the 
consulted expert and EFHFE = e1.645σHFE the associated error factor, 
representing the HRA analyst’s confidence on expert accuracy ac-
cording to eq. 2bis. 

The Bayesian update (eq. (3)) for Stage II is written as follows: 

Fig. 4. Left: Stage 1 configuration with lognormal population variability distribution (PV: population variability). Centre and right: alternative modelling approaches 
for Stage 1 tested in subsection 3.3, respectively based on the lognormal variability model for simulator data presented in Greco et al. (2021a) and the lumped-data 
approach as in Azarm et al. (2018), Groth et al. (2014), and Jung et al. (2020). 
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PHFE(HEP) ≡ π
(

pt|F|ES|HFE,EJ|HFE

)

=
LHFE

(
ES|HFE ,EJ|HFE|pt|F

)
PF

(
pt|F

)

∫

pt|F
LHFE

(
ES|HFE,EJ|HFE|pt|F

)
PF

(
pt|F

)
dpt|F

=

LHFE

(
ES|HFE ,EJ|HFE|pt|F

)∫

θF
fF

(
pt|F|θF

)
π
(
θF|ES|F,EJ|F

)
dθF

∫

pt|F
LHFE

(
ES|HFE,EJ|HFE|pt|F

)∫

θF
fF

(
pt|F|θF

)
π
(
θF|ES|F,EJ|F

)
dθFdpt|F

(8) 

where the posterior π
(

pt|F|ES|HFE,EJ|HFE

)
, referred as PHFE(HEP) in the 

remainder of this paper to ease the notation, formally represents the HEP 
uncertainty distribution estimated for the given HFE (updated after the 
evidence ES|HFE and EJ|HFE). Similarly to eq. (5), the likelihood term 

LHFE

(
ES|HFE, EJ|HFE|pt|F

)
in eq. (8) is expressed as: 

LHFE

(
ES|HFE,EJ|HFE|pt|F

)
= LHFE

(

kHFE, p̃HFE|θF,NHFE, σHFE

)

=

∫

pt|F

Bin
(

k = kHFE|pt|F,NHFE

)
LN

(

p̃HFE|pt|f , σHFE

)

fF

(
pt|F|θF

)
dpt|F (9) 

The final expression for PHFE(HEP) can be obtained by substituting 
eq. (9) into eq. (8). 

2.5. Configuration with lognormal variability distribution and 
implementation 

This subsection presents the Stage I configuration specifically 
adopted for the numerical application (Section 4), where the parametric 

variability distribution fF

(
pt|F|θF

)
is specialized with a lognormal 

probability density function (pt|F LN(μF, σF) in Fig. 4, left). Therefore, 
θF = {μF, σF} - respectively the mean and standard deviation of the HEP 
population variability distribution in the logarithmic space - become the 
Stage I parameters to be inferred from the evidence (ES|F, EJ|F), eq. (4). 
The use of lognormal probability density functions as population vari-
ability distributions is a common practice in population variability 
analysis with Bayesian hierarchical or two-stage models for PSA appli-
cations (Apostolakis and Mosleh, 1979; Droguett et al., 2004; Greco 
et al., 2021a; Mosleh, 1992; Podofillini and Dang, 2013; Siu and Kelly, 

1998). Alternative options for fF

(
pt|F|θF

)
, e.g. beta or logistic-normal 

probability density functions, can be found in the Bayesian literature 
(Siu and Kelly, 1998). 

In the next subsection 3.3, the configuration is compared against two 

alternative approaches for PF

(
pt|F

)
estimation: the Bayesian variability 

model presented by the authors in Greco et al. (2021a) (Fig. 4, center), 
and a lumped-data model (Fig. 4, right) as the one adopted in (Azarm 
et al., 2018; Groth et al., 2014; Jung et al., 2020). The lognormal vari-
ability model from Greco et al. (2021a) differs from the proposed Stage 1 
configuration in the type of evidence processed: both data (ES|F) and 
estimates (EJ|F) in the latter (referred as “Stage 1: data & estimates” in 
Fig. 4, left); only data (ES|F) in the former (referred as “Stage 1: only 
data” in Fig. 4, center). The lumped-data approach from Azarm et al. 
(2018), Groth et al. (2014), and Jung et al. (2020) (referred as “Stage 1: 
lumped-data” in Fig. 4, right) consists of a simple Bayesian conjugate 
beta-binomial model where the aggregated failure data (i.e. the total 
failures ktot =

∑
iki and observations Ntot =

∑
iNi in Table 1 and Fig. 4, 

right) is used to infer the population-average HEP (p in Fig. 4, right). 
The Bayesian two-stage model - as well as the alternative modelling 

approaches for Stage 1 compared in Fig. 4 (center and right) - are 
implemented in “Just Another Gibbs Sampler” (JAGS, Plummer, 2003), 
a software using Markov Chain Monte Carlo (MCMC) simulation to 
approximate the solution of the posterior probability distributions for 

both Stage I (eq. (4)) and Stage II (eq. (8)). The JAGS models are run in R 
programming environment via the “runjags” library (Denwood, 2016); 
the R code is provided in Appendix A. Convergence of the MCMC sim-
ulations was tested using “diagMCMC”, a set of diagnostic tools provided 
by Kruschke (2015). Further information on MCMC methods can be 
found in the Bayesian literature (Gelman et al., 2003; Kruschke, 2015). 

Concerning the prior probability distributions, in all numerical cases, 
recommended HEP bounds for F (e.g. from existing HRA methods) are 
used (i.e. the E0 in eq. (4) and Fig. 3, blue box) to construct a lognormal 
informative prior for the logarithmic mean, i.e. π0(μF). In particular, the 
parameters of π0(μF) are obtained by fitting the 5th and 95th percentiles 
of the lognormal prior distribution to the lower and upper HEP bounds,. 
according to the following formulas: 

μμF
= log

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
HEP95HEP5

√
; σμF = 1.645− 1log

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
HEP95/HEP5

√
(10) 

where: HEP5 and HEP95 respectively refer to the lower and upper 
HEP bounds; μμF 

and σμF represent the parameters of the lognormal prior 
π0(μF). The π0(μF) is defined between natural log(1E-5) and 0 (corre-
sponding to the upper limit HEP = 1), as to cover HEP values of interest 
for HRA applications. A diffuse prior π0(σF) is then set on the logarithmic 
standard deviation σF, defined between 0.01 and 5 (corresponding to 
error factors of 1.02 and 3733, respectively). Further information on the 
development of non-conjugate lognormal prior distributions from 
available information can be found in PSA literature (Kelly and Smith, 
2011). For the numerical demonstrations in the next subsection 3.3, the 
same prior distributions are set on the hyperparameters of the lognormal 
variability model from Greco et al. (2021a) (“Stage 1: only data” in 
Fig. 4, center). Concerning the conjugate beta-binomial model (“Stage 1: 
lumped-data” in Fig. 4, right), a constrained non-informative (CNI) prior 
is used for the single-value HEP (π0(p) in Fig. 4, right). The shape pa-
rameters of the CNI prior (α0 and β0) are derived as in Groth et al. 
(2014), consistently with the prior information (i.e. HEP5 and HEP95) 
used to build the π0(μF) in the variability models (Fig. 4, left and center). 

2.6. Stage I: Verification with artificial data and sensitivity analysis 

With reference to a generic constellation F, both data (ES|F) and 
expert estimates (EJ|F) are artificially generated with known character-
istics (e.g. median and percentiles) of the underlying HEP population 
variability distribution, in order to verify model behavior against a 
known distribution. In particular, the target HEP population variability 
distribution for all numerical tests (subsections 3.3.1–3.3.2) is 
lognormal, with median = 5e-02, mean = 5.46e-02, and error factor = 2. 
The considered case represents a failure probability range of interest for 
practical HRA applications, with moderately high HEP values; cases 
with lower HEP values (e.g. with median in the range 1e-03 ÷ 1e-04) are 
not addressed in this paper. 

The evidence ES|F and EJ|F is generated by first sampling possible pt|F 

values from the target distribution, each representing the specific failure 
probability value of an hypothetical task/context realization relevant to 
the considered F. Then, for the i-th realization, the sampled pt|F value (i. 
e. pi) is used to generate the number of observed failures ki (sampling 
from a Binomial distribution on Ni trials) as well as the corresponding 
expert estimate ̃pi (sampling from the lognormal error model of eq. 2bis 
with the given confidence level, i.e. EFi). An example of artificially- 
generated dataset is given in Table 2, where the different pairs ES,i =

(ki,Ni) and EJ,i = (p̃i,EFi) - i.e. the rows of Table 2 - are obtained from 
different pt|F values, according to the total number of task/context re-
alizations of F for which evidence is assumed to be collected (e.g. ten 
realizations in Table 2). The amount of trials pertaining to each reali-
zation (i.e. the Ni’s in Table 2) is randomly assigned as to reflect realistic 
sets of crew observations gathered from each plant simulator. Note that, 
for each realization, we consider that both data (ki,Ni) and expert esti-
mate (p̃i) are available and assign a relatively low confidence level (EFi 

= 5) to each p̃i. 
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For the purposes of the numerical demonstration, the parameters of 
the lognormal prior π0(μF) are obtained from eq. (10) assuming HEP5 =

5e-03 and HEP95 = 5e-01 as recommended HEP bounds for F, resulting 
in a π0(μF) informed around the target median HEP value (i.e. 5e-02). 
Note that model sensitivity to alternative choices of priors for the 
hyper-parameters of the HEP variability model, i.e. π0(μF) and π0(σF), 
has already been investigated by the authors in Greco et al. (2021a) and 
therefore is not further discussed in the present paper. Consistently with 
the specific π0(μF) adopted for both population variability formulations 
(Fig. 4, left and center), the conjugate beta-binomial model with lumped 
data (Fig. 4, right) is set with a CNI prior π0(p) with shape parameters α0 
= 0.50 and β0 = 3.25. 

In the remainder of this section, subsection 3.3.1 numerically dem-
onstrates the effects of expert judgment incorporation on the expected 

HEP population variability distribution, i.e. PF

(
pt|F

)
. Then, subsection 

3.3.2 analyses model sensitivity to sample size, with the goal to inves-
tigate the influence of judgment incorporation on data requirements. 
Lastly, subsection 3.3.3 discusses model sensitivity to biased expert es-
timates, showing the use of Bayesian p-values (Gelman et al., 2003; 
Kruschke, 2015) to spot potential biases in the p̃i’s provided by the ex-
perts and support the HRA analyst in selecting an appropriate confi-
dence level. 

2.6.1. Effects of judgment incorporation on the estimated PF

(
pt|F

)

This subsection discusses the numerical differences in the expected 

PF

(
pt|F

)
among the proposed HEP population variability model (“Stage 

1: data and judgment” in Fig. 4, left) and the alternative modelling ap-
proaches presented in Fig. 4. Fig. 5 and Table 3 compare the expected 

mean, 5th and 95th percentiles of the corresponding PF

(
pt|F

)
. Different 

sample sizes are considered (Fig. 5, x-axis), to test on progressively 
increasing numbers of task/context realizations of F (referred as “tasks” 
in Fig. 5 and Table 3, for simplicity): from relatively small datasets (10 
÷ 20 tasks) to larger datasets hypothetically accumulated in the long- 
term (50 ÷ 100 tasks). 

Comparing the results from the two variability models (“Stage 1: 
only data” and “Stage 1: data and judgment”), the incorporation of 
expert estimates in Stage 1 allows to obtain a better approximation of 
the target HEP population variability distribution (i.e. lognormal with 
mean HEP = 5.46e-02 and error factor = 2) in presence of limited 
datasets (e.g. in Table 3, datasets: 10, 20 tasks). Already at 20 task re-
alizations, the model combining data and expert estimates returns a 
value of expected error factor close to seven, about seven times smaller 
than the case when only data is used (i.e. 6.9 vs 46 in Table 3). The 
smaller error factors are not surprising, given the different informative 
power of the evidence between the models. Indeed, expert estimates 
bring additional information on the unknown pt|F values of the corre-
sponding task/context realizations, compensating the scarce empirical 
data available for each realization (e.g. in Table 2: few observations per 
task, very few observed failures). Since large values of error factor are 
not of practical use for PSA applications, the incorporation of expert 
estimates has therefore important implications on data requirements to 

Fig. 5. In y axis (logarithmic scale): expected mean (filled symbols), 5th and 

95th percentiles (whiskers) of PF

(
pt|F

)
returned by three Stage 1 formulations 

in Fig. 4, tested against the same datasets (in × axis, number of task re-
alizations: 10, 20, 50, 100). Datasets generated from a known lognormal vari-
ability distribution with mean = 5.46e-02 (dashed line) and error factor = 2 
(dot-dashed lines at 5th percentile = 2.5e-02 and 95th percentile = 1.0e-01). 

Table 3 
Numerical results from Fig. 5.  

Dataset Modelling approach for Stage 1 Mean 5th 50th 95th EF 

10 tasks: 
3 failures, 
54 obs. 

Only data (Fig. 4, center) 
Data and judgment (Fig. 4, left) 
Lumped-data (Fig. 4, right) 

9.30e-02 
7.70e-02 
6.10e-02 

1.62e-04 
2.55e-03 
1.95e-02 

2.53e-02 
3.26e-02 
5.57e-02 

4.91e-01 
3.25e-01 
1.19e-01 

55.1 
11.3 
2.5 

20 tasks: 
4 failures, 
117 obs. 

Only data (Fig. 4, center) 
Data and judgment (Fig. 4, left) 
Lumped-data (Fig. 4, right) 

6.70e-02 
6.10e-02 
3.70e-02 

1.68e-04 
4.53e-03 
1.39e-02 

1.88e-02 
3.20e-02 
3.47e-02 

3.55e-01 
2.15e-01 
6.92e-02 

46.0 
6.9 
2.2 

50 tasks: 
13 failures, 
290 obs. 

Only data (Fig. 4, center) 
Data and judgment (Fig. 4, left) 
Lumped-data (Fig. 4, right) 

5.50e-02 
6.50e-02 
4.60e-02 

6.65e-04 
1.14e-02 
2.78e-02 

2.78e-02 
4.59e-02 
4.50e-02 

2.01e-01 
1.80e-01 
6.76e-02 

17.4 
4.0 
1.6 

100 tasks: 
33 failures, 
541 obs. 

Only data (Fig. 4, center) 
Data and judgment (Fig. 4, left) 
Lumped-data (Fig. 4, right) 

6.20e-02 
7.40e-02 
6.10e-02 

9.52e-03 
1.13e-02 
4.55e-02 

4.98e-02 
4.99e-02 
6.10e-02 

1.52e-01 
2.16e-01 
7.91e-02 

4.0 
4.4 
1.3  

Table 2 
Example of artificially-generated dataset, containing evidence hypothetically 
collected for ten task/context realizations (index i) relevant to the generic 
constellation F. Sampled from a lognormal HEP population variability distri-
bution with median = 5e-02, mean = 5.46e-02, and error factor = 2.  

Simulator data (ES|F) Expert estimates (EJ|F) 
ki Ni p̃i EFi 

0  

0 
0 
0 
0 
0 
0 
0 
1 
2 

5  

7 
4 
2 
3 
8 
4 
10 
3 
8 

2.7e-2 
6.8e-2 
8.6e-3 
8.5e-3 
4.9e-2 
4.6e-2 
7.3e-2 
4.9e-3 
8.9e-3 
7.0e-1 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5  
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inform HEP population variability associated to a given constellation F: 
this aspect is the focus of the next subsection 3.3.2. Note that the con-
fidence level (EFi) assigned to the experts determines the informative 
power of their estimates (p̃i’s). Recalling from subsection 2.2, values of 
EFi greater than one imply considering experts as “imperfect”, according 
to which the provided p̃i’s are treated as uncertain evidence in the 
Bayesian update process. The effects of this additional source of uncer-
tainty on model results emerge with increasing sample size: this explains 
why, for the case with both data and judgment (with relatively low 
confidence level, i.e. EFi = 5), the numerical value of expected error 
factor does not significantly decrease between 50 and 100 task re-
alizations (Fig. 5 and Table 3). This aspect is further discussed in the 
sensitivity analysis in subsection 3.3.2. 

Compared to the variability model (“Stage 1: only data”), the 

PF

(
pt|F

)
’s estimated by the lumped-data model (“Stage 1: lumped data”) 

tend to shrink around the population-average HEP (see the smaller 
values of error factor in Table 3). As discussed in Greco et al. (2021a), in 
the lumped-data approach, population variability across the different 
task/context realizations of F is averaged in the single piece of evidence 
(e.g. ktot/Ntot = 33/541, for 100 realizations in Table 3). This reflects, 
with increasing evidence (e.g. 100 realizations in Fig. 5 and Table 3), in 

an overly-narrow PF

(
pt|F

)
with respect to the target HEP population 

variability distribution, with values of expected error factor significantly 
smaller than the target one (e.g. 1.3 vs 2 at 100 realizations, Table 3). 
The tendency of the lumped-data approach to return overconfident 

PF

(
pt|F

)
estimates is further analyzed in Greco et al. (2021a). 

2.6.2. Sensitivity to available evidence 
The goal of this sensitivity analysis is to investigate how effectively 

the incorporation of expert estimates (EJ|F) can reduce the amount of 

data (ES|F) required in Stage I such that the estimated PF

(
pt|F

)
’s are of 

practical use for PSA (i.e. the uncertainty on PF

(
pt|F

)
is not too large). 

This is an important aspect: since simulator data collection is a resource- 
intensive, long-term process, for some constellations of task/PSF cate-
gories the amount of evidence ES|F currently available can be indeed 

limited. To this end, the subsection compares the PF

(
pt|F

)
’s yielded by 

the lognormal population variability models (“Stage 1: data and judg-
ment” and “Stage 1: only data”, in Fig. 4 left and center) with increasing 
sample sizes, following the convergence of the expected statistics of 

PF

(
pt|F

)
to the corresponding statistics of the target distribution (i.e. 

median HEP = 5.0e-02, error factor = 2). In particular, the focus is on 
the sample size required by the models to obtain (on average) values of 
error factor compatible with typical HRA applications, e.g. values close 
to 5. 

Fig. 6 shows the expected error factor (left) and median (right) of 

PF

(
pt|F

)
returned by the variability models, as a function of the sample 

size (from 5 to 100 task/context realizations of F). For each sample size, 
100 datasets are generated via Monte Carlo sampling so that the quan-
titative indications obtained by the analysis are as independent as 
possible from the specific dataset. Error bars are used in Fig. 6 to 
represent the spread of the estimates across the sampled datasets, with 
boxes and whiskers respectively corresponding to the 50 % (25th − 75th 
percentiles) and the 90 % (5th − 95th percentile) confidence intervals. 

The results in Fig. 6 indicate that, for both variability models, the 

expected error factor and median of PF

(
pt|F

)
across the 100 datasets 

tend to the target statistics with increasing sample size. Concerning the 
expected median (Fig. 6, right), its value gets close to the target one at 
about 60 task realizations when only data is used, with an average value 
of 4.5e-02 across the datasets (50 % interval: 3.4e-02, 5.4e-02). On the 
other hand, when data is combined with expert estimates, five re-
alizations are already sufficient to reach an average expected median of 
4.8e-02 (with 50 % interval: 2.9e-02, 6.0e-02). Concerning the expected 
error factor (Fig. 6, left), 60 task realizations are still required by the 
variability model using only data to obtain an average value close to 5, i. 
e. 5.6 (50 % interval: 2.8, 5.8). When combining both data and expert 
estimates, the expected error factor gets close to 5 at approximately 20 
task realizations, with an average value of 6.3 (50 % interval: 3.5, 8.1). 

To conclude, the analysis demonstrates that, for constellations F 
characterized by moderately high HEP values (i.e. around 0.01), the 
incorporation of expert estimates in Stage 1 allows to produce HEP 

population variability distributions (i.e. PF

(
pt|F

)
) of practical use for 

PSA applications with significantly lower requirements of empirical 
data. In particular, assigning a relatively low confidence level (EFi ¼ 5) 

Fig. 6. Data requirements of the lognormal population variability models (“Stage 1: only data” and “Stage 1: data and judgment”, in Fig. 4 left and center). For each 
sample size in × axis, 100 datasets are Monte Carlo-sampled from the target HEP variability distribution with median = 5e-02 and error factor = 2 (dashed lines). 

From left to right: expected error factor and median (log-scale) of PF

(
pt|F

)
returned by the models, in the form of 50 % and 90 % confidence intervals (filled symbols: 

average value of the 100 datasets). 
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to expert estimates, the variability model observed a reduction of data 
requirements of approximately a factor of three (in Fig. 6, left: 60 vs 20 
task realizations to reach error factors close to 5). Tests performed with 
lower HEP values (e.g. in the range of HEP − 0.001 and below) 
confirmed a similar trend, with expectedly more pronounced benefits on 
data requirements. As discussed in Greco et al. (2021a), when lower HEP 
values are involved, empirical data becomes indeed less informative (i.e. 
fewer failures are observed): in such case, Stage I without expert esti-
mates would require very large datasets (i.e. with few hundred data 
points). 

Lastly, Fig. 6 (left) shows also the influence of the relatively low 
confidence on the expert estimates (i.e. EFi = 5) on the convergence of 
the expected error factor with increasing availability of evidence. If, on 
the one hand, the more data (ES|F) is collected, the more the epistemic 
uncertainty of HEP population variability (i.e. the target error factor) is 
reduced, on the other hand the uncertainty associated to expert esti-
mates (EJ|F) still remains. The effects of this residual uncertainty source 
on the expected error factor numerically emerge with larger sample sizes 
(see for instance the datasets with 80 ÷ 100 task realizations in Fig. 6, 
left). While for small sample sizes the expected EF for the case of data 
only is larger than for the case of data and judgment, for larger sample 
sizes the situation is inverted, with the data and judgment EFs levelled to 
values larger than for the data only case. Note however that, in presence 
of such large datasets, the comparison between the variability models is 
not realistic: indeed, if empirical data is available for e.g. 80 ÷ 100 task 
realizations of F, this should be already sufficient to derive statistically- 

significant estimates of PF

(
pt|F

)
, hence the incorporation of expert es-

timates in Stage 1 would not be required. 

2.6.3. Sensitivity to biases in expert estimates and to the confidence level 
The numerical tests in subsections 3.3.1–3.3.2 consider the estimates 

p̃i’s are provided from unbiased experts. In real applications, it becomes 
important to investigate the effects of potential biases in expert esti-

mates on the PF

(
pt|F

)
returned by Stage 1: this is the goal of the sensi-

tivity analysis presented in this subsection. 
Biased estimates are generated by adding a multiplicative factor (the 

bias factor b) to the sampling process of p̃i (eq. 2bis), as follows: 

p̃i LN
(

log(b • pt|f ),1.645− 1log(EFi)
)

. The factor b is intended to simulate 

a conservative (for b greater than 1) or optimistic (for b < 1) bias in 
expert assessments, with respect to the actual PSF effects on task failure 
probability (i.e. on the specific pt|F values). The following three cases are 
considered:  

• “Unbiased” experts (b = 1): the provided ̃pi’s are not affected by any 
bias (same as for subsections 3.3.1–3.3.2);  

• “Conservative” experts (b = 10): the provided ̃pi’s are overall shifted 
towards HEP values one order of magnitude above the actual pt|f ’s;  

• “Optimistic” experts (b = 0.1): the provided p̃i’s are overall shifted 
towards HEP values one order of magnitude below the actual pt|f ’s. 

Fig. 7 compares the expected mean, 5th and 95th percentiles of the 

PF

(
pt|F

)
returned by Stage 1 in the three cases, for 10 and 50 task re-

alizations. As in subsections 3.3.1–3.3.2, a relatively low confidence 
level (EFi ¼ 5) is assigned to each ̃pi (hence, the results for “unbiased” in 
Fig. 7 corresponds to those in Fig. 5, at 10 and 50 tasks). Numerical 
values are summarized in Table B.1 (Appendix B). 

Compared to the base case (“Unbiased”), the use of biased expert 
estimates results in a sensible overestimation (“Conservative”) or un-
derestimation (“Optimistic”) of the expected mean, with the bias effects 
tending to increase with the amount of evidence EJ|F. At 50 tasks, the 
case with “conservative” experts returned an expected mean value of 
1.7e-01, i.e. approximately 3 times higher than the target value (i.e. 
5.46e-02); with “optimistic” experts, the expected mean value is 1.4e- 

02, i.e. approximately 4 times lower than the target one. Biased p̃i’s 
also affect the expected error factor returned by the model. As more EJ|F 

becomes available, the more the PF

(
pt|F

)
’s in Fig. 7 narrows towards 

their conservative or optimistic mean value, with an error factor that 
depends on the extent to which the type of bias is compatible with the 
characteristics of the empirical data (ES|F) at hand. This explains why, 
for the datasets considered in this analysis (e.g. from Table 2: 0 failures 

on 7 observations; 0 on 5; and the like), the PF

(
pt|F

)
’s informed by 

“conservative” experts present smaller error factors (e.g. at 50 tasks: 
1.4), compared to the case with “optimistic” experts (e.g. at 50 tasks: 
7.4). 

An important aspect to consider is that the specific confidence level 
(EFi) chosen by the analyst can influence model sensitivity to expert 

biases, amplifying or mitigating their effects on the expected PF

(
pt|F

)
. 

To complement this sensitivity analysis, additional tests with different 
confidence levels (e.g. moderate confidence: EFi ¼ 3; low confidence: 
EFi ¼ 7) have been performed: the numerical results can be found in 
Table B.1 (Appendix B). As general rule, the higher the confidence on the 
experts (i.e. the smaller the values of EFi assigned to their ̃pi’s), the more 
relevant is the weight of the evidence EJ|F in the Bayesian update pro-

cess: consequently, the effects of expert biases on PF

(
pt|F

)
tend to be 

amplified (e.g. in Table B.1, compare the results for “conservative” and 
“optimistic” experts with EFi ¼ 5 vs EFi ¼ 3). On the contrary, the lower 
the confidence on the experts (i.e. the larger the values of EFi), the larger 
the uncertainty associated to EJ|F: in such case, the effects of expert 

biases on PF

(
pt|F

)
tend to be mitigated (e.g. in Table B.1, compare the 

results with EFi ¼ 5 versus EFi ¼ 7). Naturally, the downside of selecting 
larger values of EFi is that, with a weakly-informative EJ|F, Stage 1 re-

quires more empirical data (i.e. more evidence ES|F) to estimate PF

(
pt|F

)

with error factors of practical use (see subsection 3.3.2). 
Bayesian model checking techniques (Gelman et al., 2003; Kruschke, 

2015) could be adopted to identify a priori potential biases in the 

Fig. 7. Sensitivity of the lognormal PV-binomial-lognormal model (Fig. 4, left) 
to biases in expert estimates (results for “unbiased” case are taken from Fig. 5). 
In y axis (logarithmic scale): expected mean (filled symbols), 5th and 95th 

percentiles (whiskers) of PF

(
pt|F

)
returned by the model for three different bias 

cases (“unbiased”, “conservative”, “optimistic”), at 10 and 50 task realizations 
(x axis). Target HEP variability distribution: lognormal with mean = 5.46e-02 
(dashed line) and error factor = 2 (dot-dashed lines at 5th percentile = 2.5e-02 
and 95th percentile = 1.0e-01). 
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provided p̃i’s, in order to support the HRA analyst in selecting appro-
priate confidence levels for the application at hand. In the following, we 
show how a basic predictive check with Bayesian p-values (Gelman 
et al., 2003; Kruschke, 2015) allows to verify the extent to which the set 
of expert estimates (EJ|F) is consistent with the empirical data (ES|F) 
collected for the given constellation F. The verification consists of the 
following steps:  

I. Run Stage I with only EJ|F as evidence, assigning EFi ¼ 1 to each 

estimate p̃i. In such configuration, the model returns a PF

(
pt|F

)

exclusively informed by experts, with the maximum confidence 
level possible;  

II. From the expert-informed PF

(
pt|F

)
, draw R replicated datasets {

Er
S|F = (kr

i , Ni), i = 1,⋯m; r = 1,⋯R} with the same characteris-
tics as the actual data ES|F (i.e. same number m of task/context 
realizations; same number of observations Ni per each realiza-
tion). The notation r denotes the index of the replicated dataset;  

III. For each Er
S|F, calculate test quantities - namely, T(Er

S|F) - to 
measure the discrepancy between the replicated datasets and 
ES|F. In this test, we use as test quantity the mean value of the 
replicated failures (namely, kr), obtained by averaging the kr

i ’s 
over the m task realizations, i.e. for the r-th dataset: T(Er

S|F) =

kr
= (
∑m

i=1kr
i )/m;  

IV. Finally, compute the Bayesian p-value (namely, pB) for the given 
test quantity, as the probability: pB = P(T(Er

S|F) ≥ T(ES|F)). In 
practical terms, pB expresses the proportion of replicated Er

S|F’s 
for which the test quantity (i.e. T(Er

S|F)) equals or exceeds the 
corresponding quantity of ES|F (i.e. T(ES|F)). When the test 
quantity is kr, the expression becomes: pB = P(kr

≥ k), where k is 
the mean value of the observed failures, i.e. T(ES|F) = k =

(
∑m

i=1ki)/m. 

The concept behind is that, if the estimates p̃i’s are overall unbiased 
with respect to the actual population of task failure probability values (i. 
e. the pt|F’s) within F, the replicated datasets Er

S|F’s should then look 
similar to the observed data ES|F. According to this interpretation, 
Bayesian p-values around 0.5 indicate an overall consistency between 
expert estimates and empirical data, hence providing no clear evidence 
of biases. On the contrary, the closer the p-values get to 0 or 1, the more 
likely is the presence of biases amongst the experts. As an example, for 
the case “10 tasks” in Fig. 7, the multi-step verification returns pB = 0.32 
when the model is informed by “unbiased experts”, and pB = 1 and pB =

0 when informed respectively by “conservative” and “optimistic” ex-
perts. Such extreme Bayesian p-values for both “conservative” and 
“optimistic” cases are due to the strong bias factors (i.e. b = 10 and b =
0.1, respectively) assumed for the sensitivity analysis in Fig. 7. Never-
theless, the verification effectively provides indications of bias also with 
smaller bias factors, e.g.: with b = 2, pB = 0.82; with b = 0.5, pB = 0.08. 
The Bayesian p-values in the examples are computed drawing R = 105 

replicated datasets from the posterior predictive distribution of Stage I: 
the code developed for the predictive check is provided in Appendix A. 
Further information on the use of Bayesian p-values can be found in 
(Gelman et al., 2003; Kruschke, 2015). Formal methods for the explicit 
treatment of expert bias in population variability analysis are available 
in PSA literature (Mosleh and Apostolakis, 1986; Mosleh, 1992). 

To sum up, biases in expert estimates can lead to a significant 

overestimation or underestimation of the expected value of PF

(
pt|F

)
, i.e. 

of the population-average HEP associated to the given constellation F. 
Predictive checks with Bayesian p-values proved to be effective in 
diagnosing possible biases amongst the experts; also, the computed p- 
values can provide recommendations on which confidence levels to 

assign in order to mitigate bias effects on the estimated PF

(
pt|F

)
. For 

instance, with p-values below 0.2 or above 0.8, low confidence (e.g. EFi 
¼ 5 ÷ 7) may be advisable. 

2.7. Application to case study 

The developed Bayesian two-stage model is applied to literature data 
to demonstrate its feasibility for the quantification of HEPs for plant- 
specific human failure events. Subsection 4.1 describes the set of HFEs 
selected for the case study, as well as the literature sources (Bye et al., 
2011; Dang et al., 2014; Forester et al., 2014, 2016; Lois et al., 2009). 
Then, subsection 4.2 presents the numerical results. 

2.8. Case study: Set of HFEs and evidence from literature 

The authors selected 16 HFEs from the HRA Empirical Studies (the 
US, Forester et al., 2016; the International, Bye et al., 2011; Dang et al., 
2014; Lois et al., 2009), involving operating crew tasks at nuclear power 
plant simulators. The selected HFEs (listed in Table B.2 left, Appendix B) 
are representative of different task types and operational contexts, 
spanning from routine tasks in normally-trained scenarios (e.g. standard 
SGTR) to more challenging tasks in scenarios characterized by con-
flicting or masked cues (e.g. variants of a SGTR with multiple, concur-
rent system malfunctions). Task types and PSF ratings from SACADA 
taxonomy (Chang et al., 2014) were adopted to categorize task and 
context characteristics of each HFE. Accordingly, the 16 HFEs were 
identified as belonging to 13 different combinations (i.e. constellations 
F’s) of task type and PSF ratings: the associated F’s are reported in 
Table B.2. The selection of task type and PSF ratings for each HFE was 
performed by the authors of the present work, based on the information 
available in Bye et al. (2011), Dang et al. (2014), Forester et al. (2014, 
2016), Lois et al. (2009). 

The evidence entering the two stages of the Bayesian model is re-
ported in Table 4, and consists of empirical data and expert estimates 
processed from the following literature sources:  

• ES|F(Stage 1): failure data relevant to the identified constellations F’s, 
extrapolated from the SACADA public database2 (USNRC, 2019) 
(Table 4, second column). Note that no EJ|F (Stage 1) was available 
for the present application;  

• ES|HFE(Stage 2): failure data for the set of HFEs, gathered from crew 
performances at the HAMMLAB plant simulator (Bye et al., 2011; 
Dang et al., 2014; Forester et al., 2014, 2016; Lois et al., 2009) 
(Table 4, fourth column);  

• EJ|HFE(Stage 2): HFE probability estimates aggregated from the 
different teams of domain experts involved in the HRA Empirical 
Studies (Bye et al., 2011; Dang et al., 2014; Forester et al., 2014, 
2016; Lois et al., 2009) (Table 4, last column). 

According to the data aggregation framework provided in Fig. 3, ES|F 

is used in Stage I to construct HEP population variability distributions, i. 

e. PF

(
pt|F

)
’s, for the identified constellations F’s (Table B.2, right). The 

estimated PF

(
pt|F

)
’s are then updated by the plant-specific evidence 

(ES|HFE and EJ|HFE) in Stage II to quantify HEP uncertainty distributions, i. 
e. PHFE(HEP)’s, for the associated HFEs (Table B.2, left). 

Concerning ES|F, at the time of this analysis, simulator records rele-
vant to 5 out of 13 constellations (i.e. F3, F5, F9, F12, and F13 in Table B.2, 
right) were not available in the SACADA database; therefore, the 

2 As at September 2018 (Chang and Franklin, 2018), the SACADA database 
counts more than 25,000 data points distributed across few hundred constel-
lations of task and PSF categories (a portion of the database is publicly available 
at the US Nuclear Regulatory Commission website, USNRC, 2019). 
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corresponding HFEs (i.e. US-HFE2A, INT-SGTR-HFE1B, INT-SGTR- 
HFE5B1, INT-LOFW-HFE1B, and INT-LOFW-HFE2B in Table B.2, left) 
have been excluded from the HEP quantification in subsection 4.2 (data 
availability aspects are further discussed in Section 5). For each of the 
remaining constellations (i.e. F1, F2, F4, F6, F7, F8, F10, and F11 in 
Table B.2, right), the SACADA database provided only aggregated data, 
i.e. in the form of total number of failures and crew observations (i.e. ktot 
and Ntot in Table 4, left) collected over different tasks and plants. 
Similarly to example provided in Table 1, the aggregated pairs (ktot ,Ntot)

were arbitrarily distributed across hypothetical task/context re-
alizations (Table 4, second column), as to replicate realistic data 
collection conditions for each F: e.g. in Table 4, four realizations are 
assumed for constellation F1, with k1/N1 = 0/5, k2/N2 = 0/5, k3/N3 =

0/5, and k4/N4 = 0/1. Obviously, the specific sets of ki/Ni assumed for 

each F influence the PF

(
pt|F

)
’s returned by Stage I. However, it is 

important to highlight that the focus of the present application is not on 
the specific numeric results, rather on providing a practical demon-
stration of the use of HEP population variability distributions to support 
HEP estimation of plant-specific HFEs. 

Concerning EJ|HFE, the qualitative HFE difficulty rankings provided 
by domain experts in the HRA Empirical Studies (e.g. “easy”, “somewhat 
difficult” in Table 4, last column) were converted into HFE probability 
estimates according to the scaling guidance reported in Table 5 (adapted 
from the qualitative likelihood scale suggested in Forester et al., 2017 
for HEP elicitation). Similarly to the numerical tests in subsection 3.3, a 
relatively low confidence level (i.e. EFi = 5) was assigned to each expert 
estimate in Table 4. 

2.9. HEP quantification 

To distinguish the effects of expert judgment incorporation on the 
HEP quantification, the following two cases are considered:  

• Case 1: Stage 2 is informed only by data ES|HFE (Table 4, fourth 
column);  

• Case 2: Stage 2 is informed by combining data ES|HFE with expert 
estimates EJ|HFE (Table 4, fourth and last column). 

The statistics (mean, median, 5th-95th percentiles, and error factor) 
of the PHFE(HEP)’s returned by the two-stage model for the full set of 
HFEs are summarized in Table B.3 (Appendix B). Fig. 8 shows the ex-
pected mean and the 5th-95th percentiles for a representative subset of 
HFEs, i.e. in x-axis: US-1A, US-3A, and US-1C from Forester et al. (2016); 
INT-SGTR-FB2 and INT-SGTR-3B from Bye et al. (2011), Dang et al. 

(2014), Lois et al. (2009). Fig. 8 also includes the PF

(
pt|F

)
’s returned by 

Stage I for the associated F’s (in x-axis, F1, F4, F2, F10, and F6, respec-
tively), as well as the HEP uncertainty distributions estimated in the 

Table 4 
Datasets for Stage 1 (left) and Stage 2 (right) used in the case study. For EJ|HFE, EFi = 5 is assigned to each expert estimate.  

Stage 1: estimation of HEP population variability distribution,PF

(
pt|F

)
Stage 2: estimation of HEP uncertainty distribution for the plant-specific HFE,PHFE(HEP)

Constellation ES|F: failure data (ki/Ni) HFE ES|HFE: failure data 
(kHFE/NHFE) 

EJ|HFE: expert estimates derived from the HFE 
difficulty scale 

F1 0/5, 0/5, 0/5, 0/1  

(ktot = 0, Ntot = 16) 

US-HFE1A 0/4 3.20e-02 (“Fairly difficult/difficult”) 

F2 2/5, 2/5, 1/5, 1/5, 1/5, 1/5, 0/1  

(ktot = 8, Ntot = 31) 

US-HFE1C 1/4 1.00e-01 (“Difficult”) 

F4 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 
0/4  

(ktot = 0, Ntot = 59) 

US-HFE3A  

INT-SGTR- 
HFE1A 

0/3  

1/14 

1.00e-03 (“Easy”)  

3.20e-03 (“Easy/somewhat difficult”) 

F6 0/5, 0/5, 0/4  

(ktot = 0, Ntot = 14) 

INT-SGTR- 
HFE2A  

INT-SGTR- 
HFE3A 
INT-SGTR- 
HFE3B 

1/14  

1/14 
2/14 

3.20e-03 (“Easy/somewhat difficult”)  

1.00e-02 (“Somewhat difficult”) 
1.00e-02 (“Somewhat difficult”) 

F7 1/5, 0/5, 0/5, 0/5, 0/3  

(ktot = 1, Ntot = 23) 

INT-SGTR- 
HFE2B 

0/14 3.20e-03 (“Easy/somewhat difficult”) 

F8 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 
0/5, 0/2  

(ktot = 0, Ntot = 62) 

INT-SGTR- 
HFE4A 

0/14 3.20e-04 (“Very easy”) 

F10 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 0/5, 
0/4  

(ktot = 0, Ntot = 59) 

INT-SGTR- 
HFE5B2 

0/7 1.00e-03 (“Easy”) 

F11 0/5, 0/5, 0/5  

(ktot = 0, Ntot = 15) 

INT-LOFW- 
HFE1A 

0/10 3.20e-03 (“Easy/somewhat difficult”)  

Table 5 
Scaling guidance used to convert the expert-based HFE difficulty rankings from 
Bye et al. (2011), Dang et al. (2014), Forester et al. (2014, 2016), Lois et al. 
(2009) into HFE probability estimates (Table 4, last column). Adapted from the 
qualitative likelihood scale provided in Table 3.8-2 of NUREG-1880 (ATHEANA 
User’s Guide, Forester et al., 2017).  

HFE difficulty ranking Failure probability estimate 

Extremely difficult  

Very difficult 
Difficult 
Fairly difficult / difficult 
Somewhat difficult 
Easy / somewhat difficult 
Easy 
Very easy 
Extremely easy 

1.0  

3.2e-1 
1.0e-1 
3.2e-2 
1.0e-2 
3.2e-3 
1.0e-3 
3.2e-4 
1.0e-4  
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HRA Empirical Studies. In the US Study (Forester et al., 2016), a con-
jugate beta-binomial model is set up with a Jeffreys prior distribution, i. 
e. a non-informative beta distribution with both shape parameters (i.e. 
α0 and β0 in subsection 4.3.2) equal to 0.5. In the International Study 
(Bye et al., 2011; Dang et al., 2014; Lois et al., 2009), a lognormal- 
binomial model is set up with a weakly-informative lognormal prior, 
with 5th and 95th percentiles respectively equal to 1.2e-04 and 3.0e-01. 
According to Lois et al. (2009), such percentiles “represent some of the 
lowest and highest values expected for the HEPs of operator actions and 
correspond to an error factor of 50”. For convenience, the same per-
centiles are assigned to HEP5 and HEP95 in eq. 4.10 to derive the pa-
rameters of the lognormal prior π0(μF) in Stage I (resulting in μμF 

= log 
(6.0e-3) and σμF = 2.4). 

Comparing the results for Case 1 and Case 2 in Fig. 8, a general 
tendency can be observed: the incorporation of expert estimates (EJ|HFE) 
in Case 2 tends to reduce the uncertainty on the estimated HEP values 
compared to Case 1 where only failure data (EJ|HFE) is used. Overall, this 
tendency replicates across all the HFEs analyzed in the case study, with 
the effects of EJ|HFE becoming more evident for HFEs characterized by 
scarce failure data. For instance, for US-HFE1A (kHFE/NHFE = 0/4 in 
Table 4, right), the uncertainty on the expected HEP (Case 1: 1.3e-02; 
Case 2: 3.10e-02) is reduced by about a factor of nine, with values of 
expected error factor equal to 39 and 4.2 for Case 1 and Case 2, 
respectively. Similarly, for INT-SGTR-HFE5B2 (kHFE/NHFE = 0/7 in 
Table 4, right), the uncertainty on the expected HEP (Case 1: 6.0e-03; 
Case 2: 2.0e-02) is reduced by approximately a factor of six (expected 
error factors: 26.9 versus 4.4). On the contrary, for HFEs with at least 
one observed failure, the differences between Case 1 and Case 2 are 
small: see, for instance, US-HFE1C and INT-SGTR-HFE3B in Fig. 8 
(respectively with kHFE/NHFE = 1/4 and kHFE/NHFE = 2/14). 

Similar considerations apply when comparing Case 2 with the 
lumped-data approaches used in the Empirical Studies (Bye et al., 2011; 
Dang et al., 2014; Forester et al., 2014, 2016; Lois et al., 2009). On the 
one hand, both the proposed two-stage model and the lumped-data 

model return similar PHFE(HEP)’s for HFEs with kHFE ≥ 1. On the other 
hand, with poor failure data, the lumped-data model provides uncertain 
HEP estimates characterized by unpractical error factors (e.g. for US- 
HFE1A and INT-SGTR-HFE5B2, the expected error factors are respec-
tively 28 and 25.1). 

3. Discussion 

The construction of HEP population variability distributions in Stage I 
and their use as generic priors for plant-specific HFEs require the avail-
ability of evidence (empirical data ES|F and/or expert estimates EJ|F) 
relevant to the representative constellations of task/PSF categories. 
Concerning ES|F, such data requirements are generally met by the current 
availability of simulator data for many constellations F that are normally 
trained in large-scale programs, as highlighted by the application to case 
study (Section 4) with data extrapolated from the SACADA public data-
base (USNRC, 2019) (Table 4). The same does not apply when dealing 
with constellations that are not-frequently trained in simulators: an 
example of such constellations are F5 and F9 in Table B.2 (respectively 
representing the HFEs INT-SGTR-HFE1B and INT-SGTR-HFE5B1 from the 
complex SGTR variant in Lois et al., 2009), for which no data was found 
available in the SACADA database at the time of the application. In the 

latter case, to increase data usability, the PF

(
pt|F

)
’s in Stage I could be 

alternatively informed by evidence collected for “similar” constellations, 
e.g. that share a subset of PSFs with the constellation of interest: for 
instance, in Table B.2, ES|F relevant to F2 could be adapted to both F5 and 
F9. Note however that the compatibility between constellations must be 
carefully evaluated in order to avoid underrepresentation (or over-
representation) of the actual performance influencing factors character-
izing the plant-specific HFE at hand. 

Given the demonstration purposes of the case study (Section 4), each 
of the HFEs in Table B.2 is associated to a unique task type, representing 
the predominant macro-cognitive function from the SACADA taxonomy 
(Chang et al., 2014). It is important to note that, whilst such modelling 

Fig. 8. Results from the application of the two-stage 
model to a subset of HFEs (in x-axis) from the case 
study (the numeric results for the complete set of 
HFEs are provided in Table B.3, Appendix B). On y- 
axis (in log-scale): expected mean (filled symbols), 
5th and 95th percentiles (whiskers) of the 
PHFE(HEP)’s returned by the two-stage model (for 
both Case 1 and Case 2) and the lumped-data ap-
proaches from literature sources (Bye et al., 2011; 
Dang et al., 2014; Forester et al., 2014, 2016; Lois 
et al., 2009).   

S.F. Greco et al.                                                                                                                                                                                                                                 



Safety Science 159 (2023) 106009

15

choice would be more appropriate for operator tasks defined at a more 
microscopic granularity level (e.g. monitoring a specific alarm, or 
operating a specific a valve), it may however oversimplify the repre-
sentation of those HFEs whose task characteristics are defined at a more 
macroscopic level (e.g. in Table B.2, “failure to identify and isolate the 
ruptured steam generator”), for which more cognitive functions are 
expected to play a role in operator performances. Guidelines on the use 
of SACADA taxonomy to inform HEP quantification models can be found 
in Chang et al. (2014). 

The HEP population variability formulation adopted for Stage I in-
terprets the HEP as a crew-generic quantity (i.e. the variable pt|F), 
without explicitly considering crew-to-crew variability aspects stem-
ming from different crew behavioral characteristics or operating styles 
(e.g. in team decision-making or communication strategies). As 
mentioned in subsection 2.2, the focus of the present work was indeed 
on modelling source-to-source variability (i.e. plant-to-plant, scenario- 
to-scenario, task-to-task) within the categories of task type and perfor-
mance factors of the given data collection taxonomy. Previous work 
from the authors (Greco et al., 2021b) developed a Bayesian hierarchical 
model based on the concept of crew behavioral patterns to explicitly 
treat crew performance variability aspects in simulator data. In this re-
gard, the mathematical formulation of Stage I can be extended by future 
works to integrate crew behavioral patterns (Greco et al., 2021b) in the 
HEP quantification process. Note however that the use of behavioral 
patterns to model crew-to-crew variability would require the availabil-
ity of records of crew behaviors from simulator experiments or human 
factor studies (Greco et al., 2021b), in order to be applicable. 

As stated earlier in Section 1, besides their use as priors for plant- 
specific HEP estimation, the HEP population variability distributions 
produced in Stage I can inform reference HEP values and variability bounds 
to parametrize HRA methods, with general applicability to different con-
stellations of categories (e.g. generic task types; PSF levels or ratings) of the 
given method taxonomy. Similarly, the estimated HEP distributions can be 
used as anchoring information (i.e. the CPDs) to parametrize the node 
categories of the emerging BBN-based models (Groth and Mosleh, 2012; 
Mkrtchyan et al., 2015; Shirley et al., 2020; Sundarmurthi and Smidts, 
2019; Zhao and Smidts, 2019). In this regard, the proposed Bayesian model 
allows for a formal and traceable incorporation of the judgment-based 
evidence (i.e. the expert-elicited estimates EJ|F) in the reference HEP 
values and bounds of HRA models: this feature is of key importance 
especially for those constellations of task/PSF categories for which current 
data availability from data collection programs is not sufficient to derive 
statistically significant information. Lastly, it is important to note that this 
work considered expert judgment only in the form of task failure proba-
bility estimates. However, expert judgment can be available also in other 
fashions, e.g. as likelihood rankings or qualitative statements on the 
importance of influencing factors. Also, besides HEP quantification, expert 
judgment is involved in the construction of HRA models (e.g. in the se-
lection of the nodes or to inform causal relationships in the BBN-based 
models), as well as in the definition of protocols for HRA data collection. 
Future studies should investigate more in detail how integrate the results 
from the developed HEP quantification framework into HRA model pa-
rameters (e.g. into the BBN model relationships). 

4. Conclusions 

The increasing use of HRA results to support safety-relevant decision- 
making of nuclear power plants licensees and regulators requires that 
the HEPs estimated by the models, as well as the associated bounds, be 
to the extent possible empirically grounded. Therefore, a traceable 

incorporation of expert judgment is required whenever the latter is 
combined with empirical data in the HEP estimation process, to distin-
guish the empirical basis of HEP estimates from the judgment-based 
component. 

This paper presents a Bayesian two-stage model to mathematically 
integrate the new batches of simulator data produced by the currently- 
ongoing data collection campaigns with expert-elicited probability es-
timates, in the derivation of HEP population variability distributions for 
various constellations of task types and PSF levels (Stage I) as well as in 
the estimation of HEP values for HFEs in plant-specific PSA analyses 
(Stage II). The possibility to systematically combine diverse information 
sources in a traceable and reproducible way makes the proposed 
Bayesian model a versatile, ready-to-use data aggregation framework for 
HEP quantification. Traceability is a feature of key importance, since it 
allows continuous updates of the HEP estimates as new empirical evi-
dence becomes available (i.e. from the long-running data collection 
programs, or from the specific plant), progressively replacing the 
judgment-based information in the reference HEP values and bounds 
underlying HRA models, as well as in the plant-specific estimates. Also, 
traceability in judgment incorporation is expected to increase the 
acceptability of HRA results for use in safety-relevant applications. 

The application to case study demonstrates that the combined use of 
data and expert estimates in the two-stage model can significantly improve 
the quality of the quantified HEP values for those HFEs characterized by 
scarce plant-specific data. This is an important aspect considering that, 
with poor data available, the HEP estimates returned by the commonly- 
adopted lumped-data approaches are not of practical use for PSA appli-
cations (i.e. the uncertainty on the expected values is too large). 

The sensitivity analysis performed on Stage I has shown that, for 
constellations of task/PSF categories characterized by moderately high 
HEP values (i.e. around 0.01), the integration of data and expert judg-
ment yields practical estimates of the associated HEP population vari-
ability distributions already with few dozen data points. Overall, such 
data requirements are already achievable for most of the constellations 
of task and performance factors addressed by current simulator pro-
grams. Numerical tests with artificial data have also shown that a simple 
predictive checks with Bayesian p-values may effectively spot the 
presence of biases in the probability estimates provided by the experts. 
Such checks can support the HRA analyst in assigning appropriate 
confidence levels to the consulted experts, in order to mitigate the effects 
of their biases on the HEP estimates. 
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Appendix A. Provides the JAGS code for the implementation of the Bayesian two-stage model presented in this paper 

Stage I code is relevant to the configuration with lognormal population variability distribution presented in Section 3 (“lognormal PV-binomial- 
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lognormal” in Fig. 4, left), The specific values of “mean_mu” and “mean_sigma” (i.e. in eq. (10), the parameters of the lognormal hyperprior π0(μF)) 
used in the numerical applications are reported in Sections 3-4. 

In Stage II code, note that the symbol “[…]” in the last string represents a replacement for the numerical output of Stage I, i.e. the estimated HEP 

population variability distribution PF

(
pt|F

)
. Note also that the HEP support is truncated below 1.0e-05 and above 1, as discussed in subsection 3.2. 

Stage I. 
model = “. 
model { # i = task index, Ntotal: number of task realizations across plants. 
for (i in 1:Ntotal) { # x.obs: task-specific failures. 
x.obs[i] ~ dbin(HEP[i], n[i]) # x.exp: task-specific expert estimate. 
x.exp[i] ~ dlnorm(log.HEP[i],tau.exp[i]) # lognormal error model. 
tau.exp[i] = pow((1/(1.645))*log(EF.exp[i]),-2) # convert EFi into sigma. 
HEP[i] = exp(log.HEP[i]) # transformation log to real scale. 
log.HEP[i] ~ dnorm(mu,tau) # population variability function. 
x.sim[i] ~ dbin(HEP[i], n[i]) # replicated datasets (for model checking). 
}. 
HEP.pred = exp(log.HEP.pred) # HEP posterior predictive. 
log.HEP.pred ~ dnorm(mu,tau). 
mu ~ dnorm(mean_mu,mean_tau) # hyperprior on mean. 
mean_tau = pow(mean_sigma,-2). 
sigma ~ dunif(0.01,5) # hyperprior on sigma (diffuse). 
tau = pow(sigma,-2). 
}“. 
Stage II. 
model = “. 
model {. 
x.obs ~ dbin(HEP, n) # n, x.exp: plant-specific failures and expert estimate. 
x.exp ~ dlnorm(log.HEP,tau.exp) # lognormal error model. 
tau.exp = pow((1/(1.645))*log(EF.exp),-2) # convert EF into sigma. 
HEP = exp(log.HEP) # transformation log to real space. 
log.HEP ~ […] T(log(1E-5),log(1)) # marginal prior (output Stage I). 
}“. 

Appendix B. . Complements the numerical demonstration of the Bayesian two-stage model presented in Sections 4.3–4.4. 

(SEE Tables B1-B3). 

Table B1 
Numerical results from the sensitivity analysis to expert biases (subsection 3.3.3).  

Case Confidence level Type of bias (bias factor) Mean 5th 50th 95th EF 

10 tasks EFi = 1    

EFi = 3   

EFi = 5 (Fig. 7)    

EFi = 7    

Unbiased (b = 1)  

Conservative (b = 10) 
Optimistic (b = 0.1) 
Unbiased (b = 1) 
Conservative (b = 10) 
Optimistic (b = 0.1) 
Unbiased (b = 1) 
Conservative (b = 10) 
Optimistic (b = 0.1) 
Unbiased (b = 1) 
Conservative (b = 10) 
Optimistic (b = 0.1) 

5.10e-02 
4.51e-01 
5.00e-03 
7.20e-02 
2.08e-01 
2.10e-02 
7.70e-02 
1.62e-01 
4.10e-02 
7.80e-02 
1.43e-01 
5.30e-02 

1.71e-02 
1.43e-01 
1.79e-03 
4.13e-03 
7.12e-02 
4.17e-04 
2.55e-03 
4.57e-02 
1.95e-04 
1.79e-03 
3.25e-02 
1.34e-04 

4.31e-02 
4.18e-01 
4.45e-03 
3.49e-02 
1.86e-01 
4.90e-03 
3.26e-02 
1.38e-01 
5.92e-03 
3.05e-02 
1.18e-01 
6.72e-03 

1.09e-01 
8.66e-01 
1.12e-02 
2.71e-01 
4.25e-01 
7.70e-02 
3.25e-01 
3.61e-01 
2.19e-01 
3.46e-01 
3.41e-01 
3.00e-01 

2.5 
2.5 
2.5 
8.1 
2.4 
13.6 
11.3 
2.8 
33.5 
13.9 
3.2 
47.3 

50 tasks EFi = 1    

EFi = 3   

EFi = 5 (Fig. 7)    

EFi = 7    

Unbiased (b = 1)  

Conservative (b = 10) 
Optimistic (b = 0.1) 
Unbiased (b = 1) 
Conservative (b = 10) 
Optimistic (b = 0.1) 
Unbiased (b = 1) 
Conservative (b = 10) 
Optimistic (b = 0.1) 
Unbiased (b = 1) 
Conservative (b = 10) 
Optimistic (b = 0.1) 

5.50e-02 
5.32e-01 
6.00e-03 
6.70e-02 
2.30e-01 
9.00e-03 
6.50e-02 
1.72e-01 
1.40e-02 
6.40e-02 
1.48e-01 
1.80e-02 

2.47e-02 
2.37e-01 
2.47e-03 
1.26e-02 
1.64e-01 
1.16e-03 
1.15e-02 
1.20e-01 
8.72e-04 
1.08e-02 
1.01e-01 
7.27e-04 

5.04e-02 
5.10e-01 
5.05e-03 
4.82e-02 
2.26e-01 
5.73e-03 
4.61e-02 
1.70e-01 
6.41e-03 
4.49e-02 
1.45e-01 
6.97e-03 

1.03e-01 
8.99e-01 
1.04e-02 
1.82e-01 
3.08e-01 
2.84e-02 
1.79e-01 
2.33e-01 
4.74e-02 
1.77e-01 
2.02e-01 
6.65e-02 

2.0 
1.9 
2.1 
3.8 
1.4 
5.0 
3.9 
1.4 
7.4 
4.0 
1.4 
9.6  
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Table B2 
Set of HFEs from US (Forester et al., 2016) and International (Bye et al., 2011; Dang et al., 2014; Forester et al., 2014; Lois et al., 2009) Empirical Studies analysed in the case study (Section 4), and associated constellation 
of task/PSF categories (F) from SACADA taxonomy (Chang et al., 2014).  

ID: human failure event Constellation F 

US-HFE1A: “failure to establish feed and bleed within 45 min of the reactor trip, given that the 
crews initiate a manual reactor trip before an automatic reactor trip” 

F1: task type = manipulation, PSFs: {time criticality = normal time available, extent of communication = extensive onsite, type of action =
order, guidance = S.T.A.R, location = main/auxiliary control board, miscellaneous = non-standard conditions} 

US-HFE1C: “failure to isolate the ruptured steam generator and control pressure below the SG 
PORV set-point to avoid SG PORV opening” 

F2: task type = understanding the situation/problem, PSFs: {time criticality = normal time available, workload = concurrent demand, extent 
of communication = extensive within control room, information quality = missing, information specificity = not specific, familiarity =
anomaly, diagnosis base = procedure, information integration = ambiguous} 

US-HFE2A: “failure to trip the RCPs and start the PDP to prevent RCP seal loss of coolant accident 
(LOCA)” 

F3: task type = detecting an alarm, PSFs: {time criticality = barely adequate time, workload = multiple concurrent demand, extent of 
communication = extensive within control room, detection mode = aware/inspection, status of alarm board = overloaded, expectation of 
alarm change = not expected} 

US-HFE3A: “failure of crew to isolate the ruptured steam generator and control pressure below the 
SG PORV set point before SG PORV opening”  

INT-SGTR-HFE1A: “Failure to identify and isolate the ruptured steam generator” 

F4: task type = detecting an alarm, PSFs: {time criticality = barely adequate time, workload = multiple concurrent demand, extent of 
communication = extensive within control room, detection mode = aware/inspection, status of alarm board = overloaded, expectation of 
alarm change = not expected} 

INT-SGTR-HFE1B: “failure to identify and isolate the ruptured steam generator” F5: task type = understanding the situation/problem, PSFs: {time criticality = barely adequate time, workload = concurrent demand, extent 
of communication = extensive within control room, information quality = conflicting, information specificity = not specific, familiarity =
anomaly, diagnosis base = knowledge, information integration = ambiguous} 

INT-SGTR-HFE2A: “failure to cool down the RCS expeditiously” 
INT-SGTR-HFE3A: “failure to depressurize RCS the RCS expeditiously” 
INT-SGTR-HFE3B: “failure to depressurize RCS the RCS expeditiously” 

F6: task type = manipulation, PSFs: {time criticality = normal time available, workload = concurrent demand, extent of communication =
extensive within control room, type of action = monitoring, guidance = procedure, location = main/auxiliary control board} 

INT-SGTR-HFE2B: “failure to cool down the RCS expeditiously” F7: task type = manipulation, PSFs: {time criticality = normal time available, workload = normal, extent of communication = normal, type 
of action = monitoring, guidance = procedure, location = main/auxiliary control board} 

INT-SGTR-HFE4A: “failure to stop the safety injection” F8: task type = manipulation, PSFs: {time criticality = normal time available, workload = normal, extent of communication = normal, type 
of action = order, guidance = procedure, location = main/auxiliary control board} 

INT-SGTR-HFE5B1: “failure to close PORV block valve if it remains partially open and indications 
show ‘closed’” 

F9: task type = understanding the situation/problem, PSFs: {time criticality = barely adequate time, workload = concurrent demand, extent 
of communication = normal, information quality = misleading, outcome = procedure, familiarity = anomaly, diagnosis base = knowledge, 
information integration = timing} 

INT-SGTR-HFE5B2: “failure to close PORV block valve if it remains partially open and indications 
show ‘open” 

F10: task type = detecting status change of indicator/alarm, PSFs: {time criticality = normal time available, extent of communication =
normal, detection mode = procedure-directed check, degree of change = distinct} 

INT-LOFW-HFE1A: “failure to establish Bleed and Feed before SG dryout” F11: task type = manipulation, PSFs: {time criticality = normal time available, workload = concurrent demand, extent of communication =
normal, type of action = monitoring, guidance = procedure, location = main/auxiliary control board} 

INT-LOFW-HFE1B: “failure to establish Bleed and Feed before SG dryout and depressurization of 
steam generator” 

F12: task type = manipulation, PSFs: {time criticality = barely adequate time, workload = multiple concurrent demand, extent of 
communication = extensive within control room, type of action = monitoring, guidance = S.T.A.R., location = main/auxiliary control board, 
miscellaneous = additional mental effort, unintuitive plant response} 

INT-LOFW-HFE2B: “failure to establish Bleed and Feed within 25 min after SG dryout and 
depressurization of steam generator” 

F13: task type = manipulation, PSFs: {time criticality = normal time available, workload = normal, extent of communication = extensive 
within control room, type of action = monitoring, guidance = S.T.A.R., location = main/auxiliary control board, recoverability =
unrecoverable}  
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Table B3 
Numerical results from the application to case study (Section 4).  

Stage 1: estimation of PF

(
pt|F

)
Stage 2: estimation of PHFE(HEP)

F Mean 5th 50th 95th EF HFE Case Mean 5th 50th 95th EF 

F1 3.50e- 
02 

3.26e- 
05 

2.47e- 
03 

1.88e- 
01  

76.0 US-HFE1A  

(Fig. 8) 

Case 1: simulator data  

Case 2: simulator data and 
estimate 
Results from Empirical Studies 

1.30e- 
02 
3.10e- 
02 
1.00e- 
01 

4.29e- 
05 
4.87e- 
03 
4.62e- 
04 

1.95e- 
03 
2.12e- 
02 
5.20e- 
02 

6.52e- 
02 
8.77e- 
02 
3.62e- 
01 

39.0 
4.2 
28.0 

F2 2.34e- 
01 

2.44e- 
02 

2.02e- 
01 

5.81e- 
01  

4.9 US-HFE1C  

(Fig. 8) 

Case 1: simulator data  

Case 2: simulator data and 
estimate 
Results from Empirical Studies 

1.83e- 
01 
1.61e- 
01 
3.00e- 
01 

4.16e- 
02 
4.85e- 
02 
4.60e- 
02 

1.52e- 
01 
1.37e- 
01 
2.72e- 
01 

4.30e- 
01 
3.55e- 
01 
6.51e- 
01 

3.2 
2.7 
3.8 

F4 1.50e- 
02 

3.06e- 
05 

1.37e- 
03 

5.06e- 
02  

40.7 US-HFE3A  

(Fig. 8)  

INT-SGTR-HFE1A 

Case 1: simulator data  

Case 2: simulator data and 
estimate 
Results from Empirical Studies 
Case 1: simulator data 
Case 2: simulator data and 
estimate 
Results from Empirical Studies 

8.00e- 
03 
2.00e- 
03 
1.25e- 
01 
3.40e- 
02 
8.00e- 
03 
4.90e- 
02 

4.00e- 
05 
2.35e- 
04 
6.03e- 
04 
1.38e- 
03 
1.33e- 
03 
3.17e- 
03 

1.19e- 
03 
1.03e- 
03 
6.74e- 
02 
1.97e- 
02 
5.68e- 
03 
3.33e- 
02 

3.62e- 
02 
4.53e- 
03 
4.44e- 
01 
1.18e- 
01 
2.32e- 
02 
1.51e- 
01 

30.1 
4.4 
27.1 
9.2 
4.2 
6.9 

F6 3.80e- 
02 

3.37e- 
05 

2.53e- 
03 

2.11e- 
01  

79.1 INT-SGTR-HFE2A    

INT-SGTR-HFE3A   

INT-SGTR-HFE3B 
(Fig. 8) 

Case 1: simulator data  

Case 2: simulator data and 
estimate 
Results from Empirical Studies 
Case 1: simulator data 
Case 2: simulator data and 
estimate 
Results from Empirical Studies 
Case 1: simulator data 
Case 2: simulator data and 
estimate 
Results from Empirical Studies 

4.70e- 
02 
1.00e- 
02 
4.90e- 
02 
4.70e- 
02 
2.20e- 
02 
4.90e- 
02 
1.05e- 
01 
4.00e- 
02 
1.07e- 
01 

2.36e- 
03 
1.52e- 
03 
3.17e- 
03 
2.36e- 
03 
3.84e- 
03 
3.17e- 
03 
1.66e- 
02 
8.00e- 
03 
1.80e- 
02 

3.03e- 
02 
6.59e- 
03 
3.33e- 
02 
3.03e- 
02 
1.59e- 
02 
3.33e- 
02 
8.80e- 
02 
3.01e- 
02 
8.97e- 
02 
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