
journal of the mechanical behavior of biomedical materials 139 (2023) 105659

Available online 6 January 2023
1751-6161/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Fracture in porous bone analysed with a numerical phase-field 
dynamical model 

Jenny Carlsson a,b, Anna Braesch-Andersen a, Stephen J. Ferguson c, Per Isaksson a,* 

a Solid Mechanics, Department of Materials Science and Engineering, Uppsala University, Sweden 
b Now at Cambridge University Engineering Department, Trumpington St., Cambridge, UK 
c Institute for Biomechanics, ETH Zurich, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Trabecular bone 
Phase-field model 
Rapid bone fracture 

A B S T R A C T   

A dynamic phase-field fracture finite element model is applied to discretized high-resolution three-dimensional 
computed tomography images of human trabecular bone to analyse rapid bone fracture. The model is contrasted 
to quasi-static experimental results and a quasi-static phase-field finite element model. The experiment revealed 
complex stepwise crack evolution with multiple crack fronts, and crack arrests, as the global tensile displacement 
load was incrementally increased. The quasi-static phase-field fracture model captures the fractures in the 
experiment reasonably well, and the dynamic model converges towards the quasi-static model when mechani-
cally loaded at low rates. At higher load rates, i.e., at larger impulses, inertia effects significantly contribute to an 
increased initial global stiffness, higher peak forces and a larger number of cracks spread over a larger volume. 
Since the fracture process clearly is different at large impulses compared to small impulses, it is concluded that 
dynamic fracture models are necessary when simulating rapid bone fracture.   

1. Introduction 

Rapidly growing fractures in low-quality porous (osteoporotic) bone 
are a major cause of long-term pain and physical disability, and have an 
enormous impact on the health care system (Braithwaite et al., 2003). 
However, to study bone fracture on a tissue level is difficult; its multi-
scale architecture and intricate material composition makes mechanical 
analyses of bone a severely complicated task (Sabet et al., 2016). 
Damage and fracture in bone are known to be dependent on the volume 
density of bone as well as the quality of bone tissue (cf. Keaveny et al., 
2001; Dubey and Tomar, 2018). Many studies, using a combination of 
experimental observations and finite element (FE) analyses, have been 
made to characterize the mechanical behaviour of bone, e.g. Schileo 
et al. (2008), Schileo et al. (2014), Grassi et al. (2016), Wu et al. (2018, 
2022), and a wide range of elastic moduli have been reported. On a 
global scale, FE models of bone (e.g. femur heads) using varying stiffness 
and toughness distributions based on density estimations within the 
bone from computed tomography (CT) scans have recently been 
employed to e.g. evaluate deformation fields (cf. Shen et al., 2019; 
Gustafsson et al., 2021; Kok et al., 2022). 

Most bone fractures are caused by impact upon falling, and the 
majority of hip fractures are reported as being caused by sideways fall 

from standing (cf. Parkkari et al., 1999; Iolascon et al., 2013; Helgason 
et al., 2014). Helgason et al. (2014) performed a dynamic 3D FE simu-
lation of femur, modelled as a homogenous solid on a global scale. Focus 
was on the cortical surface, and the simulations showed high strain 
magnitudes in similar regions as where fractures were observed in ex-
periments. Varga et al. (2016) compared dynamic drop tower experi-
ments on a femur head to a quasi-static non-linear 2D FE model to 
analyse strength, stiffness and fracture sites. More recent studies, both 
experimental and numerical, have addressed the issue of dynamical 
fracture of femurs (cf. Askarinejad et al., 2019; Jazinizadeh et al., 2020; 
Kok et al., 2021). However, like most previous studies, these recent 
analyses were conducted on a global scale, using a “smeared”, or aver-
aged, continuum representation of the bone tissue. There is, however, a 
need to capture the crack dynamics also on a lower scale, i.e., at the 
trabecular scale. In response to this need, a quasi-static 3D phase-field 
finite element fracture model was applied on tissue level for trabec-
ular bone by Braesch-Andersen et al. (2022). The trabecular bone was 
extracted from a human femur head and the aim was to analyse 
trabecular failure under global compression at high resolution. The 
study concludes that the numerical model to a great extent could 
simulate stably growing fractures in the trabecular bone. 

In this study, dynamic fracture in trabecular bone, cut from a human 
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femur head, is analysed numerically, as well as in comparison with 
quasi-static experiments. Trabecular bone samples, with pre-fabricated 
notches, were loaded in tension while monitored in synchrotron-based 
X-ray CT to obtain 3D images of growing cracks. The crack experi-
ments are analysed with respect to fracture evolution and compared 
qualitatively to numerical simulations at high-resolution using a phase- 
field approach to simulate brittle fracture. The simulations are per-
formed with slow, quasi-static loads and with rapid, dynamic loads at 
different loading rates in order to investigate to what extent the me-
chanical response is altered when subjected to loading rates close to 
those expected in actual fracturing incidents. Only trabecular bone is 
considered, meaning the difference in density and elastic properties on a 
global scale is inherently obtained. Due to large variation and uncer-
tainty in mechanical properties of bone, quantitative comparisons of 
loads and displacement are outside the scope of this study. 

2. Methods 

2.1. Experiment 

Human femur heads, removed in hip arthroplasty, were collected 
(ethics committee approval EK-29/2007, Zürich) and stored in − 80 ◦C. 
Before experimental use the material was thawed overnight to room 
temperature. Two samples with rectangular cross-section 8× 4 mm and 
height 20 mm were cut from the femur heads with a clinical oscillating 
saw. Between cutting and testing, the samples were kept in phosphate 
buffered saline to avoid dehydration. A blunt edge-notch of length 2.3 
mm was cut into the side of each sample at its mid-height in order to 
localize fracture (illustrated in the schematics in Fig. 1). The CT scans 
were performed at level with the notch, Fig. 1. The scanned region has 
dimension 6 × 3 × 3 mm and contains the “tip-part” of the blunt notch 
with length ~1.4 mm. This can cause boundary effects in the FE- 
simulation as the model geometry was discretized from the CT scan. 
Of particular importance for the numerical study is the length of the 
crack which is within the scanned region. In order to observe crack 
propagation over a distance, part of the notch was left outside the field of 
view. The discretized model thus contained a notch of length in the 
range of the native pore size in the trabecular bone (see Fig. 1). 
Boundary effects are further discussed in Section 4. 

Displacement-controlled quasi-static tensile tests were conducted in 
a synchrotron-based X-ray CT (the Tomcat beamline at the Swiss Light 
Source, Paul Scherrer Institute, Villigen, Switzerland). The samples were 
clamped at the top and bottom, such that the free height was about 10 
mm. The region around the notch was scanned by CT at zero loading, 

then at regular intervals, until the bone sample was completely broken. 
To avoid interference from movement between the loading and scan-
ning, the tensile testing machine was paused during the scanning. The 
load rate was 38 μm/s and holding time was about 1 min. The voxel 
resolution was 3.25 μm; a compromise between a high resolution and a 
sufficiently large field of view, i.e., 6 mm in width and 3 mm in height. 
Specific parameters for the scanning were: 20 keV for beam energy, 400 
mA for ring current, two aluminium filters with thickness of 200 μm and 
50 μm, 0.18◦ for the angular rotation step, 200 flat field images and 30 
black current images for noise reduction and, finally, 30 ms for the 
exposure time of each radiograph. In total, 1231 sequential projections 
were acquired within approximately 50 s for each scan. The projections 
were reconstructed into cross-sectional images using the method of 
Schindelin et al. (2012) and cropped to roughly 2000× 1000× 1000 
voxels in dimensions to mainly contain the trabecular bone and reduce 
the amounts of debris. 

A slight shift in sample surface colour was observed after the CT- 
scans, indicating that the X-ray radiation affected the samples. Exactly 
how much of the samples that were affected or how it may alter their 
mechanical properties is still an open scientific question (Peña Fernan-
dez et al., 2018a; Barth et al., 2011). However, the discussion is outside 
the scope of this work and we wish to only note down that there was an 
observable effect on the surface colour. 

2.2. Theory 

For numerical computation, phase-field models for brittle fracture 
implemented with a linear finite element discretization are utilized. The 
implementation is described for isotropic materials; however, it is 
possible to extend the theory to apply to materials with elastic anisot-
ropy, cf. van Dijk et al. (2020). As derivations for the dynamic and 
quasi-static theories are similar, we first present the dynamic theory and 
then summarize key equations for the quasi-static theory. 

Let a sharp crack Γ be contained in an arbitrarily shaped isotropic 
elastic body Ω. The body is subject to prescribed boundary displacement 
U on part of the boundary ∂ΩU⊂∂Ω and traction T on ∂ΩT⊂∂Ω 
(Fig. 2). The sharp crack is approximated by a crack density functional, 

Γ ≈ γ(d,∇d, l) = 3/[8l]
(

d + l2∇d ⋅∇d
)

, often referred to Ambrosio- 

Tortorelli 1 (Ambrosio and Tortorelli, 1990; Bourdin et al., 2000) 
where ∇ is the spatial differential operator, l is a regularization 
parameter characterizing the width of the damaged region and d is the 
damage field defined over the whole body Ω, d ∈ [0, 1] where d = 0 
corresponds to undamaged material and d = 1 to completely damaged 

Fig. 1. 3D image of trabecular bone sample by reconstructed CT data. The scanned region has dimension 6 × 3 × 3 mm and contains a notch with length of about 1.4 
mm. As indicated in the schematics, the scan does not include the full sample. 
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material (Fig. 2). 
A small deformation elasticity theory is assumed. Let the displace-

ment field be denoted u. The Lagrangian of the fracture problem in 
absence of any volume forces is given by 

J(u, d)=
∫

Ω

(ψk − ψe − ψs)dΩ, (1)  

where, ψk = 1
2ρu̇⋅u̇ is the kinetic energy density, ρ the mass density, u̇, 

and later occurring ü, denotes first and second derivatives of u with 
respect to time t, ψe is the elastic strain energy density and ψs =

Gcγ(d,∇d, l) is the regularized crack surface energy density where Gc is 
the critical energy release rate. The crack profile, d(ξ), acting along ξ, is 
obtained from the variational minimization of the crack surface energy 
ψ s, leading to a characteristic equation 1 − 2l2∂2d/∂ξ2 = 0 with solution 
d(ξ) = (1 − |ξ|/[2l])2. It represents a diffusive approximation of a sharp 
crack, where the crack front is perpendicular to ξ, Fig. 2c. 

Moreover, following e.g. Miehe et al. (2010), the strain energy 
density is split, or decomposed, into an active/tensile component, ψ+

e , 
which is degraded by a degradation function (1 − d)2, and an inacti-
ve/compressive component, ψ −

e , which does not degrade, such that 

ψe = (1 − d)2ψ+
e + ψ −

e . (2) 

The split of the strain energy density into two parts aims to ensure 
that the material does not degrade under compression and stiffness is 
kept in the case of crack closure. However, the choice of split is not 
obvious, and many different splits have been suggested (cf. Hesammokri 
et al., 2022). Here, a hydrostatic-deviatoric split (Amor et al., 2009) is 
applied in which the hydrostatic and deviatoric deformation modes are 
the independent modes of deformation which can be split into positive 
and negative contributions according to 

ψ+
e =

α
2

Ktr(ε)2 + μe2 and ψ −
e =

(1 − α)
2

Ktr(ε)2, (3)  

where ε = 1
2 [∇u+(∇u)T

] is the linearized strain tensor, e the linearized 
strain deviator, the parameter α = 1 if the volume expands, i.e., tr(ε) >
0, and α = 0 otherwise, K and μ are the bulk and shear modulus, 
respectively. One may notice that this split assumes that all strain energy 
associated with shear deformation affects damage, also under 
compressive load. Thus, it is assumed that crack growth in bone is driven 
by shear and tensile bulk deformation. 

Further, to impose irreversibility of the crack evolution in the com-
puter simulations, a history field H is used in place of ψ+

e , such that H is 
the maximum positive strain energy density experienced (Miehe et al., 
2010), i.e., 

H (u, t) = max
τ∈[0,t]

ψ+
e (u, τ). (4) 

The history field (4) ensures that it is the highest strain energy 
density experienced in the material during the loading history that 

determines the present damage state, i.e., the material cannot heal. 
Now, using the above relations, the energy functional is written as, 

cf. Borden et al. (2012), 

J(u,d)=
∫

Ω

[
1
2

ρu̇⋅u̇ − (1 − d)2
H −

(1 − α)
2

Ktr(ε)2 −
3Gc

8l
(
d+ l2∇d⋅∇d

)
]

dΩ .

(5) 

The first variation of (5) should be zero according to the principle of 
least action. The Euler-Lagrange equations of (5) with respect to the 
displacement and damage fields are, 
⎧
⎨

⎩

∇⋅σ = ρü

(1 − d)H −
3Gc

16l
−

3Gcl
8

∇2d = 0 ,
(6)  

where the Cauchy stress tensor is given by σ = ∂ψe/∂ε = (1 − d)2∂ψ+
e /∂ 

ε + ∂ψ −
e /∂ε and the consistent material stiffness tensor by C = ∂2ψe/∂ε2. 

The boundary and initial conditions are given by 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u = U on ∂ΩU
σ⋅n = T on ∂ΩT
∇d⋅n = 0 on ∂Ω
u(x, 0) = u0(x) in Ω
u̇(x, 0) = v0(x) in Ω

(7)  

where x denote the spatial coordinates and n is the outward surface 
normal at material boundaries. 

The dynamic displacement problem is solved using a staggered time 
integration scheme. At each time step the crack phase problem (i.e., d) is 
first solved independently, based on the displacements of the previous 
step. Then, the displacement is solved using a Newmark (1959) algo-
rithm. The displacement of the new time step n + 1 is predicted by un+1, 
using the values of the previous time step n according to 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇n+1 = u̇n + (1 − β1)Δtün + β1Δtün+1

un+1 = un + Δtu̇n +
1
2
(1 − β2)Δt2ün

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
un+1

+
1
2
β2Δt2ün+1 (8) 

The acceleration at the next time step is obtained as 

ün+1 = − A− 1[Fn+1 +Kn+1un+1] , (9)  

where A = M+ 1/2β2Δt2Kn+1, M is the mass matrix, Kn+1 is the 
stiffness matrix and Fn+1 is the nodal force vector (at time step n+ 1). 
The updated acceleration ün+1 is then input into (8) to obtain the 
updated velocity and displacement fields. A fully explicit Newmark al-
gorithm is used, in which the constants β1 = 1/2 and β2 = 0. A struc-
tural damping term could be included in (9), however, in this study, no 
structural damping was used which means that all energy dissipated 
from the dynamic system is due to fracture. 

In the quasi-static case, the rate-dependency is excluded from the 
total energy equation (5). The governing equations are derived from 

Fig. 2. A sharp crack Γ contained in a porous domain Ω (a). Diffuse approximation of the sharp crack, γ, with prescribed displacement U and prescribed traction force 
T acting on the parts of the domain surface ∂Ω (b). Profile of the diffusive phase-field crack as an approximation to a sharp crack (c). Here, ξ is a spatial coordinate 
axis directed orthogonal to the crack plane. 
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variational minimization of (5) with respect to d, i.e. 
⎧
⎨

⎩

∇⋅σ = 0

(1 − d)H −
3Gc

16l
−

3Gcl
8

∇2d = 0
(10) 

The boundary conditions are given by 
⎧
⎨

⎩

u = U on ∂ΩU
σ⋅n = T on ∂ΩT
∇d⋅n = 0 on ∂Ω

(11) 

For quasi-static loading, i.e., when stress equilibrium prevails, it can 
be shown that the model for a homogeneous body gives a uniaxial 
strength σ0 = [3GcE/(8l)]1/2 (Pham et al., 2011), and a uniaxial tensile 
fracture strain ε0 = [3Gc/(8El)]1/2. For convenience, a fracture energy 
Π0 = 1

2σ0ε0l3 = 3Gcl2/16 is introduced. 
The quasi-static simulation is solved with a staggered Newton- 

Raphson scheme, such as described in, among others, Espadas-Esca-
lante et al. (2019). At each load step n, the displacement field u and 
damage field d are solved and updated sequentially in an iteration 
process until the incremental change of the damage field Δd is suffi-
ciently small (max{|Δd|}〈10− 3) and stress equilibrium prevails. A 
flowchart of the staggered scheme adopted is shown in Fig. 3. 

In both the dynamic and quasi-static problems, discretization is done 
by interpolating the displacement and phase-field variables with stan-
dard finite element shape functions. Typical discretization examples can 
be found in Nguyen et al. (2015), Carlsson and Isaksson (2018). All the 
equations were solved using well-established finite element algorithms 
implemented in a Matlab (2020) code. Cubic 8-node isoparametric 
tri-linear elements were used in all computations. 

2.3. Model 

CT image stacks were imported for the 3D model. In order to enable 
reasonable speed of the computations, the images were run through an 
iterative procedure to coarsen the finite element mesh and remove iso-
lated debris. A convergence study was performed on a limited volume 
extracted from one of the CT scans. The volume was large enough to 
contain enough topological details for the convergence test, yet small 
enough to allow manageable computational times also on fine meshes. 

With the exception of the very coarsest mesh, the global stress-strain 
response is reasonably consistent for all meshes considered. Fracture 
patterns are similar for meshes of element edge-length h smaller than ∼
32.5 μm. In general, an element edge-length h < l/2 is necessary to 
obtain a sufficient resolution of the regularized crack surface (Ambati 
et al., 2015; Borden et al., 2012; Carlsson and Isaksson, 2018, 2020a, 
2020b; Molnár and Gravouil, 2017). This is verified by keeping l fixed 
and varying h, which confirms that l = 2h is converged. The conver-
gence study is described in more detail in Appendix A. With these 
findings in mind, an element edge-length of h = 32.5 μm was chosen, 
giving a final model of about half a million elements, Fig. 4. The 

characteristic length parameter was chosen as l = 2h. One may observe 
in Figs. 4–5 that a typical trabecula has about 0.2 mm in thickness, i.e., 
about 6h or 3l. Thus, the width of a trabecula is about 3 times the length 
parameter l which means that crack propagation within (as opposed to 
across) a trabecula cannot be captured well by the model. Crack prop-
agation across trabeculae can be captured, although not in detail due 
both to the lack of detail at sub-element length scales and the width of 
the crack. This is considered acceptable, since slender structures tend to 
fracture transversely. 

For simplicity, the base material is assumed to be isotropic, linear 
elastic and subject to small strains. In reality, trabecular bone has a small 
degree of both anisotropy and nonlinearity. Moreover, there are slightly 
darker areas along the edges of the trabeculae which can be seen in e.g. 
Fig. 5, indicating lower density and possibly different material proper-
ties. These variances are not included in the models, but might be of 
interest for future studies. The material parameters were chosen as: 
Young’s modulus E = 1 GPa, Poisson’s ratio ν = 0.2, a critical energy 
release rate Gc = 20 J/m2 and density ρ = 1600 kg/m3. These parame-
ters give a uniaxial strength σ0 of 11 MPa and a uniaxial fracture strain 
ε0 of 1% (which is in agreement with experimental studies, cf. 
Peña-Fernández et al., 2018b). As pointed out in the Introduction, ac-
cording to the literature there are large uncertainties about the elastic 
material properties of bone (Wu et al., 2018, 2022). The critical energy 
release rate, or fracture toughness, would be even more difficult to es-
timate accurately. A quantitative comparison of loads and displacement 
is therefore outside the scope of this study, hence the somewhat arbi-
trary choice of material parameters. However, a parameter study, pre-
sented in Appendix A, shows that the scaled results are more or less 
unaffected by the exact choice of parameters. 

In the quasi-static simulation, incremental displacements Δu = H/

104 were given in the vertical direction (z) to the body’s top and bottom 
boundaries at each load step, Fig. 6. All other boundaries remained 
stress free. In the dynamic simulations, prescribed velocities vz were 
given in the vertical direction (z) to the body’s top and bottom bound-
aries at each time step while all other boundaries remained stress free. 
The velocity vz was linearly increased from vz = 0 to vz = v0 during the 
first 100 time-steps and then kept at a constant velocity v0 for the 
remainder of the simulation (Fig. 6). The time step used was Δt = 0.01 
μs. Dynamic simulations with four different values of v0 were performed: 
vc, vc/2, vc/4 and vc/8, where the maximum load rate vc = 4.44 m/s was 
chosen as the resulting velocity from a free fall from a 1 m height. This 
velocity provides an upper bound on the impact velocity in an actual 
fall, as in a real fall soft tissues surrounding the bone (such as fat tissue, 
muscles etc.) would absorb energy and decrease the velocity; to what 
extent is outside the scope of this study and will also be situation- 
specific. In both the static and the dynamic models, the simulations 
were stopped once the global reaction forces became lower than 10% of 
the peak forces obtained in respective simulation. 

3. Results 

The results are presented in three parts: experimental results, quasi- 
static numerical results contrasted to the experiment, and then the dy-
namic rate-dependent numerical results. Two samples were used in the 
study, giving very similar outcomes. For consistency, only one sample is 
used to present the results in the following sections. 

3.1. Experiment 

Resulting fractures observed in the experiment are discussed based 
on the 3D-image data from the CT. Analysis will be in a purely quali-
tative manner. Inspection of CT images in Fig. 7 indicate that on the 
global scale, cracks nucleate and start growing at the lower right corner 
of the scanned region, and stepwise grow towards the notch. It is 
possible that the notch length (2.3 mm) was not sufficiently large to Fig. 3. Flowchart of the staggered scheme used for the quasi-static simulation.  
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localize crack growth to the notch tip. The thinnest visible cracks are 
about a pixel in width (1 pixel = 3.25 μm). Any crack thinner than this 
would not show up in the images. 

On the scale of a single trabecula, one observes that some micro-
cracks eventually grow and coalesce, causing complete fracture of a 
trabecula, Fig. 8. One also observes branching and arrest of cracks, as 
well as initiation of new cracks that eventually merge with other cracks. 
Also, cavities in the trabecula seems to localize microcracks, Fig. 8. 
These observed fracture mechanisms confirm earlier studies (Thurner 
et al., 2006). 

3.2. Comparison between the experiment and the quasi-static simulation 

The experiment was simulated with the quasi-static phase-field nu-
merical model discussed above. Fig. 9 shows a comparison between 
experiment and simulation for a representative cross-section. The 
simulation captures many of the final crack paths. There are also a few 
regions with disagreement, e.g., close to the top boundary in Fig. 9a 
where one from the simulation would expect a fracture, while it is 
difficult to visually detect any crack in the same region in the experi-
ment. However, the majority of fractures obtained in the numerical 
simulation are also observed in the experiment, cf. Fig. 9b and c. 

Interestingly, while the final fracture paths are similar in the 
experiment and the simulation, the crack growth process itself differs 
slightly, as visualized in the fracture sequences in Fig. 10. In the 
experiment, a crack opened close to the right boundary of the sample. As 
load-carrying trabecula fractured, the load was re-distributed and new 
cracks were nucleated in a step-wise process toward the notch. The 
simulated fracture path is similar to the one observed in the experiment, 
however, the first simulated cracks appear closer to the notch and not at 
the remote boundary. 

Fig. 11 shows close-ups of a cracked region (dashed box in Fig. 10) to 
visualize the coarsening effect on the numerical model, as compared to 
the original high-resolution image (Fig. 8a). It is noted that in the FE 
model, the mesh is too coarse, and the length parameter l too large, in 
order for the numerical model to predict the detailed crack path 
observed in the experiment. It is not possible for the model to capture 
microcracks at length-scales which are smaller than the element size 
(element edge-length h). Nevertheless, high-stressed region may be 
revealed, as indicated in Fig. 11. 

3.3. Comparison between quasi-static and dynamic simulations 

For the dynamic computations, increasing load rates were applied to 
the boundary. The aim was to investigate how the material behaves at 

Fig. 4. Discretized three-dimensional body of a notched trabecular bone sample. The cubic element edge-length is h.  

Fig. 5. Cross-section of trabecular strut. A slightly darker area can be seen 
along the edges of the trabecula, one of them marked with an arrow. Darker 
colour indicates a lower density material, that seems to make up an outer layer 
of the trabecular bone. 

Fig. 6. Left: Cross-section of the mesh with schematic of boundary conditions: prescribed velocity in the dynamic simulation and stepwise displacement in the quasi- 
static one. The blunt notch is at the left vertical edge. Right: Profile of the prescribed velocity vz in the dynamic case. The velocity vz is linearly increasing until t = t0 

(t0 = 1 μs) where vz = v0. At t ≥ t0, vz is held constant. 
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higher load rates and to what extent the behaviour is changed when 
loaded at realistic loading rates, i.e., whether it is of interest to study 
fracture at loading rates close to the rates expected in actual fracturing 
incidents. 

Fig. 12 shows predicted normalized global stress-strain curves for 
different loading velocities. The global stress is given by the reaction 
forces on the top and bottom boundaries divided by the structure’s cross- 
section area, while the global strain is given by the displacements of the 
top and bottom boundaries related to the initial distance between them. 
One observes that the dynamic simulations converge toward the quasi- 
static model as the load-rate decreases, which lend confidence to the 

simulations. During the initial acceleration of the boundaries, at the 
impact, the dynamic loadings show a steep slope, i.e., relatively higher 
global stiffness, because of the impulse, as compared to the quasi-static 
loading case. The higher the impulse, the stiffer the response, because of 
the inertia. Once the load rate v0 is reached, there is a relaxation win-
dow, where the mass of the porous material adjusts to the set load rate, i. 
e., inertia effects. During this window the global stress slightly decreases 
but stays relatively stable around a value just below the global stress at 
which v0 was reached. The global stress increases once again when stress 
equilibrium starts to establish throughout in the body. This can be seen 
in Fig. 12 when the dynamic stress-strain curves join the quasi-static 

Fig. 7. Developing cracks at increasing displacement 
(time t1 < t2 < t3 < t4). Red markings indicate newly 
formed cracks and yellow markings indicate cracks 
formed at earlier load steps. Several cracks are 
observed that do not continue to propagate. At the 
last image (t4), cracks that did not propagate becomes 
wholly or nearly invisible in the CT scan when the 
crack surfaces close, as the load is relieved from that 
region. Each cross-section has dimension 6 × 3 mm 
and the horizontal blunt notch can be seen at mid- 
height at the left vertical edges.   

Fig. 8. a) A crack is attracted to a cavity. The crack travels through some osteocytes (indicated with arrows). b) Crack arrest and appearance of another crack. c) The 
two cracks merge and completely separates the top and bottom parts of the trabecula. Each cross-section has dimension 0.6 × 0.3 mm. The region is indicated with a 
dashed box in the upper left image in Fig. 7. 

Fig. 9. Comparison of fracture locations in three cross-sections (a–c). Top row is the experiment with cracks marked by red circles. Bottom row is numerical results 
with more damage the brighter the colour. Black corresponds to no damage (d = 0) and bright/white is fully damaged (d = 1). Each cross-section has dimension 6×
3 mm and the horizontal blunt notch is located at the left vertical edges. 
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curve. Inertia effects also result in higher global peak-stress in the 
dynamical cases. Higher impulses result in higher peak-stresses, and at 
larger boundary displacements, because of inertia effects. 

In the numerical models, energy can only dissipate as surface energy 
by fracture, i.e., Πs = W − Πk − Πe, where W is the work done by 
external forces, Πk =

∫

Ω
ψkdΩ is the kinetic energy and Πe =

∫

Ω
ψedΩ is the 

elastic (or potential) energy. Elastic energy and dissipated energy are 
shown in Fig. 13. Higher values of energy are seen at larger impulses (i. 
e., at higher v0). The positions of maximum elastic energy stored in the 
body corresponds to the global peak stress (Fig. 12). At global peak 
stress, the crack density in the porous body start to increase whereupon 
elastic energy is dissipated through creation of crack surfaces. As may be 
seen in both Figs. 12 and 13, lower load rates come closer to, but do not 
completely recover the quasi-static results. Crack growth in the quasi- 
static simulation is unstable, as can be seen in the vertical jumps in 
Figs. 12–13. These vertical drops indicate incremental load steps in 
which significant damage growth take place in load-carrying regions, 
leading to substantial global stiffness loss. This is a typical feature in 
phase-field fracture models solved with a fully staggered scheme 
together with the linear Ambrosio-Tortorelli approximation of the 
Munford-Shah functional (Pham et al., 2011, 2017; Espadas-Escalante 
et al., 2019; Ambati et al., 2015). Here we interpret this phenomenon as 
unstable crack growth, even though the term often is associated with 
dynamic phenomena. In these “unstable crack growth load steps”, the 
load in the trabecular network is redistributed while the damage field 
expands and stress equilibrium prevails. From one stable solution of the 
crack field in the minimization problem, to another stable solution quite 
far away from the one in the previous load step. Nevertheless, as 
Figs. 12–13 reveals, the dynamic model asymptotically approaches the 
quasi-static solution as the impulse vanish, i.e., in the limit when v0→0. 

The manner in which the cracks initiate and grow, as well as their 
locations are somewhat different in the quasi-static and dynamic loading 
simulations (Fig. 14). The cracks developed in the quasi-static simula-
tion (and most of the cracks observed in the experiment) are contained 
within a narrow region at approximately the same height as the notch, in 
a plane-like appearance despite the large porous structure. On the other 
hand, cracks developed at higher load rates are spread throughout the 
whole volume, closer to the top and bottom. At larger impulses (i.e., at 
higher v0), stress equilibrium is not established, whereupon stresses and 
strains are higher closer to the top and bottom boundaries, causing 

Fig. 10. Fracture propagation in a cross-section with increasing displacement from left to right. Experimental images on top row show fracture initiation close to the 
boundary opposite to the notch. The dashed box in the lower right image is the area shown in Fig. 11. Each cross-section has dimension 6 × 3 mm and the horizontal 
notch can be seen at mid-height at the left vertical edges. 

Fig. 11. Close-up of mesh and CT image in Fig. 8a to reveal the effect of coarsening on the resolution. The region is marked with a dashed box in the lower right 
image in Fig. 10. 

Fig. 12. Computed global stress-strain relations at different load rates con-
trasted with the quasi-static simulation. The global stress is given by the reac-
tion forces on the top and bottom boundaries divided by the structure’s cross- 
section area, while the global strain is given by the displacements of the top and 
bottom boundaries related to the initial distance between them. The global 
stress σ̂ is normalized with the homogeneous tensile strength σ0, while the 
global strain ε̂ is normalized with the homogeneous fracture strain ε0. 
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cracks nucleating at locations deviating from the expected ones at stress 
equilibrium (quasi-static model, experiment). 

4. Discussion 

The experiments showed a complex stepwise crack evolution with 
multiple crack fronts and crack arrests. As there were only two samples, 
generalizations may be limited, but similar fracture behaviour have 
previously been reported by e.g. Thurner et al. (2006) and Voide et al. 
(2009). The simulated quasi-static fractures were similar to the experi-
mental ones, with few discrepancies. The largest normal strains were 
less than 4% in uncracked regions indicating that a small deformation 
theory is applicable. 

Some experimental factors that may have affected the results are 
important to point out. Firstly, damage from extracting, machining and 
mounting the samples might affect the local material properties and 
therefore also the load distributions and crack nucleation sites. As 
mentioned in Section 3.2, the location of the first trabecular fracture 
differed between the simulation and experiment. It is possible that the 
first crack observed in the experiment was always present but was closed 
during the initial scan (unloaded sample). The crack could have nucle-
ated during the sample preparation or mounting in the load stage. 
However, this is only speculations; we don’t know. Secondly, the CT 
scans did not include the full height, or even width, of the samples. 
While the final fractures occurred at the height of the notch (approxi-
mately in the samples mid-height), there is no knowing how the 
trabeculae were damaged outside the scanned regions. This very much 
relates to the question of boundary conditions. The few differences in 
fracture locations between the simulation and the experiment are 
believed to be related to boundary effects. The numerical model is 
loaded by continuously increasing the displacements on the top and 
bottom boundaries, but since the CT scan on which the model geometry 
is based only covers part of the sample, this approximation may deviate 

from the experiment. To improve agreement between experiment and 
simulations it would be desirable to adjust the experimental setup in 
order to give more reproducible boundary conditions Thirdly, the gen-
erality of the results may be limited due to the effect of radiation (Barth 
et al., 2010). When exposed to radiation, it has been shown that bone 
tissue tends to become more brittle in nature. In what way and how 
much this might have affected the fracture appearance and behaviour in 
the experiment is difficult to deduce (Peña Fernández et al., 2018a, 
2018b). Thus, the application of the phase-field fracture model in this 
study should be considered explorative and not as a representation of the 
tissue mechanics. Despite the experimental limitations, the 
high-resolution images of the CT scans reveal interesting fracture 
behaviour with crack arrests, deflection and microcrack nucleation. 

The quasi-static phase-field fracture method is well established and 
have been previously applied in studies on various heterogeneous ma-
terials (Nguyen et al., 2015; Espadas-Escalante et al., 2019; Carlsson and 
Isaksson, 2018) with promising results. Here too, predicted cracks are 
mostly found in similar positions as the experimental observed cracks. It 
is, however, important to note that the phase-field model in this inves-
tigation uses a relatively coarse mesh and thus cannot resolve fracture 
on the length scale of individual trabeculae, cf. Fig. 8 and Figs. 10–11. 
The cavity that attracts, or localizes, a crack in Fig. 8, for instance, is not 
captured in the model, Fig. 11. The numerical method is not able to 
capture the microcracking seen in the experiment, nor is it able to 
capture small cavities of sub-element size in the trabecula. Coarsening 
the mesh was necessary for a reasonable computational cost, but as is 
observed in Fig. 11, morphological information may be lost. Similarly, a 
too coarse mesh naturally influences the width of the diffusive and 
regularized cracks since a crack cannot be thinner than two element 
edge-lengths. To improve the local agreement, one likely has to increase 
the resolution in the finite element mesh of the phase-field simulation, 
leading to a significantly increased computational cost. The cost addi-
tion may however be kept to a minimum by improvements such as local 

Fig. 13. Normalized elastic energy Πe/Π0 and normalized dissipated energy Πs/Π0 vs. normalized global strain ε̂/ε0.  

Fig. 14. Cracks developed in the quasi-static simulation and dynamic simulations at different load rates. At the lowest load rate (v0 = vc/8), the crack pattern is 
similar to quasi-static case. At higher load rates, cracks are spread in larger parts of the sample, closer to the top and bottom boundaries. 
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mesh refinement or multiscale strategies. An interesting possibility 
would be to use different mesh resolution depending on the local value 
of damage. It is worth mentioning that the computation time for the 
quasi-static case was approximately ten days (using about 18 thousand 
stress equilibrium iterations and roughly 2 million dofs). 

A challenging problem is how to represent the material behaviour of 
the bone tissue (Helgason et al., 2008; Morgan et al., 2018; Du et al., 
2019; Bauer et al., 2014). There are multiple studies on the building 
blocks of trabecular bone tissue, suggesting nonlinear and 
direction-dependent material properties, including composite mecha-
nisms for fracture resistance. Bone tissue may also experience visco-
elastic and viscoplastic behaviour. In this study, a simple, homogeneous 
brittle linear elastic isotropic material is assumed. The parameter 
sensitivity study described in Appendix A shows that the results are 
consistent over a wide range of values of material parameters; only 
sublime differences can be noticed. This suggests that – qualitatively – 
the results obtained using this simplified model should be valid also for a 
material with a low degree of anisotropy, non-linearity or 
rate-dependence. It is, however, difficult to say with certainty to what 
extent the constitutive assumptions have affected the final fracture paths 
and in what way. In summary, there are several aspects to consider to 
improve the reproduction of experimental results, but the basic 
phase-field fracture model used here shows promising results and 
potential. 

The employed dynamic phase-field method seems to capture the 
dynamic events of fracture. As the load rate was decreased, fracture 
paths and global load-displacement curves converged toward the quasi- 
static case. Comparing higher load rates to lower, i.e., larger impulses to 
smaller impulses, one generally observes a rapid passage of events with 
higher amount of dissipated energy, i.e., larger amounts of damage/ 
crack growth, and that the damage/crack growth is spread over a larger 
region in the sample, a phenomenon resulting from inertia effects (the 
ability of the trabecular bone material to resist changes in motion varies 
with its mass, or density). At larger impulses, when stress waves prop-
agate through the material, the local strain energy in a trabecular cross- 
section may momentarily become sufficiently high to separate material, 
i.e., microcrack nucleation. Such nucleated cracks may generate new 
stress waves, which are reflected in the trabecular bone network, and 
interference and resonance phenomena may take place. Such stress- 
wave driven microcracks may continue to nucleate until steady-state 
is reached, i.e., when stress equilibrium prevails. A final global frac-
ture may occur if microcracks coalesce and localize to form an unstably 
running crack, which in turn emits stress waves that can be reflected or 
scattered back to the crack-tip region. Thus, bone subject to larger im-
pulses naturally get more energy induced and fractures nucleates and 
propagates at more places. 

The results confirm previous studies on dynamic fracture (cf. Carls-
son and Isaksson, 2018, 2020a) which also show more dispersed damage 
for higher loading rates. The chosen phase-field fracture theory is a 
convenient way to analyse bone subject to rapid loads. Higher resolution 
of the structural mesh will enhance morphological and fracture details, 
however, at a substantially higher computational cost. It is a delicate 
balance act to determine the mesh resolution, at the end of the day it is 
linked to the mechanical problem to be analysed. 

Finally, here we have analysed a bone volume subject to global 

tension. In reality, mechanical loading of bone is intricate and highly 
complicated. Real trabecular bone may be subject to mixed-mode 
loading, i.e., complex combinations of e.g., tension, compression, tor-
sion, or shearing. Additionally, long-time effects may be present, such as 
creep, healing or fatigue. These subjects are topics for future studies. 

5. Conclusions 

The quasi-static experiment revealed complex stepwise crack evo-
lution with multiple crack fronts, and crack arrests, as the global 
displacement load was incrementally increased. The quasi-static phase- 
field brittle fracture model captures the fractures obtained in the 
experiment reasonably well. The dynamic model converges towards the 
quasi-static model when loaded at low load rates. At higher load rates 
inertia effects contribute to an increased initial stiffness, higher global 
peak stresses and larger amounts of cracks spread over a larger volume. 
Since the fracture process clearly is different at large impulses compared 
to small impulses, dynamic fracture models are necessary when simu-
lating rapid bone fracture. 

Due to a relatively coarse mesh, the model could not replicate crack 
arrests, deflections or branching induced by tissue microstructure (e.g., 
cavities) present at a smaller length scale than the mesh resolution (i.e., 
element edge-length). Still, the dynamic phase-field fracture model 
shows promising results and potential. Higher resolution of the struc-
tural mesh will enhance morphological and fracture details, however, at 
a substantially higher computational cost. 
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Appendix A. Convergence tests 

A limited cubic volume with side length of 500 voxels (1.625 mm) was extracted from a synchrotron CT scan of trabecular bone from a human 
femur head. The volume size was judged to include enough topological information to perform convergence tests, while being small enough to run 
tests with sufficient speed even on higher resolution. The volume was converted into meshes as described above. The mesh sizes tested were h/ h0 =

25, 17, 10 and 8 where h is the element side length and h0 = 3.25 μm is the original voxel side length from the CT images. Each structural mesh was 
evaluated by letting the top boundary layer be subjected to a vertical incremental displacement while the bottom boundary layer was fixed in the 
vertical direction. The tensile loading was continued until the applied load dropped to less than 15% of the peak load in loading history. 
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Figure A1 displays the global stress-strain curves and the final fracture patterns using a phase-field characteristic length l = 2h for the evaluated 
mesh sizes. The global stress is given by the reaction forces on the top and bottom boundaries divided by the structure’s cross-section area, while the 
global strain is given by the displacements of the top and bottom boundaries related to the initial distance between them. Figure A2 shows the global 
stress-strain curves and the final fracture patterns using a constant characteristic length l = 20h0 = 65 μm for some mesh sizes. The simulations shown 
in Figs. A1 and A2 were run using Young’s modulus E = 1 GPa, Poisson’s ratio ν = 0.2, and a critical energy release rate Gc = 20 J/m2. Based on the 
observations in Figs A1-A2, a mesh resolution h = 32.5 μm and a characteristic length l = 65 μm seem to provide consistent reults and is used in the 
study.

Fig. A1. Global stress-strain relations and final fracture paths when using different values of h/h0 and l = 2h. The global stress σ̂ is normalized with the tensile 
strength σ0, while the global strain ε̂ is normalized with the fracture strain ε0. For convenience, both σ0 and ε0 are constant and determined using l = 2h0 (corr-
sponding to the case h/h0 = 10). 

Fig. A2. Global stress-strain relations and final fracture paths when using a constant l = 20h0 while using different values of h/h0. The global stress σ̂ is normalized 
with the tensile strength σ0, while the global strain ε̂ is normalized with the fracture strain ε0. 

To evaluate the models’ sensitivity to chosen material parameters, several simulations were made using different parameters. The same boundary 
conditions as above were applied, using a mesh size h/h0 = 10. The simulations were run using Young’s modulus E = 1 or 10 GPa, a Poisson’s ratio ν =

0.2 or 0.4, and a critical energy release rate Gc = 20 or 200 J/m2. Hence, 8 different simulations were made using unique set-ups of the material 
parameters E, ν and Gc. Figure A3 shows some global stress-strain relations and final fracture paths, revealing that the simulations give consistent 
reults and the precise values of the selected material parameters E, ν and Gc are not critical. A Young’s modulus E = 1 GPa, a Poisson’s ratio ν = 0.2, 
and a critical energy release rate Gc = 20 J/m2 is used in the study. 
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Fig. A3. Global stress-strain relations and final fracture paths when using Young’s modulus E = 1 or 10 GPa, a Poisson’s ratio ν = 0.2 or 0.4, and a critical energy 
release rate Gc = 20 or 200 J/m2 in the simulations. The global stress σ̂ is normalized with the tensile strength σ0, while the global strain ε̂ is normalized with the 
fracture strain ε0. 
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