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Particle accelerators are complex facilities that produce large amounts of structured data and have clear
optimization goals as well as precisely defined control requirements. As such they are naturally amenable
to data-driven research methodologies. The data from sensors and monitors inside the accelerator form
multivariate time series. With fast preemptive approaches being highly preferred in accelerator control and
diagnostics, the application of data-driven time series forecasting methods is particularly promising. This
review formulates the time series forecasting problem and summarizes existing models with applications in
various scientific areas. Several current and future attempts in the field of particle accelerators are
introduced. The application of time series forecasting to particle accelerators has shown encouraging results
and promise for broader use, and existing problems such as data consistency and compatibility have started
to be addressed.

DOI: 10.1103/PhysRevAccelBeams.26.024801

I. INTRODUCTION

Particle accelerators have a significant role in various
areas of science, from searches for new physics and
nuclear-waste transmutation to cancer treatment. They
are also facilities that lend themselves to data-driven
research methodologies, such as event forecasting based
on machine learning (ML), given that they produce
substantial volumes of structured data and that their
operation is defined by clear optimization goals and
precise control requirements. To achieve optimal opera-
tional conditions while keeping the accelerator under
control and within safety limits, a multitude of different
sensors and monitors are placed at specific positions
inside the accelerator complex. The data are recorded
as multivariate time series, sampled at specified frequen-
cies. The future values of some quantities of interest, or a
potential failure of the machine, might then be inferred by
time series forecasting methods.
A time series x⃗t ∈ Rn, where t stands for time and n is

the dimension of the desired variables, is “a collection of
observations made sequentially through time” [1]. The
forecasting problem is to infer the future value x⃗tþh based

on the current and past values of x⃗, where h is called the
lead time. Typical examples of x⃗t in a particle accelerator
scenario include the measurement of beam current,
magnet strength and temperature, and the output of loss
monitors.
According to the dimension n of the input signals x⃗,

forecasting problems can be categorized into univariate and
multivariate problems. Based on the value of h, they can
also be divided into one-step-ahead or multistep-ahead
problems. Section II introduces existing methods in two
main categories: linear and nonlinear models. The illus-
tration of each method is accompanied by practical appli-
cations in fields such as energy and finance. This review
paper chooses to focus on several typical, commonly used
prospective methods, especially those of interest for appli-
cations in particle accelerator diagnostics.
In practical terms, the quantity of interest in particle

accelerator operation is sometimes not only the future
values of the input signals x⃗tþh, but rather another value
depending on x⃗tþh, i.e., ytþh ¼ fðx⃗tþhÞ. An example is the
probability of machine failure in h seconds following the
latest measurements, where y ∈ ½0; 1�. In this example,
the form of the function f needs also to be inferred. Such a
problem setup of learning f fits into the scope of anomaly
detection, where an anomaly score yt (usually yt ∈ ½0; 1� or
a non-negative value) is inferred from input x⃗t at every
timestamp t. However, the combined problem—extrapo-
lating from the input time series x⃗t to the future anomaly
score ytþh—is formulated rather ambiguously in current
studies [2,3]. Section III lists several existing attempts in
the particle accelerator field aiming to tackle such
composite “anomaly forecasting” problems. In this context,
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also the topic of remaining useful life (RUL) predictions in
predictive maintenance is discussed, which is introduced
in Sec. IV.

II. FORECASTING METHODS

According to the basic assumptions about the underlying
generating process, time series models can be categorized
into linear and nonlinear ones. In the former category, we
introduce the autoregressive integrated moving average
(ARIMA) and state-space models. In the latter category,
after introducing the general concept of artificial neural
network (ANN), we start from the simple multilayer
perceptron (MLP) and then move toward the more complex
recurrent neural network (RNN). Recent attempts in hybrid
models that integrate the linear and nonlinear models are
also introduced and shortly discussed.

A. Linear models

1. ARIMA

The auto-regressive integrated moving average
(ARIMA) class of models, introduced by Box et al. [4],
laid the foundation for many variations and further develop-
ments in time series forecasting. It assumes that the
prediction is a weighted linear sum of past observations
and random errors. A univariate autoregressive moving
average (ARMA) model of order ðp;mÞ follows the
relation

xt ¼ θ0 þ ϵt þ
Xp
i¼1

ϕixt−i þ
Xm
j¼1

θjϵt−j

where ϵt is the random error, which is assumed to be
independently and identically distributed with mean μ ¼ 0

and variance σ2; ϕi; i ¼ 1…p and θj; j ¼ 0…m are model
parameters, with θ0 indicating a constant contribution [5]. It
combines the previously formulated concept of the autor-
egressive (AR) process from Udny Yule [6] and Walker [7],
and moving average (MA) techniques from the pioneering
works of Allen [8]. Explicitly, by setting m ¼ 0,

xt ¼ θ0 þ ϵt þ
Xp
i¼1

ϕixt−i

becomes an AR model of order p. And setting p ¼ 0,

xt ¼ θ0 þ ϵt þ
Xm
j¼1

θjϵt−j

returns a MA model of order m [1]. The “I” in ARIMA
means “integrated,” which refers to the operation of
differencing. By calculating the differences between suc-
cessive observations, namely computing x0t ¼ xt − xt−1, an
originally nonstationary time series could be converted to

stationary. The general form of an ARIMA model is
denoted ARIMA ðp; d;mÞ, where d refers to the number
of differencing steps needed to reach stationarity.
Other approaches, such as general exponential

smoothing (GES), which was originally introduced by
Brown and Meyer [9] and Holt [10] and uses multiples
of polynomials, sinusoids, and exponentials of time to
model the trend, could also be incorporated into ARIMA.
Furthermore, according to Gardner [11], “the equivalent
ARIMA model is even simpler and more efficient” than
GES in standard form. The multidimensional generaliza-
tion of ARIMA extends the univariate xt into a set of n
interrelated variables x⃗t ¼ ðx1;t;…; xn;tÞ, leading to the
vector-ARIMA (VARIMA) method, where each compo-
nent of x⃗ is modeled as a linear sum of present and past
values of all n components and a multivariate white noise.
Such a problem is often referred to as multiple time-series
modeling [1].
In addition to the model formulation, Box and Jenkins

have also established a practical approach to build ARIMA
models—now known as the Box-Jenkins approach—that
strings together model identification, estimation, and veri-
fication into a full iterative cycle [12]. After removing
potential nonstationarity and seasonality through differenc-
ing [13], a plausible model of the orders p and m is
identified by checking autocorrelation patterns or other
model-selection criteria of the time series. Then the model
parameters θ and ϕ are fitted by minimizing the overall
errors. Finally, various diagnostic checks are performed on
the residual of the real series and the fitted model. The
three-step cycle is typically run several times before
reaching a satisfactory model. The versatility of ARIMA
usually enables it to imitate time series of diverse types,
without having to introduce many parameters.
Ever since its proposal, the ARIMA model has had a

key role in a wide range of forecasting-related areas,
including the recent application in predictions of the
Covid-19 epidemic evolution [14]. De Gooijer and
Hyndman [15] provide a comprehensive list of earlier
empirical applications of ARIMA and its variants in the
scope of the International Journal of Forecasting papers.
More recently, the ARIMA model is serving increasingly
as one of the comparison baselines for newly developed
nonlinear models. As an example, Siami-Namini et al.
[16] show the superiority of the long short-term memory
(LSTM) model over ARIMA on several standard time
series datasets. However, such superior performance does
not challenge ARIMA’s position as the foundation of
forecasting models. Considering its robustness, high
interpretability as well as the black-box nature of many
models based on deep learning [17], ARIMA appears
increasingly as a fundamental component in hybrid
models, which take advantage of its statistical properties
while avoiding its linear rigidity. Zhang [5] proposes to
combine the forecasts from a linear ARIMA model and a

SICHEN LI and ANDREAS ADELMANN PHYS. REV. ACCEL. BEAMS 26, 024801 (2023)

024801-2



nonlinear artificial neural network (ANN) model. On this
basis, Wang et al. [18] test the combination of ARIMA
and ANN in both additive and multiplicative ways, and the
latter shows consistent improvement in forecasting accu-
racy compared to ARIMA and ANN individually as well
as to the additive hybrid model. One notable application is
that by Liu et al. [19] on wind speed prediction, where
they employ an empirical mode-decomposition approach
that uses ARIMA for low-frequency and LSTM for high-
frequency subsequences prediction.

2. State-space model

A second important and practical formulation is based on
linear dynamical systems. It develops a recursive algorithm
for computing forecasts. Originating from control engineer-
ing, the model views any observation at time t as a signal
part plus a noise part, and the signal is then decomposed
into a linear combination of q-state variables, to form the
state vector h⃗t ∈ Rq. The observation (or measurement)
equation for univariate xt reads

xt ¼ fðh⃗tÞ þ ϵt ð1Þ

where f is a function and ϵt denotes the zero-mean noise
part of time series xt. The future values of the state vector h⃗t
only depend on its current value, and not on its past—in
other words, the state vector has Markovian properties. In
linear state-space models, h⃗t is assumed to evolve accord-
ing to the transition equation

h⃗t ¼ Gth⃗t−1 þ ξ⃗t ð2Þ

where Gt is a q × q transition matrix, and ξ⃗t ∈ Rq is the
disturbance term of the state vector h⃗t, assumed to have
zero mean. State-space models make fewer assumptions
about the form of the trend, yet they still can produce
adaptive and robust forecasts [1]. For instance, Bae and
Harris [20] show better performance of the state-space
model in both cycle tracking and error reduction relative to
plain multiple regression in short-term multivariate fore-
casts of U.S. fuel consumption.
The corresponding updating procedure of the state-space

model is the so-called Kalman filter [21], which recursively
updates the estimate of the state vector h⃗t and thereby
calculates the latest forecast xt whenever a new observation
becomes available. For instance, in the case of a one-
dimensional state space with f as the identity function and
constant Gt ¼ G, we have

xt ¼ ht þ ϵt

ht ¼ Ght−1 þ ξt ð3Þ

where we assume ϵt ∼N ð0; σ2Þ and ξt ∼N ð0; τ2Þ. Peng
[22] gives an introductory example of the Kalman-filter

algorithm with detailed derivation. It starts from an initial
guess of the mean and variance of the initial state h0,
denoted by h00 and P

0
0. The upper index refers to the number

of observations that have been used to update the state, and
the lower index refers to the time t. Following Eq. (3), we
can calculate our guess for the mean and variance of the
next state h1

h01 ¼ Gh00 ðmeanÞ
P0
1 ¼ G2P0

0 þ τ2 ðvarianceÞ

With the observation x1 as new information, we can update
the previous guess h01 and P0

1 to h11 and P1
1:

h11 ¼ h01 þ K1ðx1 − h01Þ
P1
1 ¼ ð1 − K1ÞP0

1

where K1 ¼ P0
1

P0
1
þσ2

is the Kalman gain coefficient at t ¼ 1.

In general, given the current estimate htt and Pt
t at the time t

after updating with t observations, we can update with the
new observation xtþ1 according to

httþ1 ¼ Ghtt

Pt
tþ1 ¼ G2Pt

t þ τ2

Ktþ1 ¼
Pt
tþ1

Pt
tþ1 þ σ2

htþ1
tþ1 ¼ httþ1 þ Ktþ1ðxtþ1 − httþ1Þ

Ptþ1
tþ1 ¼ ð1 − Ktþ1ÞPt

tþ1:

A general ARIMA model can also be recasted in the
state-space formulation to apply Kalman filtering and ease
the estimation procedure [23]. With details given by
Meinhold and Singpurwalla [24], Kalman filtering ensures
that the minimum mean squared estimator of the state
vector is obtained in case of normal noise. The flexibility of
the procedure has been established in various forecasting
problems. Harvey [25] has written a chapter with a detailed
theoretical presentation of the method, supplemented by
various applications in econometrics. Visser and Molenaar
[26] have proposed a trend regression model that incor-
porates both deterministic and stochastic trends in a general
ARIMA format for climatological data. They then tran-
scribe the model into the state-space format and use
Kalman filtering to estimate and evaluate the model
parameters. The hybrid approach with neural networks is
also highly fruitful here. For instance, Peel [27] builds a
Kalman filter on top of an ensemble of neural network
models, where he exploits its advantage of handling
multiple input sources simultaneously and its intrinsic
ability to filter predictions over time.
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It is crucial to quantify the forecast uncertainty, both for
unwrapping the underlying models and for better guiding
further operations. Taking this insight into account led to
the incorporation of Bayesian inference in forecasting
models. One inspiring attempt to extend the capacity of
linear models is that of Ghosh et al. [28] on traffic flow
forecast, which uses Bayesian inference to fit the model
parameters in place of the typical point estimation by
residue minimization.

B. Nonlinear models

Although the linear models discussed above have the
advantages of simple implementation, straightforward
interpretability, and also good performances in some
proven cases [29], the true model underlying time series
may in reality be nonlinear and therefore difficult to unwrap
[30]. Earlier attempts of adapting the linear models to
nonlinear behavior include the bilinear model [31], which
contains nonlinear cross terms of past values and white
noise, but is based on structural theories analogous to linear
models; and the threshold autoregressive (TAR) model
[32], which combines piecewise linear models systemati-
cally and reaches global nonlinearity with local linearity.
These models are mostly confined to only some specific
patterns of nonlinearity, however, which in turn results in
their weak performance for general problems [33].
While the methods introduced above, from linear models

like ARIMA to nonlinear attempts like TAR, are rather
generally considered model-driven, the following broad
category of ML methods is more believed to be data-
driven, in the sense that they do not necessarily require an
explicit form of an underlying model. The term “machine
learning” has broad and rather ambiguous meanings, with
techniques ranging from ordinary least square methods to
deep neural networks with millions of parameters (for
instance, the well-known image recognition network
ResNet-50 has more than 23 million trainable parameters
[34]). According to Bandara et al. [35], traditional model-
driven methods work better when the data volume is
minimal. But nowadays, complex ML models, which used
to be outperformed traditional statistical models in the
forecasting of simple short-time series [36,37], have
gradually become dominant in the era of ever-increasing
data quantity and quality. The revolutionary changes
brought by big-data technology enable us to manage longer
and uninterrupted time series. In addition, the access to
many interrelated series has opened up novel learning
possibilities. While traditional models require us to explic-
itly write out a specific form of correlations, an ML-based
model can naturally come up with combined features from
various inputs and exploit cross-series information [38].
Below, we introduce the basic concept of artificial neural
network (ANN) and in particular recurrent neural network
(RNN) architectures, together with some extensions and
example applications.

1. Multilayer perceptrons

An ANN is composed of connected units called neurons
or nodes, where linear or nonlinear calculations are
performed with numbers transmitted and received through
the connections. The concept is to mimic how the neural
system of humans works, even though this is a much
oversimplified analogy. As the simplest form of ANN,
multilayer perceptrons (MLP), also known as feed-forward
neural networks, contain only forward connections
between nodes, without loops as in RNNs. Here, we
describe an MLP with N hidden layers as

x⃗i ¼ ðxt−1;…; xt−pÞ ∈ Rp

h⃗1 ¼ G1ðb⃗1 þW1;i · x⃗iÞ; h⃗1 ¼ ðh11;…; h1q1Þ ∈ Rq1

..

.

h⃗N ¼ GNðb⃗N þWN;N−1 · h⃗N−1Þ; h⃗N ∈ RqN

xt ¼ xo ¼ Goðbo þ w⃗o;N · h⃗NÞ
where i and o denote input and output, respectively. The
input layer x⃗i has p nodes that take p past values of the
series. Note that x⃗i is for past values of the same variable,
instead of making it multivariate. The jth hidden layer h⃗j

has qj nodes, and the output layer xo has only one output,
which is the current value xt. W1;i is a ðq1; pÞ matrix of
connection weights from the input layer (of p nodes) to the
first hidden layer (of q1 nodes), WN;N−1 are weights from
the (N − 1)th to the Nth hidden layer, and w⃗o;N ∈ RqN are
weights from the Nth hidden layer to the output. The
vectors b⃗ are the bias of each layer, and the functions G are
the activation functions applied on each layer, with typical
choices being sigmoid, hyperbolic tangent, or rectified
linear unit [39] functions. Figure 1 visualizes the structure
of an MLP.
The advantages of ANNs go beyond the aforementioned

lenient requirement for a priori assumptions; they can

FIG. 1. Illustration of an MLP.
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universally approximate various forms of functions [40]
and perform especially well when modeling nonlinear
relations. They also possess high generalization power
toward out-of-sample data.
Zhang et al. [41] give a detailed overview of ANNs for

forecasting problems, with a focus on MLP and some
hybrid approaches. Starting from the earliest success by
Lapedes and Farber [42] on a generated dataset following
deterministic nonlinear dynamics, ANNs have been
widely applied to various fields. In finance, the inherent
noise, fat-tail distributions, and nonlinear patterns of the
financial data make it difficult for conventional methods
such as ARIMA to capture the dynamics, which lead to
the popularity of ANNs. Li and Ma [43] comprehensively
introduce the application of ANNs on problems ranging
from microscopic ones such as exchange-rate or stock-
price forecasting to macroscopic scenarios such as finan-
cial-crisis forecasting, while Krollner et al. [44] made a
more specialized survey on ANN-related applications in
stock-index forecasting.

2. Recurrent neural networks

One drawback of the MLP approach is that it isolates the
inputs at every timestamp and treats them as independent
variables. The temporal order and the dependencies of the
input series on time contain crucial information about the
evolution of the series but are not taken into account [45].
This issue is targeted and overcome by RNNs, which by
design can carry forward—or in a more neurological term,
“remember”—the states from previous inputs.
The unit component that constitutes an RNN is called an

RNN cell. A generic RNN cell consists of the input time
series xt (in the univariate case), a hidden state h⃗t ∈ Rq

with q, the cell dimension or RNN size, and the cell output
o⃗t ∈ Rq. In the case of time series forecasting, the cell
output o⃗t needs to be transformed again into the final
network output xtþh, which is the h-step-ahead prediction
of xt, normally by fully connected layers. At each time step,
the hidden state h⃗t is updated according to Eq. (4)

h⃗t ¼ Gðh⃗t−1;Wi; xt; V⃗
i; b⃗iÞ

o⃗t ¼ Goðh⃗t;Wo; b⃗oÞ

�
inside RNN cell

xtþh ¼ fðo⃗tÞ outside RNN cell ð4Þ

where Wi ∈ Rq×q denotes the hidden-to-hidden weight
matrix, Wo ∈ Rq×q is the hidden-to-output weight matrix,
V⃗i ∈ Rq is the input-to-hidden weights (in multivariate
case, i.e., x⃗t ¼ ðx1;t;…; xn;tÞ ∈ Rn, Vi would become a
matrix of size q × n), and bi, bo are the bias vectors
associated with the input and output, respectively. Here i
and o again refer to input and output. G and Go are
nonlinear activation functions for the hidden state and
output state, and xtþh is the final prediction. It is shown

from the updating scheme that in each RNN cell, the
current hidden state ht is updated from the previous hidden
state ht−1 together with the current input xt, which enables
the network to retain information from the recent past.
Their similar forms with Eqs. (1) and (2) reveal that RNNs
could be interpreted as a kind of nonlinear state-space
model from a time-series perspective [46].
Figure 2 shows the propagating of a generic RNN cell in

looped and unfolded view. It demonstrates the feedback
structure that enables the network to propagate past states
into future time steps and highlights how the learning
process naturally follows the evolution of the series.
Three types of RNN cells are most widely used,

especially in forecasting: the basic Elman RNN (ERNN)
cell [47], the Gated Recurrent Unit (GRU) cell [48], and the
Long Short Term Memory (LSTM) cell [49]. Each type of
cell has its own formulation and updates the hidden state
differently. An example ERNN cell with the sigmoid
function σ and the hyperbolic tangent function tanh as
activation functions have the following updating scheme:

h⃗t ¼ σðWih⃗t−1 þ V⃗ixt þ b⃗iÞ
o⃗t ¼ tanh ðWoh⃗t þ b⃗oÞ

and it is visualized in Fig. 3. The sigmoid activation
function normalizes the values into [0, 1] range while
keeping differentiable; the hyperbolic tangent activation
function brings the output into ½−1; 1� range and further
polarizes the positive/negative values.
To overcome the issue of the short memory of the simple

ERNN cell due to gradient vanishing in long sequences, the
LSTM cell is developed to incorporate long-term depend-
encies from the earlier past into the model [50]. The LSTM
cell is composed of three gates: the forget gate shown in
orange, the input gate shown in green, and the output gate
shown in blue. Unlike the ERNN cell which has only h⃗t as
its state, the state of the LSTM cell contains two compo-
nents: the hidden state h⃗t corresponding to short-term
memory and the internal cell state c⃗t responsible for
long-term memory. To start with, the forget gate takes
the input and the previous hidden state, and outputs with

FIG. 2. Illustration of an RNN cell in folded and unfolded
versions.
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the sigmoid function the portions of old information that
should be forgotten

f⃗t ¼ σðWfh⃗t−1 þ V⃗fxt þ b⃗fÞ;

where Wf; V⃗f, and b⃗f denote the weights and bias of the
forget gate. Then the cell state c⃗t is updated with a
candidate cell state ˜c⃗t and the portions ⃗it of the current
information that should be kept from the input gate.

⃗it ¼ σðWih⃗t−1 þ V⃗ixt þ b⃗iÞ
˜c⃗t ¼ tanh ðWch⃗t−1 þ V⃗cxt þ b⃗cÞ
c⃗t ¼ f⃗t × c⃗t−1 þ ⃗it × ˜c⃗t;

where the superscripts i and c refer to input and cell,
respectively. Finally in the output gate, the hidden state h⃗t
is updated for the next iteration.

o⃗t ¼ σðWoh⃗t−1 þ V⃗oxt þ b⃗oÞ
h⃗t ¼ o⃗t × tanhðc⃗tÞ

The whole operational process of an LSTM cell is depicted
in Fig. 4.
According to Hewamalage et al. [38], RNNs are suitable

for modeling time series with homogeneous seasonal
patterns; otherwise, the seasonality of the series needs to
be properly handled. Suilin [51] addressed this by using
attention weights, with the idea that if a series possesses
daily periodicity, it is beneficial to assign more weight to
the value 1 day ago. This might be a useful technique in
particle accelerator scenario, where periodicity is either
observed or even required.

New developments have brought an innovative trend that
further integrates the deep neural network methodology—
which possesses strong learning capability—with the
traditional models, which are more stable and interpret-
able. Compared to the above-mentioned hybrid models
where the final output is simply composed of outputs
from multiple separate submodels, recent novel architec-
tures aim to merge from a more fundamental level. The
DeepAR algorithm is capable of producing accurate
probabilistic forecasts by training an autoregressive recur-
rent neural network on multivariate-related time series
[52]. Furthermore, the deep state-space model [53] para-
metrizes a linear state-space model per time series with a
jointly learned recurrent neural network. As a conse-
quence, desired properties from both sides are satisfied:
data efficiency and interpretability from state-space mod-
els and the ability to learn complex patterns from deep
learning approaches.

III. APPLICATION IN PARTICLE ACCELERATOR
DIAGNOSTICS

Recent years have seen a boost in applications of data-
driven methods in theoretical and engineering research
around particle accelerators. Among all promising areas of
application, such as beam dynamics modeling [54] and
beam energy optimization [55,56], diagnostics and control
have always been an indispensable and crucial part in
ensuring a stable and more productive operation of the
accelerator [57,58]. With appropriate forecasting methods
including but not limited to the above-mentioned ones,
short-term anomalous events such as equipment failures
may be mitigated promptly by fast recovery operations, and
long-term parameter drifts could also be compensated
according to their forecasted future changes. These meth-
ods have indeed aroused some interest in the field, for
instance, a recent application of the Kalman filter technique

FIG. 3. The structure and updating scheme of an ERNN cell.
FIG. 4. The structure and updating scheme of an LSTM cell.
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in a particle accelerator use case was presented by Syed
et al. [59] from the European XFEL, where they applied it
for anomaly detection of superconducting rf cavities. By
introducing the Koopman operator, they achieved a speed-
up of 3 orders of magnitudes with a linear approximation
of the previous nonlinear state-space model. However,
attempts in this area that frame such applications as
forecasting problems are not yet emerging widely. Due
to the complex nature of the data and large diversities
across different accelerators, the problem of predicting the
future behavior of an accelerator facility is not as
straightforward to formulate as that of a degrading engine.
Here we first present four studies from the Spallation
Neutron Source (SNS) at Oakridge, the High Intensity
Proton Accelerators (HIPA) at the Paul Scherrer Insitute,
the Advanced Photon Source (APS) at Argonne
National Laboratory and the Continuous Electron Beam
Accelerator Facility (CEBAF) at Jefferson Lab. They all
focus on the short-term failure prediction from an
anomaly detection perspective, explore existing models
or attempt to establish new models, thereby opening up
possibilities for future research. The goal of all four
studies is to identify potential anomalous events in
advance, which embeds a different concept of forecasting
than the previously introduced models. Then, we intro-
duce a newly published study from CERN that imple-
ments autoregressive modeling for beam loss prediction
to cope with machine drift on the timescale of years.
Following a similar direction, a diagnostic and feedback
system that utilizes time evolution to reduce energy
deviation is also planned at the HiRES beamline at the
Lawrence Berkeley National Laboratory.

A. Preemptive detection of machine trips at the
Spallation Neutron Source

The accelerator system of SNS delivers proton pulses of
μs timescale to a liquid mercury target in a stainless steel
container, for the production of neutrons through the
spallation process [60]. Each of the beam loss trips in
SNS costs around 40 s downtime, which amounts to about
33,000 lost pulses daily. If such failure could be predicted
in advance, the machine protection system (MPS) could
react to it by suspending the beam production and resetting
the machine, which would in turn reduce the downtime to
1 s each. In addition, the reduction of beam loss trips could
also lower the damage to the superconducting cavities and
reduce the radioactivation of the accelerator. Compared to
existing methods that identify the machine trips, Reščič
et al. [61] aim to provide an approach that is not only
generalizable and system-agnostic across all subsystems
and machines but also preemptive, in that it should predict
failures in advance instead of reporting them after they have
already occurred.
The data used in this work are univariate pulses taken

from the SNS differential beam current monitor (DCM) in

March 2021. Each pulse is a waveform of 120,000 data
points at a frequency of 100 MHz. The length between two
consequent pulses is about 16 ms during normal operation,
which is referred to as the time budget allowed to make
predictions. The problem is formulated as binary classi-
fication, where the pulses before the machine trips are
labeled as bad pulses. When the model outputs a bad label
that indicates a potential failure, the actual trip would then
come after the current pulse, and in this way, forecasting is
realized.
In a previous study, Reščič et al. [62] have gone through a

holistic research of ML classification methods, including
logistic regression, k nearest neighbors, tree-basedmethods,
support vector machines, and MLPs and achieved almost
92% accuracy in identifying bad pulses from anMLPmodel
combined with parameter tuning and data refining.
However, only the pulses right before and right after the
trips are taken and labeled, and nearly 8% of daily good
pulses are incorrectly predicted as bad. Their following-up
work [61] improves the result with a more complete dataset
and introduces fast Fourier transform (FFT) for feature
extraction and principal component analysis (PCA) for
dimensionality reduction. About 26 pulses before the
trips—instead of only one previously—are taken as bad
pulses (labeled asBefore pulses) that lead to failure, 2 pulses
after the trips (labeled as After pulses) are taken as good
pulses, and pulses in normal operation without trips are also
taken and labeled asNotrip pulses. Both theAfter pulses and
the Notrip pulses are classified, respectively, against the
Before ones. By analyzing their distance to the next trips and
comparing the classification results, the newly taken Notrip
pulses are considered to be more representative of normal
operation. Therefore the authors decide to focus on the
Before–Notrip classifier. The best-performing Random
Forest model together with PCA achieves 96% accuracy
and 61% recall, i.e., 61% out of all real trips are successfully
predicted as trips. By further leveraging classification
threshold and improvement techniques, the classifier could
in principle reach a strict 0% false-positive rate, at the cost of
a true-positive rate of less than 58%. Figure 5 shows the
receiver operating characteristics (ROC) curve and the
precision-recall curve of three models on the beam loss
dataset, which is taken around machine trips where beam
loss occurred. Both types of curves are generated by
leveraging the classification threshold from 0 to 1. The
ROC curve shows the true-positive rate against the false-
positive rate; the uppermost left curve is optimal and has the
greatest area under the curve (AUC) value. The average
precision is calculated over the full threshold range.
All classifiers successfully predict the accelerator fail-

ures inside 4 ms, far less than the available time budget of
16 ms. This enables SNS to implement the model in real-
time operation and invoke mitigation techniques in field-
programmable gate arrays (FPGAs) to realize the inhibition
of pulses and resetting of the machine.
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Another inspiring study using the same DCM data
from SNS realizes uncertainty-aware anomaly detection
of the pulses. Blokland et al. [63] build a Siamese
neural network [64] to distinguish two types of errant
pulses from normal pulses by ranking their similarity.
While keeping the false-positive rate below the estab-
lished 0.05% limit, the true-positive rate increases to
more than 64% when training and testing with the same
errant type and also reaches 45% in cross-type testing,
as shown in Fig. 6.
Starting from the current offline model validation result,

the authors have been working toward online prediction
together with real-time implementation, where they com-
pare the incoming pulse with a series of past pulses using
the Siamese network, make decisions based on their
similarity level, and abort the predicted errant beam to
reduce system downtime.

B. Interlock forecasting of the High Intensity
Proton Accelerators

HIPA produces a proton beam of nearly 1.4 MW power,
which makes it one of the most powerful proton cyclotron
facilities in the world [65]. The interlock system is part of
the Machine Protection System that immediately shuts off
the beam whenever some monitor signal exceeds the safety
limit. However, such shutdowns may lead to abrupt opera-
tional changes and lose equivalently 25 s of beam time
each. Li et al. [66] propose to build a forecasting model of
the interlocks. Once the model reports an incoming inter-
lock, the suggested recovery operation to reduce the beam
current by 10% would be applied, which could potentially
circumvent the interlocks from happening, thus saving
beam time for the users.
The dataset is composed of 376 process variables from

the Experimental Physics and Industrial Control System

FIG. 6. The ROC curves for training and testing with the same (left) and different (right) errant types (from [63], Figs. 14 and 15).

FIG. 5. The ROC curve (left) and precision-recall curve (right) of the rf classifier baseline, rf with PCA and rf with FFT models applied
on the beam loss dataset (from [61], Fig. 7).
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(EPICS), which are recorded at a 5-Hz frequency. The
problem is formulated as a binary classification of two
classes of samples. The positive class consists of interlock
samples that are taken at 1 to 12 s before the interlocks.
This is how the concept of forecasting is embedded here,
just like taking the pulses before the trips in the SNS case.
The negative class consists of stable samples that are taken
in the middle between two adjacent interlocks with a buffer
region of 10 m on both sides, to represent stable operating
states. The window length is a trainable parameter to be
decided in the model.
The authors develop a recurrence plot-convolution neu-

ral network (RPCNN) model for the classification task.
Each one-dimensional time series of the input is trans-
formed into a two-dimensional recurrence plot (RP) to
extract finer dynamical patterns. Then the plots are trained
with a convolutional neural network (CNN), which is an
established and powerful method in image processing.
Recurrence plots (RPs) were developed to detect hidden
dynamical patterns and nonlinearities in dynamical systems
[67]. The structures in a recurrence plot reveal detailed
information about the system’s time progression. The
authors use the so-called global recurrence plot [68] with
a fixed threshold distance ϵ, as defined in Eq. (5)

Ri;j ¼
� jjx⃗i − x⃗jjj; jjx⃗i − x⃗jjj ≤ ϵ

ϵ; jjx⃗i − x⃗jjj > ϵ
ð5Þ

where i, j are the indices of time steps inside the time
window taken from the signals, and the resulting R is
symmetric. Figure 7 diagrammatically depicts the process
of transforming an initial signal into a recurrence plot with
fixed ϵ ¼ 2. Figure 8 lists several examples of actual
recurrence plots generated from the RPCNN model, whose
patterns convey a wealth of information not immediately
available from the time series they are built from, such as
the band structures indicating abrupt changes. The process
of sample taking, recerrence plot generation and model
construction is described in Fig. 9.
In practice, the recurrence plots are produced internally by

a custom recurrence plot layer before the convolutional and
max-pooling layers. This procedure prevents the recurrence
plots from being generated and stored explicitly beforehand
and also allows ϵ to be a trainable parameter and the
optimization of the plots on the fly. The output is a score
y ∈ ½0; 1�, indicating the probability that the incoming sample
belongs to the positive class, thereby forecasting an interlock.
The authors choose the best-performing model based on

a custommetric they call beam time saved, which computes
potential time saved by invoking the recovery operation
back on the machine. As the recovery operation would cost
an equivalent of 6 s of beam-time loss per interlock, false
positives need to be strictly controlled in order to reach a
bonus in beam time saved. Therefore, the resulting clas-
sifier has a true-positive rate of 4.9%, together with an
extremely low false-positive rate of 0.17%, and it can
potentially save 0.5 s of beam time per interlock. Figure 10
shows the best and mean ROC curves of RPCNN classifiers
with the random initialization, as well as their uncertainties.

FIG. 7. Generation of recurrence plot from a signal with fixed
ϵ ¼ 2 (from [66], Fig. 7).

FIG. 8. Examples of recurrence plots (bottom row) generated from the original signals (top row) by the RPCNN model. From left to
right: uncorrelated stochastic data, data starting to grow, and stochastic data with a linear trend (from [66], Fig. 8).
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To alleviate the limitations of false positives, the
authors further study the input channels and discover
from statistical tests that a significant difference is only
present inside 0.4 s before the interlocks. A preliminary
study with a linear least absolute shrinkage and selection
operator (LASSO) model in which only single timestamps
are used and the positive samples are pushed closer to the
interlocks, showed improvements in both classification
power and stability. The beam time saved metric is also
modified to fit the continuous real-time context, and the
new model is shown to potentially save around 6 min
beam time in a day.

C. Power supply trips prediction in the Advanced
Photon Source storage ring

The Advanced Photon Source (APS) at Argonne
National Lab provides ultrabright x-ray beams of 7 GeV
for advanced research. Trips in the magnet power supplies
of the storage ring are highly undesirable, as they would
cause complete electron beam loss and interrupt user
experiments instantly. Because the trips are rare events
with diverse triggering mechanisms, overfitting would
become inevitable in supervised learning, and labeling
them as one class cannot reflect reality either. Therefore,
Lobach et al. [69] focus on unsupervised anomaly
detection methods that train on normal operation data
and identify trip precursors by measuring their level of
deviation.
For the temperature anomalies caused by valve faults in

the water-cooling system, the authors apply the spectral
residual saliency detection method on the temperatures of
680 power supplies in a time window of 3 h. The anomalies
clearly stand out on the saliency maps, and the model
successfully gives warnings up to 30 m in advance.
The authors achieve an even earlier advanced warning of

1 h by training an autoencoder on normal operation data of
the temperatures from 40 averaged power supplies and
tracking the reconstruction error at each time step. If only
one power supply temperature is considered as input, an
autoencoder trained and tested on sliding windows of 20 m
would even give the warning 6 h before the trip happens.
Following the above success, the authors employ the

autoencoder approach again on power supply current
anomalies and obtain a preliminary result of a 20% true-
positive rate. While there is still much room for improve-
ment in the current approach, they already show great
potential in early-enough warning and possibilities for
preventive action.

D. Real-time cavity fault prediction at the Continuous
Electron Beam Accelerator Facility

The Continuous Electron Beam Accelerator Facility
(CEBAF) at Jefferson Lab is a high power, continuous
wave recirculating Linac whose peak energy reaches

FIG. 10. The ROC curves of an ensemble of RPCNN classi-
fiers. The blue line shows the best classifier with AUC ¼ 0.71,
the green line is the mean curve, and the shaded area is the
95% confidence interval of different model initialization profiles.
The dashed line is the separatrix, left of which there is a positive
beam time saved. The inset is enlarged on the gray-shaded region
(from [66], Fig. 11).

FIG. 9. The RPCNNmodel structure. The positive and negative classes of samples are taken either close to (orange) or far from (green)
the interlocks. Each of the 376-time series is transformed into recurrence plots and fed into the CNN. The model output is a probability
value (adapted from [66], Figs. 5 and 8).
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12 GeV. The cryomodules that provide the energy gain are
composed of superconducting radio-frequency (SRF)
cavities, and the machine experiences frequent downtimes
caused by various types of SRF faults—on average
4.1 times in an hour, which amounts to about 1 h beam
time loss per day. Tennant et al. [70] have proposed
successful machine learning models that realize fast clas-
sification of SRF faults. In a recent follow-up work [71],
the authors go on to build deep learning based forecasting
models for such faults. The data acquired from CEBAF
contain waveforms of 17 rf signals, 4 of which are used in
the study. The sample interval is 0.2 ms, and each wave-
form lasts for 1637.4 ms including 1535 ms before and
102.4 ms after the fault onset. The forecasting of impending
faults is also formulated as binary classification between
two classes of 100 ms windows—the stable class taking
from normal running conditions and the prefault class
taking at lead time h ∈ ½200; 100; 50; 20; 10; 5; 0� ms
before the fault onset. Figure 11 shows an example of
the recorded waveforms of the four signals and illustrates
the h ¼ 200ms window taking of the prefault class.
Adopting the U-Net architecture [72], the binary classi-

ficationmodel is trained onlywith normal class samples and
aims to output similar normal samples by minimizing the
reconstruction loss. During testing, a prefault sample would
lead to a larger reconstruction error thus indicating its
abnormality. Figure 12 lists the ROC curves for a different
time before the fault onset. The closest prediction at h ¼
5 ms reaches AUC ¼ 0.83, whereas the earliest prediction
at h ¼ 200 ms has AUC ¼ 0.71. Though it is evident that
the performance declines with a longer prediction time, the
results have specified the timescales—about a few hundred
milliseconds—for possible mitigating operations.
Furthermore, the authors build a subsequent multiclass

classification network for fault-type identification from the
outputs of the previous model that are classified as
upcoming faults. Results show that fast-developing faults
are harder to identify than slow-developing ones if samples
are taken far from the faults. This echoes the discovery of
HIPA interlocks mentioned in III B that the forecasting of
abrupt anomalies is challenging.

E. Beam loss prediction at the Large Hadron Collider

Beam losses in the Large Hadron Collider (LHC) at
CERN are mostly occurring in the collimation system to
remove particles with excessively high oscillation or
momentum. The loss level is manually optimized by
multiple control variables, including vertical and horizontal
tunes, and currents in the focusing and defocusing magnets
along the collider. It is therefore crucial to model the beam
loss from those control variables for better machine
operation. However, there is the problem of generalization
shown by a previous study [73], when the model is trained
on previous LHC fills and then applied to fills of another
year. Krymova et al. [74] propose an autoregressive
approach that factors in the past value of losses to alleviate
the problem. To take advantage of the efficient inference
procedure of state-space models, the authors transcribe the
autoregressive formulation into a Kalman filter formulation
and established several model variants with different inputs
and outputs. In addition to the control variables, measure-
ments of emittance and heat load sum are also taken into
account as possible inputs. By making the parameter
matrices dependent on the control variables, the authors
manage to build a nonlinear model including cross terms
between different inputs. For the estimation of model
parameters, a customized expectation-maximization algo-
rithm is implemented.
The authors use R2-score as the metric to evaluate the

prediction performance, which is defined as

R2 ≔ 1 −
P

tðyt − ŷtÞ2P
tðyt − ytÞ

where yt is the ground truth, ŷt is the corresponding
prediction, and ȳt is the mean of all observations in 1 year’s

FIG. 12. ROC curves of classifying samples taken at different
times before the SRF faults against normal samples (from [71],
Fig. 5).

FIG. 11. Recorded waveforms and window taking of the
CEBAF SRF fault forecasting model (from [71], Fig. 2).
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dataset. Figure 13 shows the R2-score of predictions
against forecast horizons from four models, together
with the prediction result and corresponding input
series of an example fill from the model KF4, which
involves noncontrolled measurements and additional
output components. The model parameters are esti-
mated from a training set with data taken in 2017
and evaluated on a 2018 testing set. The excellent
performance on long horizons has provided encourag-
ing evidence that a carefully designed model can
capture the global trend and simultaneously establish
a relation with inputs.

F. Proposed energy stability prediction at the High
Repetition rate Electron Scattering beamline

The High Repetition rate Electron Scattering (HiRES)
beamline at Lawrence Berkeley National Laboratory is a
state-of-the-art compact machine for MHz ultrafast electron

diffraction (UED) pulses. Scheinker et al. [75,76] have
previously proposed extremum seeking (ES) as an opti-
mization technique that realizes automatic and model-
independent tuning for accelerator parameters. It is also
proved to be robust against drift that brings the system
outside the training range [77].
With the help of the high-resolution FPGA-enabled

feedback system, HiRES is shown to be stable against
jitters and it is established that the machine could reach an
energy stability of ΔE=E ¼ 5 × 10−5 on short timescales.
However, unknown parameter drifts on longer timescales
could magnify the energy deviation by more than 10 times.
A nonstatic diagnostic model that involves time evolution is
therefore proposed, which would be integrated with the
previous optimization technique to establish a novel suite
of ML-based adaptive control systems for intelligent
feedback.
To infer the energy stability ΔE=E, Cropp et al. [78]

have set out to predict the beam x-position from the

(a) training set (b) test set

(c) (d)

FIG. 13. (a) and (b) show the R2-score against different forecast horizons, where (a) is the result of the 2017 training set and (b) is the
2018 testing set. More specifically, the central lines and shaded areas are the mean and envelope of the R2-score of 1000 bootstrapped
predictions, respectively. (c) shows the prediction result of Fill 6050 from the KF4 model with a 2σ confidence band, and (d) is the values
of the corresponding four input variables for (c). The horizons are 200 s in 2017 and 300 s in 2018 (from [74], Figs. 8 and 10).
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amplitude and phase of cavity probes, rf power, and laser
properties on a virtual cathode camera. Currently, results
such as the one shown in Fig. 14 are still achieved by
simple linear regression at each time step, without consid-
ering past information. According to the authors, this
preliminary regression result has already helped to ensure
much less fluctuation than in the original hardware

feedback system. Starting from this, the authors consider
time series forecasting techniques and conceive various
possible ways to incorporate time evolution into the model,
as shown in Fig. 15. Following the result presented in
Sec. III E, such a model involving time would be a natural
oppressor for long-term drifts once properly defined.

IV. DISCUSSION AND CONCLUSION

Several current and planned applications of forecasting
methods on accelerators have been presented in Sec. III.
For the short-term anomaly prediction problems, research-
ers mainly formulate it as binary classification and embed
the concept of forecasting into the collection of positive
class samples before the anomalies. The variety of failures
range from beam loss trips, machine interlocks, and
magnetic power supply faults to cavity faults, and the
models applied are likewise extensive, from classical
Random Forest and Lasso models to CNNs and
Autoencoders. These models have generally performed
well on archived data, and some have promised the
feasibility to be implemented in real time. Leveraging
the 16-ms time interval between pulses, the SNS model is
able to give predictions before the next pulse comes, and
fast mitigation techniques are already under development.
The APS autoencoder model for power supply trips could
reach early warnings in the timescale of hours, while
interlocks at HIPA and cavity faults at CEBAF are both
predicted in the timescale of hundred ms. For the long-term
forecasting, a Kalman filter based model trained on the
beam loss data at CERN in 2017 is capable of predicting
the loss in the next 300 ms in 2018 with R2 over 0.9. These
established models could already work alongside the
existing diagnostic or protection systems as references to
monitor the failures or drifts.
In spite of what has been accomplished, there is still

much room left for improvement. The suppression of false
positives usually comes at the expense of the true positives,
as seen in the example of the Random Forest model of SNS
and the RPCNN model of HIPA, which could prompt us to
more dynamic classification thresholds or advanced model
structure, such as the Siamese network explored by SNS.
The performance decline with a longer horizon is another
common issue that is present in CEBAF and CERN
examples. Recurrent models, especially the LSTM model
introduced in Sec. II B 2 are designed to deal with past
dependencies and could be expected to tackle such prob-
lems. Furthermore, the interpretability of the models,
namely localization or attribution of the result to particular
inputs, could be examined by methods such as sensitivity or
causal analysis.

A. Challenges of ML application in accelerators

The main problem reported in ML applications for
particle accelerator scenarios is the data—although a large

(b) Use both predictors and target to predict.

(a) Not use target values to predict.

FIG. 15. Possible setup for time series prediction. Each grid
denotes a time step; the time window is taken within one shot of
the electron pulse. The gray areas are the input of the model, used
as a predictors to predict the target, while N denotes the number
of input features. The green areas are the target value expected to
be predicted at each time step. (a) Predictors (gray) and target
(green) are different variables, while the left and right plots show
whether to include the present predictors to predict the present
target. (b) Target is included as predictor. In the right plot, past
predictions of the target (blue) are used in the testing dataset
(from [78], Figs. 4 and 5).

FIG. 14. Linear regression result of energy stability. The
dashed line splits the training (left) and test (right) data
(from [78], Fig. 6).
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quantity of data is available, there is still a long process to
go through until an instructive or even deployable model
can be built. First, decisions need to be made about which
data source is to be taken, how to extract and record the
data, and about the merging of possibly different logging
systems. Then the storage format needs to be decided and
unified, which has to meet also the requirement for
extensibility and easy query. Once the model is built,
further issues arise such as accommodating the real-time
input, online learning, model updating, storage of tempo-
rary results, and finally, feeding the operations invoked by
the model output back to the machine. Such issues have
already raised considerable interest and effort in the
community. For instance, Kafkes and St. John [79] have
published the Booster Operation Optimization Sequential
Time-series for Regression (BOOSTR) dataset, which is
composed of 15 Hz cycle-by-cycle multivariate time series
of readings and settings from devices of the Rapid-Cycling
Synchrotron at Fermilab. Such an attempt is very encour-
aging, as it addresses the problem from the root, while also
aiming to create a more open and inclusive system to
promote the data-driven research in the particle accelerator
community.
Another ever-present issue for ML application is how to

achieve better inclusion of expert knowledge. The studies at
SNS and CEBAF, for instance, have started to take various
known types of anomalies into account and examine cross-
type performance or build multiclass models, and such kind
of integration or comparison could be made even more in
depth. For example, the manual record of failure types may
be compared with ML multiclass classification models, and
the log book may be utilized by natural language process-
ing techniques.

B. Insight from related fields

The remaining useful life (RUL) prediction has been an
important research topic in the predictive maintenance
field, aiming to detect possible defects early and thus to
identify and apply the required maintenance activities such
that possible breakdowns are avoided. Instead of predicting
an anomaly score for the input signals at every time step,
the output for RUL predictions is the duration from the
current time until the nearest failure. According to Kang
et al. [80], ML techniques have also spawned many new
attempts in this area, and the problem settings are also
migratable to particle accelerator control, despite the time-
scale difference. However, RUL prediction is mainly
applied in device degradation, which possesses a clear
gradual change curve. There are even physical models
established to explain such effects. Equivalent models lack
accelerator control, and preliminary trials have shown that
such methods do not yield satisfactory performance on
abrupt failures.
In conclusion, there are bright prospects for the appli-

cation of data-driven time series forecasting techniques in

problems related to particle accelerators, especially in
control and diagnostics. The field would benefit from an
extension of current research, increasing attention to data
quality, innovative insights from similar fields, and more
intense exchange. In this way, time series forecasting
models will emerge that are more tightly tailored to particle
accelerator scenarios.

[1] C. Chatfield, Time-series Forecasting (Chapman and Hall/
CRC, London, 2000).

[2] M. Fahim and A. Sillitti, IEEE Access 7, 81664 (2019).
[3] X.-X. Lin, P. Lin, and E.-H. Yeh, IEEE Netw. 35, 212

(2020).
[4] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung,

Time Series Analysis: Forecasting and Control (John
Wiley & Sons, New York, 2015).

[5] G. P. Zhang, Neurocomputing 50, 159 (2003).
[6] G. Udny Yule, Philos. Trans. R. Soc. A 226, 267 (1927).
[7] G. T. Walker, Proc. R. Soc. A 131, 518 (1931).
[8] R. G. Allen, Econometrica 18, 209 (1950).
[9] R. G. Brown and R. F. Meyer, Oper. Res. 9, 673 (1961).

[10] C. C. Holt, Planning Production, Inventories, and Work
Force (Prentice-Hall, NJ, 1960).

[11] E. S. Gardner Jr., J. Forecast. 4, 1 (1985).
[12] K. W. Hipel, A. I. McLeod, and W. C. Lennox, Water

Resour. Res. 13, 567 (1977).
[13] D. A. Dickey and S. G. Pantula, J. Bus. Econ. Stat. 5, 455

(1987).
[14] D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti, and

M. Ciccozzi, Data Brief 29, 105340 (2020).
[15] J. G. De Gooijer and R. J. Hyndman, Int. J. Forecast. 22,

443 (2006).
[16] S. Siami-Namini, N. Tavakoli, and A. S. Namin, A com-

parison of arima and lstm in forecasting time series, in
Proceedings of 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA) (IEEE,
2018), pp. 1394–1401.

[17] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, PLoS
One 13, e0194889 (2018).

[18] L. Wang, H. Zou, J. Su, L. Li, and S. Chaudhry, Syst. Res.
Behav. Sci. 30, 244 (2013).

[19] M.-D. Liu, L. Ding, and Y.-L. Bai, Energy Conversion and
Management 233, 113917 (2021).

[20] K. Bae and D. Harris, Nonrenewable Resour. 4, 325 (1995).
[21] R. E. Kalman, J. Basic Eng. 82, 35 (1960).
[22] R. D. Peng, A Very Short Course on Time Series Analysis,

https://bookdown.org/rdpeng/timeseriesbook/ (2020).
[23] A. C. Harvey, Forecasting, Structural Time Series Models

and the Kalman Filter (Cambridge University Press,
Cambridge, England, 1990).

[24] R. J. Meinhold and N. D. Singpurwalla, Am. Stat. 37, 123
(1983).

[25] A. C. Harvey, in Advances in Econometrics. Fifth World
Congress (Cambridge University Press, Cambridge,
England, 1987), Vol. 1, pp. 285–313.

[26] H. Visser and J. Molenaar, J. Clim. 8, 969 (1995).
[27] L. Peel, Data driven prognostics using a kalman filter

ensemble of neural network models, in Proceedings of

SICHEN LI and ANDREAS ADELMANN PHYS. REV. ACCEL. BEAMS 26, 024801 (2023)

024801-14

https://doi.org/10.1109/ACCESS.2019.2921912
https://doi.org/10.1109/MNET.001.1800552
https://doi.org/10.1109/MNET.001.1800552
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1098/rsta.1927.0007
https://doi.org/10.1098/rspa.1931.0069
https://doi.org/10.2307/1905793
https://doi.org/10.1287/opre.9.5.673
https://doi.org/10.1002/for.3980040103
https://doi.org/10.1029/WR013i003p00567
https://doi.org/10.1029/WR013i003p00567
https://doi.org/10.2307/1391997
https://doi.org/10.2307/1391997
https://doi.org/10.1016/j.dib.2020.105340
https://doi.org/10.1016/j.ijforecast.2006.01.001
https://doi.org/10.1016/j.ijforecast.2006.01.001
https://doi.org/10.1371/journal.pone.0194889
https://doi.org/10.1371/journal.pone.0194889
https://doi.org/10.1002/sres.2179
https://doi.org/10.1002/sres.2179
https://doi.org/10.1016/j.enconman.2021.113917
https://doi.org/10.1016/j.enconman.2021.113917
https://doi.org/10.1007/BF02263380
https://doi.org/10.1115/1.3662552
https://bookdown.org/rdpeng/timeseriesbook/
https://bookdown.org/rdpeng/timeseriesbook/
https://doi.org/10.1080/00031305.1983.10482723
https://doi.org/10.1080/00031305.1983.10482723
https://doi.org/10.1175/1520-0442(1995)008%3C0969:TEARAI%3E2.0.CO;2


2008 International Conference on Prognostics and Health
Management,Denver,CO (IEEE,NewYork,2008), pp.1–6.

[28] B. Ghosh, B. Basu, and M. O’Mahony, J. Transp. Eng. 133,
180 (2007).

[29] P. Han, P. Wang, M. Tian, S. Zhang, J. Liu, and D. Zhu,
Application of the arima models in drought forecasting
using the standardized precipitation index, in Proceedings
of International Conference on Computer and Computing
Technologies in Agriculture, Jilin, China (Springer,
New York, 2012), pp. 352–358.

[30] C. Cheng, A. Sa-Ngasoongsong, O. Beyca, T. Le, H. Yang,
Z. Kong, and S. T. Bukkapatnam, IIE Trans. 47, 1053
(2015).

[31] T. S. Rao, J. R. Stat. Soc. Ser. B 43, 244 (1981).
[32] H. Tong, Threshold Models in Non-Linear Time Series

Analysis, Lecture Notes in Statistics (Springer, New York,
2012), pp. 59–121, 10.1007/978-1-4684-7888-4_3.

[33] J. G. De Gooijer and K. Kumar, Int. J. Forecast. 8, 135
(1992).

[34] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual
learning for image recognition, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
San Juan, PR (IEEE, New York, 2016), pp. 770–778.

[35] K. Bandara, C. Bergmeir, and S. Smyl, Expert Syst. Appl.
140, 112896 (2020).

[36] S. F. Crone, M. Hibon, and K. Nikolopoulos, Int. J.
Forecast. 27, 635 (2011).

[37] Rob J. Hyndman, A brief history of time series forecast-
ing competitions, https://robjhyndman.com/hyndsight/
forecasting-competitions/ (2018).

[38] H. Hewamalage, C. Bergmeir, and K. Bandara, Int. J.
Forecast. 37, 388 (2021).

[39] V. Nair and G. E. Hinton, Rectified linear units improve
restricted Boltzmann machines, in Proceedings of the 27th
International Conference on Machine Learning (ICML-10)
(Omni Press, Haifa, Israel, 2010), pp. 807–814, http://www
.icml2010.org/papers/432.pdf.

[40] K. Hornik, M. Stinchcombe, and H.White, Neural Netw. 2,
359 (1989).

[41] G. Zhang, B. E. Patuwo, and M. Y. Hu, Int. J. Forecast. 14,
35 (1998).

[42] A. Lapedes and R. Farber, Nonlinear signal processing
using neural networks: Prediction and system modelling,
Proceedings of the first IEEE International Conference on
Neural Networks (IEEE, San Diego, CA, 1987), https://
www.osti.gov/biblio/5470451 [Los Alamos National Lab-
oratory Reports No. LA-UR-87-2662, No. CONF-
8706130-4].

[43] Y. Li and W. Ma, Applications of artificial neural networks
in financial economics: A survey, in Proceedings of 2010
International Symposium on Computational Intelligence
and Design (IEEE, New York, 2010), Vol. 1, pp. 211–214.

[44] B. Krollner, B. J. Vanstone, G. R. Finnie et al., Financial
time series forecasting with machine learning techniques:
A survey, in Proceedings of the 18th European Symposium
on Artificial Neural Networks, ESANN 2010, Bruges,
Belgium (2010), https://www.esann.org/sites/default/files/
proceedings/legacy/es2010-50.pdf.

[45] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi,
and R. Jenssen, arXiv:1705.04378.

[46] R. P. Masini, M. C. Medeiros, and E. F. Mendes, J. Econ.
Surv. 37, 76 (2021).

[47] J. L. Elman, Cogn. Sci. 14, 179 (1990).
[48] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F.

Bougares, H. Schwenk, and Y. Bengio, arXiv:1406.1078.
[49] S. Hochreiter and J. Schmidhuber, Neural Comput. 9, 1735

(1997).
[50] H. Nguyen, K. P. Tran, S. Thomassey, and M. Hamad, Int.

J. Inf. Manage. 57, 102282 (2021).
[51] A. Suilin, Kaggle-web-traffic (2017), https://github.com/

Arturus/kaggle-web-traffic.
[52] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski,

Int. J. Forecast. 36, 1181 (2020).
[53] S. S. Rangapuram, M.W. Seeger, J. Gasthaus, L. Stella,

Y. Wang, and T. Januschowski, Advances in Neural
Information Processing Systems (2018), Vol. 31, pp. 7785–
7794, https://proceedings.neurips.cc/paper/2018/file/
5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf.

[54] W. Zhao, I. Patil, B. Han, Y. Yang, L. Xing, and E. Schüler,
Radiother. Oncol. 153, 122 (2020).

[55] J. Kirschner, M. Nonnenmacher, M. Mutný, A. Krause,
N. Hiller, R. Ischebeck, and A. Adelmann, Bayesian
optimisation for fast and safe parameter tuning of swissfel,
in Proceedings of the 39th International Free-Electron
Laser Conference, FEL2019, Hamburg, Germany, 2019
(JACoW, Geneva, Switzerland, 2019), pp. 707–710.

[56] J. Kirschner, M. Mutný, A. Krause, J. Coello de Portugal,
N. Hiller, and J. Snuverink, Phys. Rev. Accel. Beams 25,
062802 (2022).

[57] A. L. Edelen, S. G. Biedron, B. E. Chase, D. Edstrom, S. V.
Milton, and P. Stabile, IEEE Trans. Nucl. Sci. 63, 878
(2016).

[58] A. L. Edelen, S. Biedron, S. V. Miltonpresenter,
D. L. Bowring, B. E. Chase, J. P. Edelen, and J. Steimel,
Neural network model of the PXIE RFQ cooling
system and resonant frequency response, in Proceedings
of the 7th International Particle Accelerator Conference
(IPAC2016), Busan, Korea (JACoW, Geneva, Switzerland,
2016), 10.18429/JACoW-IPAC2016-THPOY020.

[59] W. H. Syed, A. Eichler, A. Nawaz, B. Sharan, and H.
Werner, Koopman-based Kalman filter for fault detection
for the superconducting radio frequency cavities of the
european XFEL, in Proceedings of 2021 60th IEEE
Conference on Decision and Control (CDC), Austin, TX
(IEEE, New York, 2021), pp. 6855–6860.

[60] J. R. Haines, B. Riemer, D. K. Felde, J. D. Hunn, S. J.
Pawel, and C.-C. Tsai, J. Nucl. Mater. 343, 58 (2005).

[61] M. Reščič, R. Seviour, and W. Blokland, Nucl. Instrum.
Methods Phys. Res., Sect. A 1025, 166064 (2022).

[62] M. Reščič, R. Seviour, and W. Blokland, Nucl. Instrum.
Methods Phys. Res., Sect. A 955, 163240 (2020).

[63] W.Blokland, P.Ramuhalli, C. Peters,Y.Yucesan,A.Zhukov,
M. Schram, K. Rajput, and T. Jeske, arXiv:2110.12006.

[64] G. Koch, R. Zemel, R. Salakhutdinov et al., Siamese neural
networks for one-shot image recognition, in Proceedings
of the 32nd International Conference on Machine Learn-
ing, Lille, France (2015), Vol. 37.

[65] D. Reggiani, B. Blau, R. Dölling, P. A. Duperrex, D.
Kiselev, V. Talanov, J. Welte, and M. Wohlmuther, J.
Neutron Res. 22, 325 (2020).

TIME SERIES FORECASTING METHODS AND … PHYS. REV. ACCEL. BEAMS 26, 024801 (2023)

024801-15

https://doi.org/10.1061/(ASCE)0733-947X(2007)133:3(180)
https://doi.org/10.1061/(ASCE)0733-947X(2007)133:3(180)
https://doi.org/10.1080/0740817X.2014.999180
https://doi.org/10.1080/0740817X.2014.999180
https://doi.org/10.1111/j.2517-6161.1981.tb01177.x
https://doi.org/10.1007/978-1-4684-7888-4_3
https://doi.org/10.1016/0169-2070(92)90115-P
https://doi.org/10.1016/0169-2070(92)90115-P
https://doi.org/10.1016/j.eswa.2019.112896
https://doi.org/10.1016/j.eswa.2019.112896
https://doi.org/10.1016/j.ijforecast.2011.04.001
https://doi.org/10.1016/j.ijforecast.2011.04.001
https://robjhyndman.com/hyndsight/forecasting-competitions/
https://robjhyndman.com/hyndsight/forecasting-competitions/
https://robjhyndman.com/hyndsight/forecasting-competitions/
https://doi.org/10.1016/j.ijforecast.2020.06.008
https://doi.org/10.1016/j.ijforecast.2020.06.008
http://www.icml2010.org/papers/432.pdf
http://www.icml2010.org/papers/432.pdf
http://www.icml2010.org/papers/432.pdf
http://www.icml2010.org/papers/432.pdf
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/S0169-2070(97)00044-7
https://doi.org/10.1016/S0169-2070(97)00044-7
https://www.osti.gov/biblio/5470451
https://www.osti.gov/biblio/5470451
https://www.osti.gov/biblio/5470451
https://www.osti.gov/biblio/5470451
https://www.esann.org/sites/default/files/proceedings/legacy/es2010-50.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2010-50.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2010-50.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2010-50.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2010-50.pdf
https://arXiv.org/abs/1705.04378
https://doi.org/10.1111/joes.12429
https://doi.org/10.1111/joes.12429
https://doi.org/10.1207/s15516709cog1402_1
https://arXiv.org/abs/1406.1078
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.ijinfomgt.2020.102282
https://doi.org/10.1016/j.ijinfomgt.2020.102282
https://github.com/Arturus/kaggle-web-traffic
https://github.com/Arturus/kaggle-web-traffic
https://github.com/Arturus/kaggle-web-traffic
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://doi.org/10.1016/j.radonc.2020.09.057
https://doi.org/10.1103/PhysRevAccelBeams.25.062802
https://doi.org/10.1103/PhysRevAccelBeams.25.062802
https://doi.org/10.1109/TNS.2016.2543203
https://doi.org/10.1109/TNS.2016.2543203
https://doi.org/10.18429/JACoW-IPAC2016-THPOY020
https://doi.org/10.1016/j.jnucmat.2004.08.033
https://doi.org/10.1016/j.nima.2021.166064
https://doi.org/10.1016/j.nima.2021.166064
https://doi.org/10.1016/j.nima.2019.163240
https://doi.org/10.1016/j.nima.2019.163240
https://arXiv.org/abs/2110.12006
https://doi.org/10.3233/JNR-200162
https://doi.org/10.3233/JNR-200162


[66] S. Li, M. Zacharias, J. Snuverink, J. Coello de Portugal, F.
Perez-Cruz, D. Reggiani, and A. Adelmann, Information
12, 121 (2021).

[67] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, Europhys.
Lett. 4, 973 (1987).

[68] C. L. Webber, Jr. and J. P. Zbilut, Tutorials in Contempo-
rary Nonlinear Methods for the Behavioral Sciences
(2005), pp. 26–94, http://www.nsf.gov/sbe/bcs/pac/nmbs/
nmbs.jsp.

[69] I. Lobach, M. Borland, G. Fystro, A. Sannibale, and Y.
Sun, Machine learning for predicting power supply trips in
storage rings, in Proceedings of the 2022 North American
Particle Accelerator Conference (NAPAC), Albuquerque,
New Mexico (unpublished).

[70] C. Tennant, A. Carpenter, T. Powers, A. S. Solopova, L.
Vidyaratne, and K. Iftekharuddin, Phys. Rev. Accel. Beams
23, 114601 (2020).

[71] M. M. Rahman, K. Iftekharuddin, A. Carpenter, T.
McGuckin, C. Tennant, and L. Vidyaratne, Real-time
cavity fault prediction in cebaf using deep learning, in
Proceedings of NAPAC 2022, Albuquerque, NM (2022).

[72] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolu-
tional networks for biomedical image segmentation, in
Proceedings of International Conference on Medical

Image Computing and Computer-Assisted Intervention
(Springer, New York, 2015), pp. 234–241.

[73] L. T. D. Coyle, Machine learning applications for hadron
colliders: LHC lifetime optimization, Ph.D. thesis,
Grenoble INP, 2018.

[74] E. Krymova, G. Obozinski, M. Schenk, L. Coyle, and T.
Pieloni, Data-driven modeling of beam loss in the LHC,
arXiv:2208.08935.

[75] A. Scheinker et al., Model independent beam tuning, in
Proceedings of the 4th International Particle Accelerator
Conference, IPAC-2013, Shanghai, China, 2013 (JACoW,
Shanghai, China, 2013), pp. 12–17.

[76] A. Scheinker and D. Scheinker, Int. J. Robust Nonlinear
Control 28, 568 (2018).

[77] A. Scheinker, Information 12, 161 (2021).
[78] F. Cropp, P. Musumeci, A. Scheinker, D. Filippetto, A.

Gilardi, S. Paiagua, and D. Wang, Toward machine
learning-based adaptive control and global feedback for
compact accelerators, in Proceedings of 13th International
Particle Accelerator Conference (IPAC’22), Bangkok,
Thailand (JACoW, Geneva, Switzerland, 2022).

[79] D. Kafkes and J. St John, Data 6, 42 (2021).
[80] Z. Kang, C. Catal, and B. Tekinerdogan, Sensors 21, 932

(2021).

SICHEN LI and ANDREAS ADELMANN PHYS. REV. ACCEL. BEAMS 26, 024801 (2023)

024801-16

https://doi.org/10.3390/info12030121
https://doi.org/10.3390/info12030121
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp
http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp
http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp
http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp
http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp
https://doi.org/10.1103/PhysRevAccelBeams.23.114601
https://doi.org/10.1103/PhysRevAccelBeams.23.114601
https://arXiv.org/abs/2208.08935
https://doi.org/10.1002/rnc.3886
https://doi.org/10.1002/rnc.3886
https://doi.org/10.3390/info12040161
https://doi.org/10.3390/data6040042
https://doi.org/10.3390/s21030932
https://doi.org/10.3390/s21030932

