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Abstract—The design specification of future high-field acceler-
ator magnets require innovation in and integration of multiple
disciplines. Numerical models underpin each step of the design. In
this paper, we present a methodology for collaborative modeling
based on relevant concepts of model-based systems engineering.
The methodology is composed of three pillars: encapsulated
computing environments with service query interface, model
notebooks with auto-generated model views, and model query
interface with results caching. The methodology aims at a de-
centralized approach to multi-model and multi-scale collaboration
that maintains the cornerstones of traceability and reproducibility.
It is demonstrated with a multi-model coil design optimization of
a high-field superconducting magnet.

Index Terms—Superconducting magnets, Magnet design and
analysis techniques, Systems engineering.

I. INTRODUCTION

The lifetime of superconducting accelerator magnet projects
may span over several decades from design optimization,
through fabrication and testing of prototypes to series pro-
duction, commissioning, and operation. The overall process
is typically carried out by several cross-continent teams of
experts who use models to support the design. It is, therefore,
of high importance to keep track of models used for design
and analysis and of their evolution over time. A motivating
example is the design of the LHC successor, which involves
the exploration of various superconducting magnet geometries
and circuit topologies, e.g., [2], [3], [4].

The main contribution of this work is a methodology for
collaborative modeling to tackle superconducting-magnet de-
sign challenges. Firstly, we incorporate Model-Based Systems
Engineering (MBSE) concepts [5] to establish traceable design
workflows. Secondly, we present a set of optimization algo-
rithms suited for computationally efficient multi-physics opti-
mization of field problems. The model-based design workflow
is illustrated with an integrated magneto-thermo-mechanical
geometry optimization of a coil for a high-field superconduct-
ing magnet.

The paper is organized as follows. Section II introduces the
MBSE methodology and outlines three core pillars. In Section
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III we discuss the versioning of design variants and collabo-
ration across multiple laboratories and institutes. Section IV
presents a multi-model, multi-objective optimization problem
implemented with the MBSE framework. Finally, section V
concludes the paper.

II. MBSE FRAMEWORK

From Systems Engineering (SE) perspective a system design
is accompanied with a set of documents such as conceptual
design reports (CDRs), technical design reports (TDRs), etc.
MBSE complements SE and introduces a paradigm shift from
a document-centric protocol for sharing of information to a
model-based sharing of information. In this setup, models are
treated as repositories of data queried whenever a result is
needed. Following this approach a system design is represented
with human-readable view of a model, i.e., an auto-generated,
interactive report. Previously, MBSE has been employed for
life cycle management of large-scale systems, e.g., in automo-
tive and aerospace engineering [6], [7].

A. Computing Environment Encapsulation

In order to ensure reproducibility of modelling results we
introduce operating system (OS)-level encapsulation for nu-
merical solvers or other services. We rely on Docker containers
to provide a unified and encapsulated modelling environment
across popular operating systems [10]. Unlike a virtual ma-
chine, a Docker container does not require the installation of
an operating system on a host OS. Instead, the Docker engine
is handling information exchange between a container and a
host OS. As a result, containers are lightweight and portable.
A Docker image stores all dependencies needed to execute
a simulation. Docker images are versioned and stored in an
image registry.

Since containers do not have external dependencies and
are versioned, they ensure the fullest possible repeatability of
numerical input/output behavior. The solver query communica-
tion protocol, e.g., HTTP, is added to a container by a generic
multi-stage build operation, without additional work for the
solver developer. The solver query interface is used through a
simple Python API which provides four functions:

process_id = service.init(name)

service.upload(process_id, input_file(s))

service.run(process_id)

service.download(process_id, artefact(s))
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The name variable is replaced by an IP address of the
container. By means of the containerization of services and
the HTTP-based micro-service architecture, it is easy for users
to install and use a multitude of services in their workflows
without loosing the cornerstones of traceability and repeata-
bility. A multi-container environment is composed by running
several instances together with built-in network and file system
sharing. We are aware of no other implementation that achieves
a similar result, other than a monolithic solution such as that
by Siemens [11].

Containers exist for ANSYS as a command-line interface
(provided by the company, [12]), ROXIE (including GUI),
Opera 3D, as well as for the model cache and for work with
notebook-based models; cf. the remainder of this Section. In
Section IV we use a custom Docker container for multi-model,
multi-objective optimization.

B. Model Notebooks as Repositories of Data with Model View

In order to provide a uniform modelling interface, we encap-
sulate numerical models in notebooks. A notebook combines
high-level function calls with results of their execution along
with documentation in the form of text, input files, plots,
equations, tables, and output files. A model is implemented
as a notebook, interacting with a solver through the solver
query interface. A notebook may also incorporate measurement
database queries for model verification and validation.

Furthermore, a notebook can be exported and persisted as a
report. A report contains information about its execution date,
used versions of software, input files as well as input files,
interactive plots and other relevant results. We chose python
Jupyter notebooks due to abundance of scientific libraries and
relatively large community of users, [8], [9].

C. Model Query Mechanism

By implementing the MBSE methodology, model notebooks
become repositories of data, and therefore, need to provide a
query mechanism. Following this approach, models can query
both figures of merit and artefact files from one another; see
Figure 1. In a naı̈ve approach this may lead to a redundant
execution of models. To this end, we introduce a model registry
composed of model configuration and cache database.

The configuration file contains information about model
location, its inputs, along with dependencies to other models,
i.e., each physics model may depend on a geometry model.
The model dependency is conveniently represented as a Design
Structure Matrix [5]

M1 M2 M3

M1 x x
M2 x
M3 x

 .

A symmetrical entry indicates an infinite loop in a model query.
In the example above, model M1 calls M2 and vice-versa. In
this case, the two models may be: a) strongly coupled and
require a third (e.g., fixed-point iteration, waveform relaxation)
model that iteratively executes both queries until convergence
is reached (the third model then provides both consistent results

as artefacts); or b), one model can be divided into two or
more models which can then be executed sequentially1. In both
cases, the symmetric entries and the associated loop disappear.
A valid execution tree forms a directed acyclic graph.
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Fig. 1. Automated multi-physics design optimization workflow. Bidirectional
arrows represent the flow of model queries. Double lines denote bidirectional
solver queries.

When a model is queried multiple times, the model would
be evaluated multiple times with the same inputs, thus causing
unnecessary computational cost. A dedicated database keeps
track of model execution and serves as storage for a cache
mechanism. To avoid redundant model execution, the query
mechanism first checks the dependency tree and a cache
database. If a matching model exists in the cache, the cor-
responding outputs are returned without executing the model.

To this end, a cache database stores model snapshots. A
model snapshot consists of a model hash, model inputs, figures
of merit, artefacts, and hashes of all dependent models. A
model hash is computed from model content, input parameters,
and input file contents. Thus, a model hash change is detected
when either a model is changed or any of its dependencies
changed.

The caching database not only saves time for superfluous
model executions, but also keeps track of each execution of the
model. As such, the cache database enables advanced analytics
on model results, e.g., after an optimization, all evaluations,
along with their inputs, can be retrieved, and their figures of
merit and artefacts displayed and analyzed.

III. VERSIONING OF DESIGN VARIANTS

Models and inputs are integrated with a code repository
enabling versioning and branching of design variants, e.g.,
reference, as-built, etc.. Relevant design decisions can be la-
belled with a tag to establish what is the current valid baseline.

1Example: if a margin calculation requires input from a mechanical model,
and the mechanical model requires Lorentz-force input from the electromag-
netic model, then the margin calculation must be represented as an independent
model, separate from the electromagnetic calculation, to resolve the loop.
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In addition, for each input version, a model can be queried
for artefacts and report; this in turn executes a model on a
dedicated machine. A model can also be executed at regular
intervals to check for potential regressions, due to e.g., software
version changes, OS updates.

The model registry and automated model execution are
implemented as a distributed GitLab repository enabling col-
laborative work of the teams of experts. This concept naturally
extends to a multi-project setup for multiple systems designed
by separate teams. In this setup, each team maintains a separate
repository which versions relevant model variants. The model
query mechanism supports a distributed mode through the
GitLab API. The distributed model query, accessing external
model repositories, provides an elegant way to query models
generated by other groups and institutes, and include their re-
sults in a design report, all-the-while retaining full traceability
and repeatability.

IV. SYSTEMS ENGINEERING TRADE STUDY

The Docker containers with solvers, model notebooks, the
model query mechanism, and a versioning platform are the
cornerstones of an open and light-weight MBSE methodology.
The presented methodology allows to perform trade studies
such as parameter space exploration, verification and valida-
tion, and trade studies to name a few. Those studies aim at
improving the figures of merit and finding a best trade value for
a model. In case of superconducting magnets, a coil geometry
optimization is a prime example of a trade study carried out
at an early design stage.

A. Coil Geometry Optimization

The main objective of a superconducting magnet design is to
reach the target magnetic field, minimize its unwanted imper-
fections (expressed as unwanted magnetic field components),
and obtain a desired operational margin (expressed in terms
of a position on a superconductor load line). Furthermore,
the use of a brittle superconductor such as Nb3Sn or Bi2212,
while offering higher level of critical current at elevated fields,
introduces a limit on the peak stress in the coil to avoid
irreversible performance degradation. Lastly, a magnet has
to be protected from excessive thermal load and voltages to
ground in an event of a quench either in a standalone setup or
in a larger circuit.

The geometry of a cos-θ coil is typically optimized by
adjusting the number of conductors and the angular position
of each block as depicted in Figure 2.

We perform the coil geometry optimization with bio-inspired
algorithms which are suited for combinatorial optimization
problems with discrete design variables. Furthermore, we chose
the stochastic optimizers due to their robustness in terms of
the computational error associated with chosen field simula-
tors [13]. In particular, the micro-genetic algorithm has been
applied for optimization of field problems [13].

We note that the bio-inspired algorithms are typically suited
for efficiently scanning a large parameter space. Thus, we
also implemented Rosenbrock method [14] for fine tuning of
obtained design in the vicinity of the genetic optimization
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Fig. 2. 2D cross-section of a single block of an innermost layer in a cos-θ
magnet with indication of design variables.

result. The Rosenbrock method does not rely on gradient
calculation and, therefore, matches the problem setup.

V. HIGH-FIELD MAGNET OPTIMIZATION

As a proof of concept, the model-based design workflow is
illustrated with an optimization of a high-field, four-layer cos-
theta dipole magnet. Due to the magnet’s symmetry, only a
single quadrant is considered. In addition to optimizing each
block, the total number of blocks per layer is also adjusted by
the algorithm. Note that the optimization study serves only as
a demonstration of the framework; for an actual application
to multi-model coil geometry optimization with the presented
MBSE methodology please refer to [17]. An up-to-date user
documentation is available at [18].

Due to a wide range of design variables aimed at covering a
wide parameter trade space, a randomly selected set of param-
eters may lead to an inconsistent geometry and/or divergent
numerical results. Thus, the initialization is carried out until
a desired number of consistent individuals is reached. In case
any model failure occurs during the optimization loop, it is
assigned a penalty trade value.

The schematic of the multi-objective geometry optimization
is shown in Figure 3. The value model computes a trade
value for a particular set of parameters prescribed by the
optimization algorithm. The optimization notebook iteratively
queries the value model for the trade value. The trade value
is a, generally non-linear, combination of relevant figures of
merit that are queried from the respective physics models; cf.
Figure 3. Furthermore, the design constraints are added in a
similar manner to the trade value.

The optimization algorithm updates a single parametric
geometry definition. Afterwards, the geometry definition is
queried in each model notebook and supplied to model gen-
erators to build updated model inputs. In case a geometry
definition is inconsistent, e.g., blocks fall outside of the first
quadrant, wedge tip is too sharp, the input is discarded and the
trade value assigned a penalty value. For valid geometries, the
trade value is computed from the figures of merit as follows

tv = 10−1|b3|+10−1|b5|+|m|+10−9σvm + 10−3Ths,

where b3 and b5 are sextupole and decapole field components
queried from the magnetic model, m is the superconductor
margin queried from the mechanical model, σvm is the Von
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Fig. 3. Automated multi-physics design optimization workflow. Arrows
represent the flow of model queries; they start at the model that request a
figure of merit or artefact and end at the model that provides the requested
data.

Fig. 4. Magnetic flux density distribution in superconducting strands of a
magnet quadrant.

Mises stress, and Ths is the hot-spot temperature queried from
the thermal model.

A static electromagnetic simulation with ROXIE [15] is
performed to obtain the peak magnetic field, Bmax, Lorentz
force, F⃗L, field harmonics, and the superconductor margin. The
model is constructed from full magnet geometry, i.e., coordi-
nates of each conductor are considered. To reduce computation
time, the model does not include the non-linear iron yoke
contribution. The magnetic field is computed by means of Biot-
Savart method. Figure 4 shows the distribution of the magnetic
flux density for the best individual.

A static mechanical ANSYS APDL [16] model is con-
structed from homogenized geometry, i.e., conductors in a
block are merged into one. The model is loaded with Lorentz
force, that is queried from the electromagnetic model, and
the peak stress in the coil is evaluated. We consider linear
material properties and relevant contact interfaces between coil
layers. The obtained von Mises stress distribution of the best
individual is depicted in Figure 5.

The third model is an adiabatic estimation of the maxi-

Fig. 5. Von Mises stress distribution (in Pa) in superconducting cables and
structural elements in a cross-section of a magnet quadrant.

mum temperature in the coil for the conductor with the peak
magnetic field, |B⃗max|. This approach leads to a worst-case
scenario by assuming absence of the heat transfer and cooling
mechanisms. The magnet is assumed to be protected by an
energy-extraction resistor.

The genetic algorithm controls a population of 20 candidate
solutions over 100 generations. At the end of each generation,
the trade value is evaluated and genetic operators are applied.
Specifically, tournament selection of size 3 is used to choose
individuals for mating. Single-point crossover is performed at a
randomly selected position to obtain new individuals. Lastly, a
random bit-flip mutation is carried out with uniform probability
and a threshold value of 0.95.

Models snapshots for each model are stored to the cache
database with each iteration of the optimization algorithm. The
snapshot of the value model contains the values of the figure of
merit, trade values, and an artefact with geometry coordinates
corresponding to each individual. During an optimization run,
the pieces of information from the snapshot are displayed in an
optimization cockpit. Furthermore, the model snapshots can be
conveniently compared across several optimization runs. The
evolution of the minimum and mean trade values per generation
are depicted in Figure 6.

Note that due to the application of elitism, i.e., propagation
of the best two individuals from generation to generation, the
trade value is non-increasing. Furthermore, the mean of the
trade value is gradually decreasing indicating that the entire
population improves from generation to generation.

VI. CONCLUSION

In this paper, we presented an MBSE approach to col-
laborative modeling for accelerator magnets and design opti-
mization. The methodology is based on standard, open-source
technologies. We begin with the application of containers
for encapsulation of computational environments. Numerical
solvers are embedded into containers and provide an encap-
sulated and reproducible environment, exposing a language-
agnostic service API. Each modelling task is implemented in a
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Fig. 6. Minimum and population mean trade value for genetic optimization
with elitism. The population mean is computed by excluding individuals with
penalized scores.

notebook, controlling model creation, execution, and query of
results. A model registry enables efficient queries of models.

It is important to note that, while the sum of all methods
will give the best result, the implementation of only a subset,
i.e., of one or two of the methods, will still provide substantial
benefits. Notebooks, if used correctly, can provide traceability
better than most other methods. Model queries with pyMBSE
create a powerful and consistent link between models, even in
the absence of notebooks or encapsulated solvers in containers.
Containerization and encapsulation through HTTP makes for
a more portable maintainable integrated deployment process.

The MBSE methodology shifts the focus from documents to
models in system design: (i) models provide an abstraction of
a system; (ii) models generate human-readable views with rel-
evant data and keep track of versions; (iii) models are queried
for data by other models; (iv) models and their inputs are
versioned for the sake of life-cycle management, consistency
and traceability.

The notebooks are combined into a multi-physics coil ge-
ometry optimization workflow which is executed programmat-
ically. The result is documented in an auto-generated report
[19], illustratory example. Nonetheless, the presented MBSE
methodology itself is applicable beyond a magnet design. This
approach naturally extends to other components of a particle
accelerator such as beam dynamics, cryogenic systems, vacuum
installation, power converters, etc.
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