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Abstract. In an all solid state Li-ion battery, it is crucial to reduce ionic resistivity at the
interface between the electrode and the electrolyte in order to enhance Li+ mobility across the
interface. Recent first principles calculations predict the presence of a space-charge layer (SCL)
at the interface due to the difference in the Li+ chemical potential at the interface between two
different materials, as in the metal-semiconductor junction in electronic devices. However, the
presence of SCL has never been experimentally observed. Our first attempt in a fresh multilayer
sample, Cu(10 nm)/Li3PO4(50 nm)/LiCoO2(100 nm) on a sapphire substrate, with low-energy
µ+SR (LE µ+SR) revealed a gradual change in the nuclear magnetic field distribution width as
a function of implantation depth even across the interface between Li3PO4 and LiCoO2. This
implies that the change in the field distribution width at SCL of the sample is too small to be
detected by LE µ+SR.

1. Introduction
The all solid-state battery, consisting of a solid cathode, solid anode, and solid electrolyte, is
believed to provide a solution for several issues concerning current Li-ion batteries, as it would
allow to improve safety and volumetric charge density of the current Li-ion batteries. For this
reason, in recent years massive attention has been directed towards the development of all solid-
state batteries from the scientific community. The most significant issue to overcome for realizing
an all solid-state battery is how to control the interface layer, which is newly formed during a
charge and discharge reaction, between the electrode and electrolyte. In fact, according to
electrochemical analyses and ex-situ compositional analyses, such a layer, i.e., a solid-electrolyte
interface (SEI), is known to exist in conventional Li-ion batteries based on liquid electrolyte [1].
A similar layer is expected to be also formed in an all solid-state battery [2].

Very recent first principles calculations highlighted the possible occurrence of a second issue
[3]: the formation of a space-charge layer (SCL) at the interface between the cathode and
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electrolyte due to the difference of their chemical potentials. In other words, Li vacancies are
spontaneously formed in the electrolyte layer at the vicinity of the interface. Furthermore, the
vacancy concentration is expected to decrease with the distance from the interface and finally
become negligibly small. Such an SCL naturally increases the interfacial resistance, leading to
the decrease in both the working voltage and response time for a rapid charge/discharge. In the
worst case scenario, an all solid-state battery would not work at all due to the SCL.

At present, the existence of such layer has not been observed experimentally. However,
empirical indications of the existence of SCL are provided, for example, by the LiCoO2 battery
material. Indeed, an oxide buffer layer interposed between the LiCoO2 cathode and the sulfide
electrolyte significantly reduces the interfacial resistance [4]. In addition, electric potential
distribution measurements in an all solid-state battery (LiCoO2/Li1+x+yAlyTi2ySixP3xO12/Li)
showed a potential gradient in the electrolyte layer within approximately 1000 nm of the interface
[5]. Nevertheless, more reliable or direct evidence of the SCL is required to further improve the
interface properties in an all solid-state battery.

In order to observe the SCL, a nondestructive technique with a good depth resolution is
needed, since the attempt to fabricate the samples for cross-section-view observations alters
and/or destroys the potential gradient at the interface. While a conventional µ+SR is one of
the powerful tools to observe the Li-distribution and diffusion in solids [6, 7], it lacks a depth
resolution. We have, therefore, attempted to use a low-energy (LE) µ+SR technique, which
allows depth dependent studies with an adjustable range, by tuning the implantation energy
(Eimp) down to keV range [8, 9, 10, 11]. In the SCL, the relaxation rate of the transverse field
(TF) oscillation spectrum is expected to decrease, due to the decreasing Li concentration. Here,
TF means the magnetic field perpendicular to the initial muon spin polarization. Thus, we have
mainly measured the TF-µ+SR spectra as a function of Eimp.

2. Experimental
The following two multilayers samples were prepared by a PLD technique:
♯1: Cu(10 nm)/Li3PO4(50 nm)/LiCoO2(100 nm) on a sapphire substrate
♯2: Cu(10 nm)/Li3PO4(75 nm)/LiCoO2(100 nm) on a sapphire substrate
The area of the sample was 10×10 mm2. The multilayers sample was placed on the Ni coated Al
plate. The LE µ+SR spectra were measured mainly in TF with HTF = 50 Oe at temperatures
between 100 and 320 K. The experimental techniques are described in more detail elsewhere
[12, 13]. The obtained µ+SR spectra were analyzed using musrfit [14].

3. Results and Discussion
Figures 1(a) and 1(b) show the volume fraction (VF) of the stopped muons as a function of Eimp

in the sample ♯1 simulated with SRIM [15] and TRIMSP [16], while Fig. 1(c) shows the Eimp

dependence of the TF relaxation rate (σTF) at 320 K. Here, σTF was obtained by fitting the
TF-µ+SR spectra with:

A0PTF(t) = ATF cos(2πfTFt+ ϕTF) exp(−
1

2
σ2
TFt

2), (1)

where A0 denotes the initial asymmetry at t = 0, PTF(t) denotes the µ+ spin depolarization
function, ATF(= A0) denotes the asymmetry, fTF denotes the µ+ spin precession frequency
caused by TF, ϕTF denotes the initial phase of the precession, and σTF denotes the Gaussian
relaxation rate for the oscillatory signal and roughly corresponds to the spin-spin relaxation
rate.

From the VF(Eimp) curves simulated with SRIM [Fig. 1(a)], it is found that V Cu
F ∼ 100%

at Eimp = 2 keV, V Li3PO4
F ∼ 100% at Eimp = 8 keV, and V LiCoO2

F ∼ 100% at Eimp = 20 keV.
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Figure 1. The volume fraction
of the implanted µ+ stopped in
the three layers in the sample ♯1,
Cu(10 nm)/Li3PO4(50 nm)/LiCoO2(100 nm)
on a sapphire substrate, as a function of
the implantation energy (Eimp) simulated
with (a) SRIM [15] and (b) TRIMSP
[16]. (c) the relationship between the TF
relaxation rate (σTF) and Eimp for the
sample ♯1. In (c), the predicted σTF(Eimp)
curves with SRIM and TRIMSP are also
plotted.
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Figure 2. The Eimp dependence of σTF for
the sample ♯1 measured at (a) 320 K, (b)
300 K, (c) 250 K, (d) 200 K, and (e) 150 K.
Red solid lines represent the predicted
dependence with SRIM, while blue solid
line represents that with TRIMSP only in
(a). (a) is the same to Fig. 1(c).

Therefore, using the VF(Eimp) curves predicted with SRIM for the three components and the
observed σTFs at Eimp = 2, 8, and 20 keV, the σTF(Eimp) curve without SCL is obtained as
[Fig. 1(c)] :

σpreS
TF (Eimp) = V Cu

F (Eimp)σTF(2 keV) + V Li3PO4
F (Eimp)σTF(8 keV)

+ V LiCoO2
F (Eimp)σTF(20 keV). (2)
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A similar procedure provides the σpreT
TF (Eimp) curve based on the TRIMSP simulation as also

seen in Fig. 1(c).
Figure 2 shows the relationship between σTF and Eimp at 320, 300, 250, 200, and 150 K

together with the predicted σTF(Eimp) curves based on the SRIM and TRIMSP simulations: i.e.,

both σpreS
TF (Eimp) and σpreT

TF (Eimp) curves. When SCL is formed, the Li content decreases in SCL.
This leads to a smaller σTF in SCL than the prediction. However, it is highly unlikely to show
a systematic discrepancy between the measured σTF(Eimp) and σpreS

TF (Eimp) [or σpreT
TF (Eimp)]

curves. In order to emphasize such discrepancy, Figs. 3 and 4 show the Eimp dependence of

δσTF(= σTF − σpreS
TF ) and (= σTF − σpreT

TF ) for the two samples. The δσTF(Eimp) curves do

not show a sudden decrease at the interface, at which V Li3PO4
F = V LiCoO2

F based on the two
simulations [Figs. 1(a) and 1(b)]. This indicates the following two possibilities:
1) SCL does not exist or 2) the thickness of SCL is too thin to be resolvable even with LE µ+SR.
Since the thickness of SCL is predicted to increase after a charge and discharge reaction [3], it
would be a good idea to study the interface of the charged multilayer battery with LE µ+SR.
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Figure 3. The Eimp dependence of
the deviation of the measured σTF and
predicted σTF (δσTF) with (a) SRIM and
(b) TRIMSP for the sample ♯1. Vertical
dotted lines labeled “Interface” represent
the Eimp, at which the the volume fraction
of Li3PO4 is equivalent to that of LiCoO2

with the two simulations [see Figs. 1(a) and
1(b)].
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Figure 4. The Eimp dependence of
the deviation of the measured σTF and
predicted σTF (δσTF) with (a) SRIM and
(b) TRIMSP for the sample ♯2. Vertical
dotted lines labeled “Interface” represent
the Eimp, at which the the volume fraction
of Li3PO4 is equivalent to that of LiCoO2

with the two simulations.
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In order to study the dynamic behavior, we have also measured the ZF- and LF-µ+SR spectra
for the Li3PO4 layer in the sample ♯1 with Eimp = 8 keV, at which V Li3PO4

F ∼ 100% predicted
by SRIM (72% by TRIMSP) [see Fig. 1(a) and 1(b)]. The ZF- and LF-µ+SR spectra were fitted
with a dynamic Gaussian Kubo-Toyabe function. Figure 5 shows the temperature dependencies
of the field distribution width (∆) and the field fluctuation rate (ν) in the Li3PO4 layer. While
∆ is roughly temperature independent in the whole temperature range measured, ν increases
with temperature above 200 K, indicating the Li+ diffusion in the Li3PO4 solid electrolyte. This
behavior is expected to stabilize the SCL at low temperatures, although such stabilization is
most unlikely to be seen in Figs. 3 and 4.
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Figure 5. The temperature dependencies
of the field distribution width (∆) and
field fluctuation rate (ν) in the sample ♯1
measured with Eimp = 8 keV, i.e., the
center of the Li3PO4 layer.

4. Conclusion
Even with LE µ+SR, it was difficult to confirm the presence of SCL at the interface between
the Li3PO4 electrolyte and LiCoO2 electrode. For such purpose, it is important to make the
interface at the vicinity of the surface in order to avoid the increase in the muon stopping
distribution width with Eimp [17]. Moreover, it is preferable to study the interface of the sample
after a charge and discharge reaction with LE µ+SR and/or an ultra-slow muon microscope in
J-PARC.
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