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A B S T R A C T   

Source apportionment (SA) techniques allocate the measured ambient pollutants with their potential source 
origin; thus, they are a powerful tool for designing air pollution mitigation strategies. Positive Matrix Factor-
ization (PMF) is one of the most widely used SA approaches, and its multi-time resolution (MTR) methodology, 
which enables mixing different instrument data in their original time resolution, was the focus of this study. One 
year of co-located measurements in Barcelona, Spain, of non-refractory submicronic particulate matter (NR- 
PM1), black carbon (BC) and metals were obtained by a Q-ACSM (Aerodyne Research Inc.), an aethalometer 
(Aerosol d.o.o.) and fine offline quartz-fibre filters, respectively. These data were combined in a MTR PMF 
analysis preserving the high time resolution (30 min for the NR-PM1 and BC, and 24 h every 4th day for the 
offline samples). The MTR-PMF outcomes were assessed varying the time resolution of the high-resolution data 
subset and exploring the error weightings of both subsets. The time resolution assessment revealed that aver-
aging the high-resolution data was disadvantageous in terms of model residuals and environmental interpret-
ability. The MTR-PMF resolved eight PM1 sources: ammonium sulphate + heavy oil combustion (25%), 
ammonium nitrate + ammonium chloride (17%), aged secondary organic aerosol (SOA) (16%), traffic (14%), 
biomass burning (9%), fresh SOA (8%), cooking-like organic aerosol (5%), and industry (4%). The MTR-PMF 
technique identified two more sources relative to the 24 h base case data subset using the same species and 
four more with respect to the pseudo-conventional approach mimicking offline PMF, indicating that the com-
bination of both high and low TR data is significantly beneficial for SA. Besides the higher number of sources, the 
MTR-PMF technique has enabled some sources disentanglement compared to the pseudo-conventional and base 
case PMF as well as the characterisation of their intra-day patterns.   

1. Introduction 

Air pollution has become one of the most harmful threats to envi-
ronmental health and climate (Kinney, 2018), being the 4th largest 
global cause of attributable deaths (Abbafati et al., 2020). Particulate 
matter (PM) is the pollutant with the highest impacts respect to adverse 

health effects (WHO, 2021). Identifying and quantifying pollution 
sources (i.e. source apportionment, SA) has become a major foci in 
urban air quality research, for which Positive Matrix Factorization 
(PMF, Paatero and Tapper, (1994)) is one of the most widely used 
modelling tools (Hopke et al., 2020). Although targeting one pollutant 
can be effective for specific mitigation strategies, the SA picture is vital 
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to improve the understanding of the behaviour of pollution sources. In 
this broader framework, the multi-time resolution PMF (MTR-PMF) 
technique represents a handy tool for coupling several groups of species 
that are measured by different instrumentation and at a different time 
resolution (TR). 

The principles of the MTR-PMF technique were first established by 
Zhou et al. (2004) with the aim of overcoming the averaging and 
interpolation practices when combining different TRs (10 min. to 24 h) 
data subsets. That study was able to retrieve six PM sources coupling 
data of several TRs, containing repeated and unrepeated species. Also, 
the study pointed out the higher sensitivity of the novel MTR-PMF 
technique to missing data in comparison with the regular PMF. Ogulei 
et al. (2005) used the MTR-PMF to file data gaps with concentration and 
uncertainty estimations. Subsequently, multiple studies benefitted from 
this technique, whose highlights will be mentioned hereunder. 

The use of the MTR methodology has been applied in diverse in-
quiries. Kuo et al. (2014) demonstrated that averaging high TR data 
subsets to low TR data subsets’ timestamps could yield the loss of factors 
with the same experimental data subsets and increased model error. 
Analogously, Liao et al. (2013) used synthetic data to demonstrate the 
accuracy of the model to explain the input sources and also found that 
averaging depreciated the correlation between input and output sour-
ces, respect to the MTR technique. Additional results from that work 
demonstrated that the model is more highly influenced by measurement 
error modifications than it is by input profile variation. The application 
of constraints in this work scheme reported beneficial outcomes in terms 
of the match with the simulated input. The use of constraints was also 
reported to be advantageous by Crespi et al. (2016), which, moreover, 
provided solution uncertainty estimation using bootstrap techniques in a 
constrained MTR-PMF. The use of the MTR methodology by Sofowote 
et al. (2018) allowed the identification of a source that was causing the 
major differences in PM2.5 concentrations between a pair of nearby sites, 
traffic and non-traffic. This result was achieved by using several markers 
measured by different instrumentation leading to more comprehensive 
model results. In Srivastava et al. (2019), the MTR-PMF application 
allowed the combination of organic mass spectra and organic species 
leading to the identification of more factors relative to the standard PMF 
analysis. Forello et al. (2019) showed that, in addition to retrieving more 
robust sources MTR-PMF could also enhance the determination of 
instrumental source-dependent coefficients. This study benefitted from 
coupling filter samples and aethalometer data to retrieve the source 
dependent absorption Ångström exponent values and their variability 
without a priori assumptions. 

Other studies have not used the MTR technique but instead have 
focused on coupling different instrument data subsets with the same TR 
and assessing the robustness of the outcomes depending on the subsets 
weightings (Crippa et al., 2013; Slowik et al., 2010a). Slowik et al. 
(2010b) reported that the uncertainty unbalance when coupling data 
from two different instruments can lead to unevenly representation of a 
data subset since there may be stronger internal correlations in one set 
versus the other. For example, in AMS data, there are characteristic m/z 
patterns due to the fragmentation process. This decompensation of the 
instruments’ representation was tested by relatively changing the 
weighting of the uncertainty matrix of one of the instruments and 
assessing the scaled residuals. This work found that the solution with the 
lowest scaled residual means was obtained with a weighting of the PTR- 
MS dataset by 0.7 for winter and 0.8 for summer without changing the 
AMS dataset weight. Moreover, Belis et al. (2019) tuned the weighting of 
the instrumentally-established errors to provide the receptor model with 
optimum weighting for each instrumentation’s data. This study pro-
posed to adjust the weights according to the scaled residuals and Q/Qexp 
outcomes. Thereupon, Tong et al. (2022) further explored the combi-
nation of two different instrumentation datasets by weighting their er-
rors and assessing the outcomes by analysing the intersection between 
both datasets’ scaled residuals histograms. That study showed that the 
most balanced solutions were found for weightings close to unity (scant 

weighting). 
The origins of submicron aerosol in Barcelona have been previously 

studied with a wide variety of instrumentation. Most of the studies are 
based on measurements with a TR of 24 h and with organic aerosol (OA) 
as a bulk species (Pérez et al., 2008; Brines et al., 2019; In’t Veld et al., 
2021). Pérez et al. (2008) reported seven groups of pollutants classified 
by their major origin for the bulk PM1 based on chemical analysis of 
offline PM1 filter samples: Organic Matter (OM) + Elemental Carbon 
(EC), sea spray, crustal, ammonium, sulphate and nitrate. Similarly, In’t 
Veld et al. (2021) identified heavy oil combustion, vehicle exhaust, non- 
emission vehicle emissions and a metallurgical industrial source in a 9- 
years, multi-site PM2.5 time series. Brines et al. (2019) and Minguillón 
et al. (2012) performed SAs joining daily organic and inorganic species 
concentrations from offline PM1 filter samples that yielded to better 
source descriptions. Regarding OA, high TR OA mass spectra PMF led to 
the identification of sources consisting of cooking-like OA (COA), 
hydrocarbon-like OA (HOA, attributed to road traffic), biomass burning 
OA (BBOA), and two oxygenated OA differentiated into a Less and a 
More Oxidised state (LO-OOA, MO-OOA) (Mohr et al., 2012; Minguillón 
et al., 2016; Via et al., 2021). The next step towards an optimal SA would 
be to couple this wide variety of species with the highest possible TR in 
order to characterise the intra-day variability of these sources. The MTR- 
PMF technique allows for SA of data subsets with different TR to provide 
an improved description of the sources in terms of the contribution of a 
wider range of species and their time variation. 

The objective of the present study is twofold. It pursues in a better 
quantitative SA of the submicron aerosol sources, identifying different 
organic and inorganic soluble ions’ together with black carbon (BC) and 
metal species, leading to a more complete source quantification and to 
the identification of additional potential sources. The submicron PM 
components used for this aim were: i. organic aerosol (OA), measured by 
a Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM); ii. non- 
refractory secondary inorganic species (SIA), including SO4

2-, NO3
–, 

NH4
+, and Cl-, also measured by a Q-ACSM; iii. BC measured by an 

aethalometer; iv. elemental species, from filter samples collected by 
high-volume samplers and analysed via ICP-AES and ICP-MS. This study 
also aims to examine the effect of the averaging of the high resolution 
(HR) data subset and of the uncertainty weighting of the datasets to-
wards the reliance of MTR-PMF results. This parameter optimisation will 
provide guidance for future MTR-PMF users who seek for the optimal 
combined SA. To the authors’ knowledge, this work provides the first 
study of these two parameter effects in a coupled manner from an 
analytical perspective to obtain the best possible SA of the submicronic 
aerosol. 

2. Methodology 

2.1. Sampling site, period and instrumentation 

Measurements were performed at the Palau Reial site (PR; 41◦ 23′

15′′ N; 02◦ 07′ 05′′ E; 80 m a.s.l.), an urban background site located in 
NW Barcelona near one of the busiest avenues of Barcelona (Diagonal 
Avenue, Fig. S1). More details of this site can be found in Minguillón 
et al. (2016) and Pey et al. (2010). The sampling period was from 
September 2017 to October 2018. The results from the deployed Q- 
ACSM and the aethalometer AE33 have been reported in Via et al. 
(2021), Yus-Díez et al. (2021). High volume samplers were co-located 
and used to collect PM1 filter samples, as described in In’t Veld et al. 
(2021). The combination of these three datasets has been prepared as 
input to PMF model both separately and for MTR-PMF. 

2.1.1. Q-ACSM measurements 
A Q-ACSM (Aerodyne Research Inc.) was deployed to measure NR- 

PM1 particles between 75 and 650 nm. Particles are flash-vaporized at 
600 ◦C in high vacuum conditions and ionized by hard-electron impact 
(70 eV), and the resulting fragments are analysed by a quadrupole mass 

M. Via et al.                                                                                                                                                                                                                                     



Environment International 177 (2023) 108006

3

spectrometer (Ng et al., 2011). A fragmentation table (Allan et al., 2004) 
is used to convert the signal spectra into organic aerosol or inorganic 
species concentrations. An OA matrix with concentrations of unit mass 
resolution species (m/z from 12 to 120 Th) was generated. Ionization 
Efficiency (IE) and Relative Ion Efficiency (RIE) calibrations were con-
ducted using 300-nm monodispersed NH4NO3 and (NH4)2SO4 particles 
(Ng et al., 2011). The collection efficiency correction was applied ac-
cording to Middlebrook et al. (2012), with CE values ranging 0.50–0.99. 
More details on calibration, settings and corrections can be found in Via 
et al. (2021). The OA uncertainty matrix was calculated as described by 
Ulbrich et al. (2009). The NR-PM1 inorganic species’ uncertainties were 
calculated as in Crenn et al. (2015). A thorough inspection of the signal- 
to-noise ratio of the input matrices was performed and all species were 
found in a sensitive range of 2–15. Also, the m/z range was upper- 
limited to 100 m/z as the mass of those ions between 100 and 120 
only accounted for a 6% on average. 

2.1.2. Aethalometer measurements 
BC measurements were performed through an AE33 multi- 

wavelength Aethalometer (model AE33, Magee Scientific, Aerosol d.o. 
o.; Drinovec et al., 2015) with a PM1 cut-off inlet. The AE33 is based on 
the measurement of light transmission at seven wavelengths (370, 470, 
520, 590, 660, 880 and 950 nm) through two sample spots with different 
flows and particle loading relative to the reference spot. The aethal-
ometer filter loading effect was corrected online by the dual-spot 
manufacturer correction (Drinovec et al., 2015), and the multiple scat-
tering correction constant, C, was set to 2.44, as reported by Yus-Díez 
et al., (2021). The absorption Ångström exponents (α) for liquid fuel and 
solid fuel were set αlf = 1 and αsf = 2, respectively, as a rounding of the 
0.9, 1.68, respectively, from Zotter et al. (2017). Posteriorly, the 
speciation of the BC regarding its origin into liquid fuel (BClf) and solid 
fuel (BCsf) was obtained by applying the Sandradewi model (Sandradewi 
et al., 2008) to these BC measurements. The measurement uncertainty 
for the absorption was set to 15% of the measurement (Forello et al., 
2019) for each of the seven wavelengths absorption. Error propagation 
was used for obtaining the uncertainty estimation of BClf and BCsf. The 
data, generated at a 1-minute TR, was averaged into the 30-minute 
timestamps matching the Q-ACSM data to provide homogenised mea-
surements. The ensemble of Q-ACSM (OA matrix and SIA) and aethal-
ometer data (BClf, BCsf) will be hereinafter referred to as the high time 
resolution (HR) data subset. 

2.1.3. Offline measurements 
A total of 83 PM1 samples were collected at PR during the sampling 

period on 150 mm quartz micro-fibre filters (Pallflex 2500 QAT-UP) 
using high-volume samplers (DIGITEL DH80 at 30 m3⋅h− 1) with a fre-
quency of 1 out of 4 days. These 24-h (midnight-to-midnight) samples 
were divided into four portions to perform different analytical protocols 
on each. A quarter of each sample was acid digested and subsequently 
analysed by Inductively Coupled Plasma Optical Emission Spectrometry 
(ICP-OES, ICAP 6500, THERMO Scientific) and Inductively Coupled 
Plasma Mass Spectrometry (ICP-MS, X Series II, THERMO Electron 
Corporation) for the determination of major and trace element con-
centrations, respectively (procedure by Querol et al. (2001)). These re-
sults are summarised in In’t Veld et al. (2021) and Via et al. (2021). 
Another quarter of each sample was water extracted and analyzed by ion 
chromatography for the determination of SO4

2-, NO3
–, and Cl- concen-

trations and by selective electrode for the determination of NH4
+ con-

centrations. A portion of the filter was analyzed by a thermal-optical 
method (Sunset OCEC analyser, Sunset Laboratory Inc.) following the 
EUSAAR2 protocol (Cavalli et al., 2010) for the EC and OC concentra-
tions determination. The uncertainty of these measurements was 
calculated as described in Escrig et al., (2009). These species will be 
referred to as the low TR (LR) data subset. 

2.2. Combination of data subsets 

To prepare the input for the PMF model to be applied and achieve 
PM1 mass closure, the following criteria were applied: 

i. The concentrations of the species analysed by more than one 
technique were cross-validated, and the technique with higher TR was 
included for the final data set. Hence, concentrations of SO4

2-, NO3
–, NH4

+, 
and Cl- used are those from Q-ACSM after validating them against filter 
samples concentrations (Via et al., 2021). OA concentrations from Q- 
ACSM were compared and discussed with OC measurements from filter 
samples in Via et al. (2021) (here summarised in Table S1), and in the 
same way, BC concentrations from aethalometer were compared to 
measurements of EC from filter samples (Fig. S2); ii. The species with a 
signal-to-noise between 0.2 and 2 (so called weak) were kept after 
multiplying their uncertainties by a factor of two (Table S2). 

Therefore, the HR data subset includes OA mass spectra from m/z12 
to m/z100, SO4

2-, NO3
–, NH4

+, and Cl-, and BCsf and BClf (17603 data-
points); and the LR data subset comprises Ca, Al, K, Mg, Na, Ti, V, Cr, 
Mn, Co, Ni, Cu, Zn, As, Sn, Sb, and Pb (83 datapoints). The number of 
species and samples of the LR data subset provides a number of degrees 
of freedom per variable (72) in the 50–100 advised range (Henry et al., 
1984). The elements selection was based on their signal-to-noise ratio 
values (0.5 threshold) and stability throughout the period. 

2.3. Positive matrix factorisation analysis 

2.3.1. Multi-time resolution PMF theoretical frame 
When utilising subsets with different TRs, the data should be pre-

pared in a specific manner. The diagram shown in Fig. 1 elucidates the 
input data disposition to be fed to the model in the present study. The 
PMF mass balance equation needs to be modified as in Zhou et al. 
(2004): 

xsj =
1

ts2 − tS1 + 1
∑P

k=1
fkj

∑ts2

i=tS1

gikηjm + esj (1)  

where s indicates the sample, ts1 and ts2 are the starting and ending time 
points for the sth sample and ηjm are adjustment factors for replicated 
species in different TR or measured with different analytical methods 
(represented by the subscript m). In this study, ηjm equals to 1 in all cases 
coherently with the decision not to include replicated species. 

The Multi-linear Engine 2 (ME-2) (Paatero, 1999) was applied to 
solve this problem through the Source Finder software (SoFi Pro, v8.0.4, 
Datalystica Ltd., Villigen, Switzerland, Canonaco et al. (2021)), within 
the Igor Pro software environment (Wavemetrics, Inc., Portland, OR, 
USA). 

2.3.2. Instrument weighting 
In order to generate sensible SA results, a fair representation of all 

Fig. 1. Schematic of the combination of the High Resolution (HR) and Low 
Resolution (LR) subsets input matrix (X) for MTR-PMF. 
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species and groups of them must be ensured. Although the signal-to- 
noise ratio (Table S2) is comparable from one data subset to the other, 
the datasets can be uncertainty-unbalanced. An approach to evaluate the 
fairest uncertainty weighting is the assessment of the resulting PMF ratio 
of the error (eij) over the extent on which a measurement (xij) can be 
varied (σij), i.e., scaled residuals. The instrument-individual uncertainty 
adjustment has been widely used for balancing these species’ scaled 
residuals (Sofowote et al., 2018), which are expected to have a Gaussian 
distribution centred to zero (Zhou et al., 2004). However, less attention 
has been paid to the ensemble of all scaled residuals, which can lead to 
non-unimodal distributions especially if different instrumentation data 
is put together. A balanced PMF solution has been defined as that whose 
magnitude of scaled residuals is independent of the instrument (Slowik 
et al., 2010a). Thus, the scaled residuals distribution should be unim-
odal. Tong et al. (2022) showed that even for signal-to-noise-balanced 
input matrices and equally internally correlated ions within subsets, 
PMF residuals can be affected by the relative number of species included 
in each subset. 

To address this inherent unbalanced coupling of different instrument 
data, weighting each subset has been proven successful (Crippa et al., 
2013; Tong et al., 2022). The quantity C represents the scaling value for 
each of the data subsets’ uncertainties (σ). In this study case, these Cs 
will be hereinafter called CHR and CLR, for the HR and LR datasets, 
respectively: 

σHR′

ij =
σHR

ij

CHR
, σLR′

ij =
σLR

ij

CLR
(2) 

The optimality assessment of a weighted PMF solution will be based 
on the similarity of the scaled residuals with those from PMF of the 
separate subsets. The quantification of this similarity among the data 
subsets scaled residuals was proposed by Tong et al. (2022), assessing 
the overlap between the histograms of the scaled residuals of the 
different subsets, in this case, HR and LR (example depicted in 
Figure S3). This quantity can be calculated by: 

Foverlap =

∫ a

− a
min

[
PHR

(
sij
)
,PLR

(
sij
) ]

(3)  

where PHR and PLR indicate the density of probability of occurrence of 
the scaled residuals value sij, and a represents the integration limits. This 
integral is expected to cover the [0,1] range, being the extremes of this 
interval the null and full intersection, respectively. Defining F*overlap as 
the overlap of the scaled residuals histograms of the independent HR and 
LR PMFs, the optimal solution is, as defined in Tong et al. (2022), the 
one which best fulfills the condition 

Foverlap(CHR,CLR) F*
overlap (4) 

In this study, the number of bins and the threshold range was set to 
100 and 50, respectively, since these parameter values provide a wide 
and reasonable range of histogram intersection values. Note that the 
numerical integration has been tackled by means of the trapezoid inte-
gration method, which is expected to incorporate estimation errors. 

2.3.3. Workflow design 
With the purpose of assessing the MTR output sensitivity to the TR 

averaging and uncertainty weighting effects, a multi-approach proced-
ure was designed, similarly to Belis et al. (2019). 

Approach 1. HR SA. SA was performed to a data subset including the 
OA mass spectra, SIA species, and BC measurements separated into BClf 
and BCsf. The TR of this data subset is 30 min. 

Approach 2. LR SA. SA was performed on the data subset that 
contains metals concentrations at a TR of 24 h every four days. 

Approach 3. Pseudo-conventional SA. SA was performed on a data 
subset that contains the metals, the SIA from Q-ACSM, and the BC and 
the OA as a bulk, all averaged to the LR data subset timestamps (24 h 
every four days). The BC was introduced as a species summing BClf and 

BCsf, and the OA as the sum of all its m/zs to mimic the EC, OC con-
centrations that a conventional offline data subset would account for. 
Thus, the ‘pseudo-conventional’ naming refers to the mimicking of this 
data coupling to a conventional offline approach. This approach pro-
vides the reference to compare the posterior MT-PMF results with this 
conventional offline precursor SA methodology. 

Approach 4. Base case SA. SA was performed on a data subset 
containing the HR data subset averaged to the LR subset timestamps (24 
h every four days) and the LR data subset so that both data subsets are 
run under the same TR. This Approach does not apply uncertainty 
weightings. This data subset represents the most basic ensemble the 
MTR-PMF more refined results can be compared with. 

Approach 5. MTR-PMF. SA performed on the dataset including OA 
species, SIA compounds, BClf, BCsf, and metals in their native TR using 
the MTR-PMF technique. This data coupling requires performing first TR 
and C weightings assessment in order to find the most effective settings 
for both mathematical and environmental adequacy of the results. The 
determination of the highest suitability of these parameters’ values was 
based on the scaled residuals histogram intersection between subsets. 
Whilst the resolution of the LR dataset remains constant (24 h every 4 
days), the HR subset is averaged to different resolutions (R1, referring to 
the TR of the HR dataset): R1 = 30 min., 1 h, 2 h, 3 h, 6 h, 12 h, 24 h. 
Weighting scaling values combinations are: (CHR, CLR)=(1,0.001), 
(1,0.01), (1,0.1), (1,1), (1,10), (0.001,1), (0.01,1), (0.1,1), (10,1), 
(100,1), (1000,1). The C-weightings testing experiment was afterwards 
repeated in a narrower range of C-values amongst the determined best 
combinations resulting in optimal resolution. Once the best R1 and CHR, 
CLR parameters are found, standard SA is performed on this data subset 
with the optimised parameters. These results are then compared to those 
from Approaches 1, 2, 3, 4. 

2.4. PMF settings and post-PMF data curation 

Although a rolling PMF is a more convenient methodology with 
respect to the seasonal PMF as reported in Via et al. (2022), in this study, 
in which the TRs are so different and both datasets include multiple 
gaps, it would lead to different representation of each subsets because 
each has different number of points of each. To avoid this issue, PMF was 
run across the whole period. Constraints were not applied to allow the 
model to freely adapt the mass proportions of both subsets. The lack of 
similar studies that couple OA mass spectra, SIA, BC types and metals 
precludes availability of reference profiles. The application of con-
straints through anchor profiles would require the a-priori estimation of 
the mass proportion between LR and HR species for a given source, 
while this result is in fact one of the expected outputs of the present 
study newly applied methodology. 

PMF was run in each of the aforementioned Approaches 10 times per 
number of factors so that the solution space is explored and the user can 
select the most physically reasonable solutions. To treat the uncon-
strained, and therefore, unsorted number of runs generated, an unsu-
pervised non-hierarchical clustering technique was adopted. This 
method was applied after PMF, providing k profiles as a result of the 
average of all profiles within the same given cluster (more details are 
provided in SI Section B). The time series, explained variations and 
relative concentrations etc. associated to each profile were averaged 
within those belonging to the same profile cluster. In this way, the PMF 
solutions consisted of distinct, stable mean profiles and time series with 
their standard deviations amongst all cluster members. The k-means 
clustering algorithm was applied under the SciPy library environment in 
Python. 

The SA error assessment methodology and results are extensively 
discussed in SI section D, including the rotational and clustering errors. 
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3. Results and discussion 

3.1. Independent PMF 

SA is performed on the different TR subsets separately, this is, the 
aforementioned Approach 1 and Approach 2. Their objective is to 
calculate the scaled residuals histogram overlap of the independent data 
subsets (F*overlap) as in Tong et al. (2022). The Approach 1 results, 
responding to the HR subset SA, are shortly described hereinunder and 
in Figure S4 and briefly here. Regarding the LR data subset SA 
(Approach 2), the results are not a self-explanatory SA solution since 
information provided by the species is limited and they only represent a 
2% of the bulk PM1 mass. However, an environmentally reasonable 
solution was obtained, whose scaled residuals are later used for the 
F*overlap calculation (Eq. (3). The detailed solution is presented in the SI 
Section C and Figure S5. 

The Approach 1 results already represent an improvement with 
respect to the OA SA, which led to the identification of five OA sources: 
HOA, COA, BBOA, LO-OOA and MO-OOA as reported by Via et al. 
(2021). The addition of the inorganic NR-PM1 and BC species already 
proved advantageous in Zografou et al. (2022) by identifying an addi-
tional factor. Similarly, the present SA solution consists of 6 factors, 3 
purely primary, 2 secondary and a potentially mixed factor (Figure S4). 
The mass closure of this SA shows a 12% of underestimation of the input 
concentrations (Fig. S4c). 

The major source is the aged aerosol + ammonium sulphate (AS) 
factor (34%, Fig. S4d), which has a high m/z44-to-m/z43 ratio, indicator 
of secondary organic aerosol (SOA) aging (Figs. S4a, S4d). Its diel cycle 
(Fig. S4e) shows an increase during the hours of maximum insolation, 
oppositely to the fresh OA factors since the production or reception of 
this source counteracted the boundary layer thickening and enhanced 
breeze effects. The fresher SOA is split in two factors, the fresh SOA +
ammonium nitrate (AN) + ammonium chloride (ACl) and the fresh OA 
+ Industry (Fig. S4a), considered to be actually different as they present 
uncorrelated time series (R2 = 0.06) and different intra-annual variation 
(Fig. S4b). The Fresh SOA + AN + ACl source represents a 16% of the 
total PM mass (Fig. S4d). This factor comprises LO-OOA and almost all of 
the AN and ACl concentrations. It is minimal in summer and a signifi-
cantly decreases during higher wind and boundary layer conditions 
(Fig. S4e). The Fresh SOA + Industry source represents a 14% of the 
output mass (Fig. S4d). The industrial contribution was not identified for 
this subset in previous studies, but here it was recognised by the pres-
ence of its marker m/z58 and m/z86 (Passig et al., 2021). These two ions 
are markers of amines, likely from industrial activities (Ge et al., 2011). 
However, this profile is LO-OOA-like since this OA factor accounts for 
most of the mass (Fig. S4a). This source, which presents a mix of primary 
and secondary species, was higher during the summer months due to the 
enhancement of the photo-oxidation of SOA precursors and presents a 
minimum during breeze-entrance hours (Fig S4e). However, it remains 
constant during morning as if the widening of the boundary layer was 
being counteracted by the enhancement of this source as a likely 
consequence of either the arrival of industrial plumes or the rate of SOA 
formation. The traffic source (16%, Fig S4d) showed the typical 
hydrocarbon-like OA features and is tightly linked to the BClf emissions 
(Fig. S4a). This source contribution is lower in summer months and its 
diel cycle is coherent with rush hours of the congested avenue near the 
site (Fig. S4e). Biomass burning is clearly identified by both the m/z 
markers and the BCsf in the source profile (Fig. S4a), and it represented 
13% of the modelled mass (Fig. S4d), with, as expected, significantly 
higher concentrations in cold periods and in evening hours (Fig. S4e). 
The cooking-like OA source (7%, Fig. S4e) is mixed with sulphate and 
BClf, indicating that this is not a pure cooking factor, but a mixture of 
multiple sources containing cooking marker ions, such as m/z55 and m/ 
z41, as already described in Via et al., (2021) (Fig. S4a). The diel cycle 
peaked right before cooking times in Barcelona and was essential to 
identify this factor (Fig. S4e). The large peaks for most sources in August 

(Fig. S4e) were attributed to the limited data availability in this month 
(four days) which lead to unrepresentative results relative to the other 
measurement periods. The data availability data can be seen in the 
second plot of Figure S1 in the SI of Via et al. (2021). 

3.2. PMF applied to an equivalent pseudo-conventional data subset 

The Approach 3 was based on the analysis of the hereinafter called 
pseudo-conventional data subset, consisting on those species which are 
used in offline SA (Amato et al., 2016; In’t Veld et al., 2021): metals, SIA 
and the EC and OC (some studies use organic tracers as well, but these 
are not available for the current data subset). The aim of this SA is to 
provide a reference solution mimicking one without the high TR data to 
prove or discard the added value of the MTR-PMF. The data subset has 
been built with a 24-hours TR, averaging those species of originally 
higher TR. However, this approach does not result in very good results 
since its mass closure (Fig. S6c) shows an output underestimation of a 
47%. This weak agreement closure could be related to the many gaps 
encountered in the OA and BC time series averaged to the LR 
timestamps. 

The pseudo-conventional data subset SA provided 4 PM1 sources: 
AN + biomass burning (36%), AS + heavy-oil combustion (28%), in-
dustry (28%) and road dust (8%) (Fig. S6d). The AN + biomass burning 
profile contains high proportion of NO3

–, Cl-, NH4
+, and K as its main 

contributors, and represented approximately a 20% of the OA and BC 
mass (Fig. S6a). Its contribution was higher during cold months 
(Fig. S6b), being the August peak disregarded due to its low represen-
tativeness. The AS + heavy oil combustion is characterised by the V, Ni, 
Co, Mg elements and high SO4

2- and NH4
+ contributions, and it contains a 

small fraction of OA and EC (~15%) (Fig. S6a). It is higher during 
summer months as expected from SO4

2- concentrations as seen in 
Figure S6b. The industry factor contains a ~ 30% of the organic mass, 
and several markers arising from industrial activities: Pb, As, Cd, Cr, Ni, 
etc (Fig. S6a). This factor does not present a substantial seasonal trend 
(Fig. S6b). The road traffic factor contains high concentrations of Mn, 
Cu, Zn, Sn, and Sb, all of them related to non-exhaust emissions; and 
substantial OA and EC, related to traffic-exhaust emissions (Fig. S6a). 
This factor presents a subtle seasonality, decreasing in the warm period 
due to the holiday-related traffic intensity drop and greater vertical 
mixing during daytime in those months (Fig S6b). 

3.3. Base case for MTR-PMF 

Approach 4 provided a SA of a regular PMF applied to the data subset 
built with all available species averaged to the lowest TR, i.e., 24-hours. 
No C weights (CHR = 1, CLR = 1) were applied during the model running. 
This solution will be used to evaluate the improvement resulting from 
the MTR-PMF application with optimised parameters. The mass closure 
plot (Fig. S7c) reports only a 9% underestimation of the input mass. 

The SA resolved 6 PM1 sources: Aged SOA + AS (31%), Fresh SOA +
AN (26%), Heavy oil combustion (15%), Traffic (13%), Biomass 
Burning + Mineral (12%) and Road Dust + Industry (4%) (Fig. S7d). The 
number of factors is the same as that of HR data subset SA, even if the 
metal species were added. Nevertheless, some mixing in sources was 
acknowledged. For instance, the Fresh SOA + AN, which also included 
m/z60, m/z73 and BCsf, markers of biomass burning (Fig. S7a), even 
though both sources’ time series are distinct enough (Fig. S7b). Another 
explanation for this mixing could be that the reported SOA is formed 
from biomass burning emissions. 

3.4. MTR-PMF sensitivity to R1 and C values 

Approach 5 explores the optimal HR data subset TR and the uncer-
tainty weights combination for the MTR-PMF analysis before proceeding 
with the final SA solution exploration. The number of factors of the 
solutions is not assessed in the parameter evaluation but in the solution 
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assessment (following section 3.5), which was not evaluated mathe-
matically but with the aim to provide an environmentally interpretable 
sense. Hence, MTR-PMF was run for 6–8 factors for each combination of 
TR and (CHR, CLR). Although 13 CHR, CLR combinations were set when 
launching the model, not all of them produced reasonable results (or not 
for all resolutions) due to the model’s inability to process those weighted 
matrices. This result was found for (CHR, CLR) = (1,100), (1000,1). Once 
this first broad scan of C values was done, another C-value analysis 
covering a narrower range was performed to find the most feasible 
combination. 

3.4.1. Scaled residuals overlap 
The first step in this analysis was to examine the scaled residuals of 

both data subsets when coupled into the MTR-PMF. Figure S8 shows the 
means and standard deviations of all C value combinations for HR and 
LR including all the TR runs. This plot assesses both the magnitude of the 
scaled residuals and their stability, which is severely compromised in the 
C combinations of (0.01,1), (0.001,1). These combinations enlarging the 
HR uncertainties result in a LR data subset scaled residuals increase. In 
terms of centrality, some C combinations present means systematically 
above zero, especially for the LR subset. Those C value combinations 
whose medians are less zero-displaced were the (1,1), (0.1,1), (0.01), 
(1,10), (1,1). However, some of their means were out of the range of the 
plots for the LR data subset, indicating the inclusion of significative 
outliers. 

The calculation of the HR, LR histogram overlap is a powerful metric 
to assess the coupling of both subsets. The intersection between histo-
grams from the standalone solutions for HR and LR (F*, eqs. (3), 4), is 
shown in Fig. 2. It shows an overlap of 43.4% for the 100 bins and in a 
range of scaled residuals of [-50,50]. Fig. 3 shows the histogram inter-
section of the HR and LR subsets in the resulting MTR-PMF for 100 bins 
and range of scaled residuals in the [-50,50] range, for all the R1 and C 
combinations under study. This plot shows a maximum in the histogram 
intersection at 6 h C= (1, 10), but is inconsistent with similar Cs or 
resolutions. Therefore, it was considered as an outlier. There is a slight 
trend in which the higher TRs present higher histogram overlaps. Hence, 
R1 = 30 min resolution will be that selected for further study. Amongst C 
values, the histogram overlap grows towards those combinations that 
reduced (increased) HR (LR) uncertainties, this is, those that make LR 
species weaker with respect to HR species in terms of signal-to-noise. 
Contrarily, the 24 h TR subset presents higher and decent histogram 
intersections for those C combinations which decrease the relevance of 
HR species. This behaviour can be described as follows: when the MTR- 
PMF is launched with very different number of timestamps and species, 
the metal species might be difficult to assimilate by the model and 
therefore they need to be downweighted respect to the HR ones. 
Nevertheless, when both subsets’ TRs are more similar, the model allows 

the LR class of species governate the PMF solution. 
Fig. 4 shows the histogram intersection of all runs of R1 = 30 min and 

for all the C-values and the mean and the standard deviation of all the 
repeats for each C combination. In Fig. 4a, the C-value combinations 
range is large and the (1,1), (1,0.1), (1,0.01), (1,0.001), (10,1) and 
(100,1) seem the best compromise between maximisation and stability. 
Taking the three highest values (all above the 30%, Fig. 4a), PMF has 
been re-run amongst these values and the analogous plot is shown in 
Fig. 4b. In this one, the highest overlap which also presents stability is 
the combination of (CHR, CLR) = (1,2). This set divides the LR un-
certainties by 2. Nonetheless, even though these weightings are those 
which maximise the Foverlap, those runs of similar Foverlap (Foverlap >

30%) were also explored. The run that better explained the site pollution 
sources was that of (CHR, CLR) = (1,5) as justified in SI section E. Hence, 
weightings of (CHR, CLR) = (1,5) will be used in Approach 5. 

Fig. 2. Scaled residual normalized histogram intersection for the standalone 
HR and LR PMF results. The histogram overlap (F*) is shown in percentage in 
the upper left. 

Fig. 3. Heatmap of scaled residual histogram overlap for HR, LR subsets for the 
range of data between (-50, 50) for each R1, Cs combinations. 

Fig. 4. Scaled residual histogram overlap, F*, for both subsets for the range of 
data of [-50,50] for each 30-minute CHR, CLR, combination (bars). Standard 
deviation (triangles) of residuals is shown for the standard C values exploration 
(top) and the narrower range exploration (bottom). 
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3.4.2. Q residuals 
The normalised Q residuals, this is Q/Qexp, were analysed R1-wise. 

Each include all C value combinations. Fig. 5 shows that the 30 min Q/ 
Qexp median value is the only one above one (1.01), indicating hence 
that the overall fit is better than expected based on the uncertainty of the 
measurements. However, its values above median are small, indicating 
hence that there is not a systematic underestimation of the uncertainties. 
Contrarily, the fact that other R1 results had medians below 1 indicate 
that the uncertainties were overestimated. Hence, this Q/Qexp assess-
ment supports the choice of 30 min as the best R1 to which perform SA. 

3.5. Multi-time resolution PMF source apportionment 

The SA for the MTR subset, containing both HR and LR data in their 
original timestamps (30 min and 24 h every four days) and with un-
certainty weights of CHR = 1, CLR = 2 (Approach 5) is shown in Figs. 6, 7. 
Solutions with ± 1 factor were also evaluated and disregarded due to 
less resolved or interpretable profiles (Fig. S9). Figs. 6 and 7 show the 8 
PM1 sources retrieved: AS + heavy oil combustion (25%), AN + ACl 
(17%), aged SOA (16%), traffic (14%), biomass burning (9%), fresh SOA 
(8%), COA (5%), and industry (4%) (Fig. 7d). The mass closure of the 
bulk PM1 shows good agreement with a 12% of underestimation of the 
input measurements (Fig. 7c). 

AS þ heavy oil combustion. The AS + heavy oil combustion pre-
sents high concentrations of SO4

2- and NH4
+ (AS), and V, Ni, Co, corre-

sponding to heavy oil combustion emissions from shipping activities 
(Fig. 7a) (Caumette et al., 2009; Corbin et al., 2018). More than a 50% 
and a 35% of the SO4

2- and the NH4
+, respectively, are attributed to this 

source (Fig. 6). A 24% of the mass of this factor is attributed to a MO- 
OOA factor (Fig. 7a). A combination of these sources was reported for 
the offline SA in Brines et al. (2019). This profile is consistent with the 
result obtained in Approach 1, where the MO-OOA + AS was also the 
highest contributor to the total mass. Heavy oil emissions intercepted 
are both locally emitted and long range transported from the shipping of 
the Mediterranean, carrying AS (a combination of direct SO3 emissions 
(Agrawal et al., 2009) and oxidised SO2 emissions) and aged SOA. This 
factor time series was enhanced in summer and its diel presents a growth 
around midday (especially in summer, Fig. 7e), both phenomena related 
to: i. the higher photochemical conversion rate of SO2 into SO4

2- in the 
summer season (Hidy, 1994); ii. stronger sea breeze development in 
warm months after noon carrying marine aerosol and aged recirculating 
pollutants; iii. greater photochemistry promotion at the months/hours 
of maximum insolation, promoting SO2 and DMS oxidation into 

sulphates; iv. increase of the shipping activity in summer (Pérez et al., 
2016); v. lower air mass renewal in summer (Gangoiti et al., 2001). 

AN þ ACl. The AN + ACl source contains more than a 50%, 40%, 
and 10% of the total apportioned mass of NO3

–, NH4
+, and Cl, respec-

tively, as can be seen from the right-axis dots in Fig. 7a. The coupling of 
AN and ACl in the same source is likely due to their similar time vari-
ation, limited to NH4

+ availability and with evaporation in high- 
temperature conditions, even if their origin is different (NO3

– stem-
ming mostly from traffic, Cl- from industry or waste incineration). It 
apportions the majority of NO3

– and around a third of the NH4
+ (Fig. 6). 

The seasonality of this source is marked as seen in Fig. 7b, 7e, increasing 
in winter months because of the higher stability of the AN compound at 
low temperature (Harrison and Pio, 2017). This phenomenon is also 
observable in its diel pattern, with a decline from 11 AM to 8 PM in 
summer, the hours of maximum temperature, and hence, minimum 
stability of the AN (Fig. S7e). The maxima of the diel cycle around 8AM 
both in summer and winter is a result of the transformation of the NOx 
emitted from traffic into HNO3, and the availability of NH4

+ from the 
traffic (Hopke and Querol, 2022). 

Aged SOA. The Aged SOA factor is comprised by 82% MO-OOA, 
characterised by its high contribution of the m/z44, a product of OA 
oxidation (Fig. 7a). It is the second main contributor to OA after COA, 
representing a 23% of the total OA mass (Fig. 6). Aged aerosol has been 
reported to be the major constituent of OA in Via et al. (2021). However, 
this PMF results apportions some m/z44 by other factors such as the AS 
+ Heavy oil combustion or the biomass burning, hence a higher m/z43- 
to-m/z44 ratio (0.39) with respect to the 0.21 in Via et al. (2021) is 
expected. Its monthly cycle peaks in the late summer months, due to the 
ageing of SOA after summer as in the aforementioned study (Fig. 7b, 7e). 
Its summer diel pattern (Fig. 7e) peaks at 4 AM due to nitrogen aqueous 
reactions conducing SOA oxidation enhancement and at 8AM due to the 
entrance of inland breeze carrying aged air masses, but in winter, this 
source grows at sea and land breeze onset hours, due to the recirculation 
of this aged aerosol. 

Traffic. The traffic source consists of the HOA hydrocarbon pattern 
from vehicle exhaust and BClf concentrations (Fig. 7a). Its time series 
(Fig. 7b) exhibits a significant decline in summer as in Brines et al. 
(2019), both due to a decrease in traffic and higher atmospheric 
dispersion in these months. There is also a huge peak in November 
(Fig. 7e) due to sustained stagnation episodes and a higher traffic in-
tensity in this month (see Figs. S6, S9 in Via et al. (2021)). Also, huge 
peaks appear in the time series of this factor and others (biomass 
burning, fresh SOA, COA), backing the explanation of stagnant condi-
tions, which might consequently increase significantly the monthly 

Fig. 5. Q/Qexp values for all the MT-PMF experiments of different HR time 
resolutions. Boxes show the Q1–Q3 range, horizontal lines show the median 
(horizontal line), and whiskers extend up to the 1.5*IQR range (IQR = Q3-Q1). 

Fig. 6. Concentrations of OA (organic aerosol), SO4
2-, NO3

–, NH4
+, Cl-, BClb, BCsb 

and metals in PM1 source apportionment. 
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Fig. 7. Source apportionment of the multi-time resolution optimised PMF. (a) Profiles. (b) Time series (c) Mass closure (d) Pie of apportionment (e) Monthly and diel 
cycles. For the profiles plot (a), bars (left axis) show the normalised concentrations of each species in each factor, circles (right axis) show the percentage of each 
species attributed to each factor, and percentages show the proportion of OA to the total mass of that factor. Also, the left panel is dedicated to the unit-mass- 
resolution OA species and the right one (in log scale) to the rest of the species. The mass closure scatter plot (c) depicts the relationship between the appor-
tioned PM1 mass as a sum of all factors’ concentrations vs. the input PM1 mass coloured by months. Note that in (e) y-axis for the monthly means does not start at zero 
for more clarity in the values variation. 
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average. This source represents the main contribution to the total BClf 
(Fig. 6). However, a larger fraction of this source would be expected in 
the first months of the year, similarly to November and December 
(Fig. 7e). The proportion of traffic emissions in this study (14%, Fig. 7d) 
is similar to that reported by Brines et al. (2019) (14%) and slightly 
lower than in Amato et al. (2016); In’t Veld et al. (2021) (20% and 32%, 
respectively, in PM2.5). The traffic diel cycle presents two peaks, more 
marked in winter, around 7–8 AM and 6–8 PM (Fig. 7e), coinciding with 
the hours of higher traffic intensity near the site as seen in Figure S9 of 
Via et al. (2021). 

Biomass burning. The biomass burning profile (Fig. 7a) has a high 
concentrations of m/z60 and m/z73, organic markers of cellulose com-
bustion (Alfarra et al., 2007; Hu et al., 2013), a high proportion of BCsf, 
and K, a biomass burning metal tracer (Gilardoni et al., 2009; Zhao et al., 
2020). This source apportions most of the BCsf and a significant pro-
portion of the NO3

– and NH4
+ species (Fig. 6), since AN concentrations are 

especially high during winter stagnation conditions coincidingly with 
biomass burning high levels (Reche et al., 2012), hence PMF resolves 
them slightly mixed. Anyhow, presence of nitrate in this source is ex-
pected as organonitrates have been reported to be related to biomass 
burning (Schurman et al., 2015; Yazdani et al., 2021). Its apportionment 
of a ~ 15% of m/z44, substantially higher than that from m/z43 entails 
that this source is rather oxidised. Its relative contribution is similar to 
those from previous studies (a 14% in Brines et al. (2019), Fig. 7d). The 
time series of this factor is significantly higher in winter months 
(Fig. 7e). In the same figure, the winter diel cycle can be observed to 
present its maximum at evenings, suggesting this source is increased 
when: i. land breeze returning inland pollutants that originate from 
agricultural areas and rural areas burning wood for heating; ii. pollutant 
advection from residential heating reaching the site. The summer diel 
cycle is very flat due to the low concentrations. 

Fresh SOA. The fresh SOA factor is composed of LO-OOA in a 58% 

(Fig. 7d) and apportioning a 16% of the total OA mass (Fig. 6), con-
taining its typical pattern of CxHyO hydrocarbons (Fig. 7a). Its m/z43-to- 
m/z44 ratio is 2.75, substantially higher than that found for the same 
period in Via et al., (2021), 1.05, since the majority of m/z44 has been 
attributed to other sources as aforementioned. For the purpose of SOA 
description, a more differentiated OOA aerosol in terms of oxidation 
state (as found here with respect to the aforementioned study) can 
further reveal the origins of each of them due to the increased disen-
tanglement. This difference is a consequence of the apportionment of 
more m/z44 by other sources (BBOA, AS + heavy oil combustion, AN +
AC), which makes sense since these sources can also be aged and share 
certain cyclicity related to recirculation of pollutants. This factor also 
apportions certain mass to BClb (around a 17%, Fig. 6) a 10% of the 
apportioned NO3

– and some road dust markers (Sn, Sb, Cu, Fig. 7a). The 
contributions imply that this SOA formation could have been promoted 
by traffic emissions. It also contains other metals likely linked to in-
dustry (Cd, Ni, Cr), due to a certain entanglement with this factor. The 
monthly cycle showed a growth towards warm months (even dis-
regarding August) as a consequence of a higher SOA formation due to a 
higher photochemical activity. In winter, the diel pattern is relatively 
constant and it presents slight peaks during the traffic hours. Conversely, 
the summer diel is minimal during the midday hours due to the higher 
photo-oxidation of this pollutant (and conversion into a more oxidised 
aerosol), the widening of the mixing layer, and the evaporation of AN 
due to the higher temperatures during the day. 

COA. The COA factor is composed a 90% of a COA profile, containing 
the main cooking marker ions such as m/z55, m/z41, m/z69, m/z29, 
amongst others (Fig. 7a), and accounting for around a 24% of the total 
OA (Fig. 6). Although this factor is almost purely OA, it also contains 
certain markers in a low proportion of mineral dust and industry 
markers (Ti, Mn, Rb, Cd, Pb, Fig. 7a), containing around a 25% of the 
total metals concentrations (Fig. 6). A possible reason for this factor 

Fig. 7. (continued). 
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including industrial, road dust, and mineral markers is that this source 
does not only consist of cooking emissions but on an urban ensemble of 
pollutants being locally recirculated. This factor does not contain a clear 
seasonality, but its diel cycle presents consistent peaks around 8AM, 13 
and 20 PM, typical cooking times in Barcelona (Fig. 7b, 7e). This lunch 
peak is more evident in summer since in winter this factor is likely 
entangled with the traffic factor given that it peaks during the traffic 
rush hours (7–8 AM), which makes the noon peak less obvious. This 
factor accounts for a 5% of the total mass of PM1 (Fig. 7d). 

Industry. The industrial factor contributes to 4% of the total mass 
(Fig. 7d) and accounts for 80% of the total Cl- mass (Fig. 7a). The 
apportionment of Cl- in industrial source has been found in other in-
dustrial profiles (Brines et al., 2019; Vossler et al., 2016). Only 19% of its 
mass is attributed to OA (Fig. 7a), whose pattern contains mainly m/z58, 
and m/z86, reported industrial markers (Ge et al., 2011). These ions, 
related to amines, can originate from waste incineration (Leach et al., 
1999), which is probably partially responsible for Cl- emissions and was 
reported T the site in Brines et al. (2019). Moreover, amine production 
from marine emissions is not discarded. This source also incorporates 
high concentrations of Na, Mn, Cu, Zn, Ni, As, Pb, related to metallurgic 
industrial activities (Querol et al., 2007). This is coherent with previous 
studies reported industrial sources at this site, being characterised by the 
same fine inorganic species (Amato et al., 2016; Brines et al., 2019; In’t 
Veld et al., 2021). Also, the high Cl- and Na concentrations are not ex-
pected to be mainly from marine emissions since sea salt in the fine 
fraction is rather low in Barcelona, the wind rose does not point to the 
location of the sea (Fig. S10), and the variation of the concentrations 
shows no relation with the coarse fraction (Fig S11). This factor presents 
a descent in the warm months, probably due to an enhanced boundary 
layer height in the warmer periods (Fig. 7e). The diel cycle is generally 
flat and in summer months, a decrease can be observed as a consequence 
of the boundary layer widening (Fig. 7e). 

3.6. PMF approaches comparison 

To assess the added value of the MTR-PMF technique, its results were 
compared to other SA methodologies solutions. SA was also performed 
on the HR data subset (Approach 1), the LR data subset with only the 
offline species (Approach 2), a pseudo-conventional data subset 
(Approach 3), and an unweighted low TR base case (Approach 4) 
(Fig. 8). The SA of Approach 2 and Approach 3 retrieved only 4 sources, 
although with different fingerprints. This difference was driven by the 
included species. The source resolution performed by PMF can be sub-
stantially different and of more or less environmental feasibility. While 
the offline LR data subset SA led to the identification of road dust, it was 

unable to identify a road traffic source corresponding to exhaust emis-
sions, as the data subset lacks the tracer species for that. For the pseudo- 
conventional data subset SA, the identified sources were mixed in some 
cases, which is a known limitation of this type of datasets. The clearest 
example is the source that included biomass burning and AN together, 
which are two separated factors in Approach 5 (although crossed in-
fluence is still noticeable). Additionally, it distributed quite equally the 
OA and EC in all factors. None of these SA results was able to identify a 
COA factor due to the lack of COA tracers or diel cycle, as Approach 2 
only considers metal species, and Approach 3 includes OA a bulk single 
species and both present low TR. The base case (Approach 4) comprised 
all OA m/zs, SIA species, differentiated BC species, all averaged to the LR 
TR, and metals, naturally at this TR. Even though it merges different 
instrumentation data, no uncertainty weightings were applied, as we 
want to use these results to assess the final MTR result, which includes 
the uncertainty weightings as one of its improvements. The base case SA 
resulted in 6 sources, as it includes information from a wider range of 
species. Aged SOA + AS was differentiated from Aged SOA + heavy oil, 
as opposed to the results from the HR SA, which was unable to separate 
them. However, the AN source and fresh SOA were not separated in this 
approach and neither were the COA and HOA factors, the latters being 
clearly separated in the HR SA. 

The capacity of the MTR-PMF SA for identifying and quantifying 
sources has been found superior to that of any of the other assessed 
approaches. Hence, it managed to retrieve 8 different sources, which is 
four more than the LR dataset or the pseudo-conventional data subset, 
and two more if compared to the HR data subset or the base case. The 
MTR-PMF merges two major advantages that cannot be applied together 
otherwise: a) the use of a high number of species analysed by different 
techniques and/or collected from the atmosphere by different methods 
and b) the use of the best available TR for a given species. Note that the 
TR can be determined by the analytical technique or by the sample 
collection technique; i.e. filter samples could be collected every 12 h and 
the dataset time resolution would be improved while applying the same 
analytical techniques, provided the concentrations were high enough to 
remain above detection limits. Thus, advantage a) would lead us from 
solution of Approach 1, of Approach 2 or of Approach 3 to the solution of 
the base case (Approach 4). Advantage b) applied independently would 
just give us the solution in Approach 1, where we can use the original 
time resolution without any restriction. The application of MTR-PMF 
allows the merging of both advantages and leads us from solution of 
base case (Approach 4) to the MTR-PMF solution. 

The intra-day patterns, stemming from the use of HR TR measure-
ments, provided significant insights into the behaviour of the sources 
and even enabled the identification of some sources such as COA. The 
comparison with the HR solution highlights the beneficial capacity of 
the MTR-PMF to identify more sources due to the inclusion of the metals, 
which are markers for some sources (heavy oil combustion, industry, 
biomass burning). Another advantage is the capability to match both HR 
and LR markers of a source resulting in a more comprehensive source 
description (e.g. BBOA coupled with BCsb, K; OA with amine markers, 
likely from industrial emissions, coupled with industry markers; road 
traffic OA coupled with Sb). This coupling also made infer that the origin 
of fresh SOA could be related to traffic emissions. In addition, the MTR- 
PMF technique also provided separated sources for factors that had been 
mixed to others in the previous Approaches, isolating for example the 
AN from the fresh SOA. Besides, The MTR-PMF is capable to provide 
profiles containing mostly one kind of data and giving little mass to the 
rest (e.g. COA mainly containing OA; or AN + ACl and industry con-
taining mainly non-OA measurements (<20% of OA). 

4. Conclusions 

A comprehensive source apportionment (SA) of the submicron par-
ticulate matter (PM1) has been performed coupling Quadrupole Aerosol 
Chemical Speciation Monitor (Q-ACSM), aethalometer (AE33) and 

Fig. 8. Summary of source apportionment results of all input PMF datasets. 
Percentages at the top of each bar represent the fraction of the PM1 mass that 
each data subset contains depending on the species it contains. In the base case 
the split of factors is represented as wefted bars. 
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quartz-fibre filter measurements. The species used in this SA consisted 
on the organic mass spectra, SO4

2-, NO3
–, NH4

+, and Cl- from Q-ACSM at a 
30 min time resolution (TR); black carbon (BC) speciated into BC liquid 
fuel (BClf) and BC solid fuel (BCsf) from aethalometer at 30 min TR; and 
metal species (Ca, Al, K, Mg, Na, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Sn, Sb, 
Pb) from offline samples at a TR of 24 h every 4th day. The use of the 
Positive Matrix Factorisation (PMF) model for the ensemble of the so- 
called high-resolution data subset (HR, 30-minutes TR) and the low- 
resolution data subset (LR, 24 h every 4th day TR) taken together 
implied the use of the multi-time resolution (MTR) PMF. 

The main outcomes from this work are:  

• The extended practice of averaging the high TR data subsets to 
reduce the TR difference with the lower TR data subsets or even to 
match it has been proven disadvantageous for model performance 
and error minimisation as also reported by Kuo et al. (2014) and Liao 
et al. (2013). High TRs do not represent noise to PMF since stable, 
robust sources are retrieved profiting the 30 min TR for disentangling 
sources. For instance, the COA, which was only resolved by using 
high TR data since its diel cycle is vital for its differentiation. 

• The use of a greater number of species has enabled the characteri-
sation of specific sources traced by key species not present in all 
datasets. This is the case, for instance, of the inclusion of industrial 
markers, which have enabled the characterisation of the industry 
source, whose description with only OA, SIA and BC species would 
have been less conclusive.  

• The MTR-PMF provided an environmentally reasonable PM1 SA with 
more speciated and detailed sources with respect to the other ap-
proaches and previous studies in the area using simpler SA meth-
odologies, even if they contain longer time series or if they contain a 
greater number of species.  

• Coherent matches of OA fingerprints and SIA, BC, and metal species 
were found in the MTR-PMF solution. e.g. BBOA with BCsb, K; HOA 
with BClf, Sb; LO-OOA with AN; industry metal markers with Cl, m/ 
z58, m/z86, etc.  

• The Foverlap method for weighting uncertainties proposed by Tong 
et al. (2022) does not necessarily lead to the most environmentally 
reasonable solution. The investigation of other runs whose Foverlap is 
similar to F*overlap is advisable to obtain the best SA. 

To the authors’ knowledge, this is the first study that applies MTR- 
PMF aiming to provide an exhaustive PM1 SA assessing both the un-
certainty weighting and TR SA impacts. Further research should aim to 
standardise these assessments to be able to include all kinds of instru-
ment measurements to retrieve more powerful SA results aimed for both 
modelling and health research and mitigation policy enforcements. 
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Minguillón, M.C., Pérez, N., Marchand, N., Bertrand, A., Temime-Roussel, B., Agrios, K., 
Szidat, S., van Drooge, B., Sylvestre, A., Alastuey, A., Reche, C., Ripoll, A., Marco, E., 
Grimalt, J.O., Querol, X., 2016. Secondary organic aerosol origin in an urban 
environment: influence of biogenic and fuel combustion precursors. Faraday Discuss 
189, 337–359. https://doi.org/10.1039/c5fd00182j. 

Mohr, C., DeCarlo, P.F., Heringa, M.F., Chirico, R., Slowik, J.G., Richter, R., Reche, C., 
Alastuey, A., Querol, X., Seco, R., Peñuelas, J., Jiḿenez, J.L., Crippa, M., 
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