
PHYSICAL REVIEW B 107, 205129 (2023)
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Fermi surfaces can undergo sharp transitions under smooth changes of parameters. Such transitions can have
a topological character, as is the case when a higher-order singularity, one that requires cubic or higher-order
terms to describe the electronic dispersion near the singularity, develops at the transition. When time-reversal and
inversion symmetries are present, odd singularities can only appear in pairs within the Brillouin zone. In this case,
the combination of the enhanced density of states that accompanies these singularities and the nesting between
the pairs of singularities leads to interaction-driven instabilities. We present examples of single n = 3 (monkey-
saddle) singularities when time-reversal and inversion symmetries are broken. We then turn to the question of
what instabilities are possible when the singularities are isolated. For spinful electrons, we find that the inclusion
of repulsive interactions destroys any isolated monkey-saddle singularity present in the noninteracting spectrum
by developing Stoner or Lifshitz instabilities. In contrast, for spinless electrons and at the mean-field level,
we show that an isolated monkey-saddle singularity can be stabilized in the presence of short-range repulsive
interactions.

DOI: 10.1103/PhysRevB.107.205129

I. INTRODUCTION

Topological transitions of Fermi surfaces are currently a
topic of active research [1–21]. This is particularly so when
space is two dimensional, in which case they are often as-
sociated with band singularities that cause the density of
states (DOS) to diverge. To be precise, in a Fermi-surface
topological transition [22], the topology of the Fermi surface
undergoes a sudden change upon tuning some parameters. At
the transition, the Fermi surface may develop a singularity due
to the presence of one or more saddle points in the dispersion.
A saddle point is responsible for a divergent DOS, which
in turn may lead to many distinct physical phenomena such
as charge and spin order, superconductivity, and diverging
susceptibilities.

In two-dimensional space, an ordinary saddle, known as
the van Hove singularity, can be subsumed as the quadratic
dispersion ε(k) ∝ k2

x − k2
y that causes a logarithmic diver-

gence of the DOS at the Fermi level εF = 0. Higher-order
singularities, in contrast, are characterized by a k · p expan-
sion in which the lowest-order terms are higher than quadratic.
For example, ε(k) ∝ k3

x − 3 kx k2
y implies a singular DOS at

the Fermi level εF = 0 of order n = 3. These cause power-law
divergences of the DOS. In the context of band theory in
two-dimensional space, higher-order singularities have been
classified using sets of integer indices, based on symmetry,
scaling, number of relevant perturbations, etc. [23,24]. Fur-
thermore, their intimate connection with high-symmetry

points in the Brillouin zone (BZ) has also been worked
out [23].

A divergent DOS leads to a subtle competition between
enhanced electron-electron interactions on the one hand, and
enhanced screening of interactions on the other hand [25–28].
Combined with the nontrivial band geometry, higher-order
singularities may activate one or more instability channels,
especially when they are nested or when they occur in
symmetry-related positions in the BZ. The presence of a sin-
gle higher-order singularity at the Fermi level is also expected
to lead to a breakdown of Fermi-liquid theory, in the presence
of interactions [9,15]. A number of other recent works also
seem to indicate marginal Fermi-liquid behavior for systems
with even higher-order singularities [29,30]. For example, the
T -linear dependence of resistivity in twisted bilayer graphene
has been explained as a consequence of the marginal Fermi-
liquid behavior arising from the electrons in the vicinity of
an extended van Hove singularity [29]. Marginal Fermi-liquid
behavior has also been associated with Sr3Ru2O7 [29], and
proposed to arise from two-electron scattering processes in
which electrons from a cold region (nonsingular region) scat-
ter into a pair of states, one in the cold region and another
in the hot region (i.e., region near a higher-order singular-
ity). It is worth mentioning that Sr3Ru2O7 hosts a n = 4
rotationally symmetric saddle [31], the latter having been
analyzed in Refs. [9,15,32].

To reach non-Fermi-liquid behavior in such systems,
it is imperative to try to avoid instabilities towards
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symmetry-broken phases. In this regard, when singularities
appear in pairs, at symmetry-related points in the Bril-
louin zone, scattering between states at the two points will
generically stabilize a symmetry-broken phase at low tem-
peratures [9]. Even singularities may appear alone at a
high-symmetry point that maps onto itself under time-reversal
symmetry, but an odd higher-order singularity cannot.

In this paper, we present two single-particle Hamiltonians
in Sec. II that encode the kinetic energy of noninteracting
electrons constrained to move in two-dimensional space. By
explicitly breaking time-reversal and inversion symmetries
so as to avoid the doubling of the number of higher-order
singular points that occur when these symmetries hold, we
obtain a single Fermi “surface” with a single odd higher-order
singularity. More precisely, by tuning one parameter, both
models are made to host the threefold-rotationally symmetric
saddle of order n = 3, also known as the monkey saddle.
One of the two models is a deformation of Haldane’s Chern
insulator on the honeycomb lattice [33] through the addition
of a staggered chemical potential (see Ref. [34]). By tuning
the staggered chemical potential, a monkey-saddle singularity
appears at just one of the two inequivalent corners of the
Brillouin zone. Furthermore, it is possible to tune the ratio
of the next-nearest- to nearest-neighbor hoppings so that the
energy of the monkey saddle is smaller in absolute value
than that at the nonequivalent corner of the Brillouin zone.
In this regime, the anomalous Hall conductivity is nonvan-
ishing, but it contains no singular behavior other than that
coming from the DOS. We then turn our attention to the
role played by interactions in Secs. III and IV. For spin-
ful electrons, when the Fermi energy matches that of the
monkey saddle in the noninteracting limit, we show that the
presence of short-range repulsive interactions always leads to
the disappearance of an isolated monkey-saddle singularity
within a mean-field approximation. For spinless electrons, we
show that a monkey-saddle singularity can be stabilized in the
presence of repulsive interactions at the mean-field level, but
with renormalized parameters (compared to those for which
the singularity appears in the absence of interactions). We
summarize the results in Sec. V.

II. MODELS

In this section, we construct two single-particle dispersions
each of which hosts a single higher-order singularity of odd
parity, namely, the monkey saddle defined by

εms(k) := α
(
k3

x − 3kx k2
y

) = α k3 cos(3θ ), (2.1)

where the last equality corresponds to writing the dispersion
in polar coordinates with respect to the singular point. The
constant α has units of energy times length cubed.

A. Topological insulator surface state

We modify a previously derived k · p model for the surface
states of Bi2Te3 [35] by adding a term to the Hamiltonian that
explicitly breaks time-reversal symmetry. This allows us to
obtain a single monkey saddle at the � point under appropriate
tuning.

First, we briefly review the original model for the surface
states of Bi2Te3. A minimal k · p theory can be constructed for
the system by symmetry arguments. Total angular momentum
1
2 is manifest as a spinor degree of freedom, giving rise to two
bands. The symmetries in the system form a group obtained by
taking the semidirect product of the cyclic group generated by
the 2π/3 rotation, the cyclic group generated by the reflection
x → −x, and the cyclic group generated by reversal of time
t → −t . When acting on the “spin” degree of freedom these
symmetries are represented by

R ≡ e+i π
3 σz , M ≡ iσx, T ≡ iσyK, (2.2a)

respectively, where K denotes complex conjugation and we
introduced the three Pauli matrices σ = (σx, σy, σz ) acting
on the spinor components. Their combined actions on two-
dimensional momentum space that we parametrize with the
coordinates k± = kx ± iky with the � point as the origin and
“spin” space parametrized with the coordinates σ± = σx ± iσy
and σz, are

R :

{
k± �→ e±i2π/3 k±,

σ± �→ e±i2π/3 σ±, σz �→ σz,
(2.2b)

M :

{
k± �→ −k∓,

σ± �→ σ∓, σz �→ −σz,
(2.2c)

T :

{
k± �→ −k∓,

σ± �→ −σ∓, σz �→ −σz,
(2.2d)

respectively. The dependence on momentum k ∈ R2 of the
most general single-particle two-band Hamiltonian that is
symmetric under R, M, and T is then given by

Hsym(k) ≡
(

−μ + k2

2m∗ + c1 k4

)
1

+ iv

2
(1 + c2 k2)(k+ σ− − k− σ+)

+ c3

2
(k3

+ + k3
−)σz, (2.3)

up to quartic order in an expansion of the momenta measured
relative to the � point. This single-particle Hamiltonian de-
pends on the six real-valued dimensionful couplings μ, m∗,
c1, v, c2, and c3. Adding a Zeeman term, whose strength is
parametrized by the real-valued dimensionful coupling b, and
using polar coordinates delivers

H (k) ≡
(

−μ + k2

2m∗ + c1 k4

)
1

+ v(1 + c2 k2)k[cos(θ ) σy − sin(θ ) σx]

+ [c3 k3 cos(3θ ) + b]σz. (2.4)

Hamiltonian (2.4) has the single-particle dispersion

ξ±(k) = −μ + k2

2m∗ + c1 k4

±
√

v2(1 + c2 k2)2k2 + [c3 k3 cos(3θ ) + b]2. (2.5)

205129-2



SINGLE MONKEY-SADDLE SINGULARITY OF A FERMI … PHYSICAL REVIEW B 107, 205129 (2023)

We expand this pair of dispersions up to quartic order in
the momenta

ξ∓(k) ≈ −μ ∓ |b| + k2

2m∗

(
1∓m∗v2

|b|
)

∓ sgn(b) c3 k3 cos (3θ )

± v4±8c1 |b|3 − 8c2
2 v2 b2

8|b|3 k4. (2.6)

As promised, the monkey saddle appears in the “−” band
upon tuning the magnitude |b| of the Zeeman term to the value
m∗ v2, thereby removing the k2 term from Eq. (2.6). Hence-
forth, we work in the two-dimensional region of parameter
space for which

ξ−(k) = −μ + α k3 cos(3θ ) + O(k4) (2.7)

for α,μ ∈ R.

B. Haldane model

We start from the single-particle tight-binding Hamilto-
nian on the honeycomb lattice introduced by Haldane in
Ref. [33]. This single-particle tight-binding Hamiltonian real-
izes a Chern insulator by breaking the time-reversal symmetry
and the three mirror symmetries of the point group C3v of the
underlying triangular Bravais lattice. We are going to show
that it also hosts a single monkey saddle at a Fermi level that
lies in the “low-energy” spectrum of the Hamiltonian.

We denote with A and B the two interpenetrating triangular
sublattices to the honeycomb lattice. Let

a1 =
(

1
0

)
, a2 =

( − 1
2

+
√

3
2

)
, a3 =

( − 1
2

−
√

3
2

)
(2.8)

denote the vectors that connect any site in sublattice A to its
three nearest neighbors in sublattice B, where we have set the
lattice spacing of the honeycomb lattice to unity.

Three of the six next-nearest-neighbor vectors in the trian-
gular sublattice A are given by

b1 ≡ a2 − a3, b2 ≡ a3 − a1, b3 ≡ a1 − a2. (2.9)

The full Bloch Hamiltonian in the first BZ of the triangular
sublattice A inherits a 2 × 2 sublattice grading that we encode
with the use of the Pauli matrices τ = (τx, τy, τz ).

Following Haldane, we define the single-particle tight-
binding Bloch Hamiltonian

H (k) ≡ H0(k) + H1(k) + H2(k). (2.10a)

The wave vector k belongs to the BZ of the triangular
sublattice A and

H0(k) ≡ M τz, (2.10b)

H1(k) ≡ t1

(
3∑

i=1

e+ik·ai

)
τx + iτy

2
+ H.c., (2.10c)

H2(k) ≡ 2 t2

3∑
i=1

sin(k · bi ) τz, (2.10d)

where M ∈ R is a staggered chemical potential, t1 > 0 is the
amplitude of a uniform nearest-neighbor hopping, and t2 > 0
is the amplitude of an imaginary-valued next-nearest-neighbor
hopping. Reversal of time of H (k) is represented by complex
conjugation and the substitution k → −k. The first two terms
on the right-hand side of Eq. (2.10a) are even under reversal
of time. The last term on the right-hand side of Eq. (2.10a) is
odd under reversal of time. Hence, the dimensionful coupling
t2 breaks time-reversal symmetry when nonvanishing.

In the thermodynamic limit, Hamiltonian (2.10) has two
single-particle dispersing bands

H (k) =
∑
±

ε±(k) |±; k〉〈±; k|, (2.11a)

with the dispersions

ε±(k) = ±ε(k), (2.11b)

ε(k) ≡

√√√√[
M + 2t2

3∑
i=1

sin(k · bi )

]2

+ t2
1

∣∣∣∣∣
3∑

i=1

e+ik·ai

∣∣∣∣∣
2

.

(2.11c)

The single-particle spectral symmetry of Hamiltonian
(2.10) about the single-particle energy zero is a consequence
of the fact that H (k), for some given k, is odd under conju-
gation by the matrix τy followed by the transformation a1 �→
−a1, a2 �→ −a3, and a3 �→ −a2. In turn, this transformation
law is nothing but the composition of τy acting on the two
triangular sublattices with the reflection about the y axis in the
coordinate system defined by Eq. (2.8), i.e.,

τy H (−kx, ky ) τy = −H (kx, ky). (2.12)

When M = t2 = 0, inversion and time-reversal symmetries
both hold simultaneously, the two bands touch at the two
nonequivalent corners

K± = 4π

3
√

3

( √
3

2

± 1
2

)
(2.13)

of the BZ in the close vicinity of which they realize a Dirac
spectrum. Generic values of M and t2 break both the inversion
and time-reversal symmetries, while opening a spectral gap at
K± given by twice the value of

m±(M, t2) ≡ |M ± 3
√

3 t2|. (2.14)

The upper and lower bands have opposite Chern numbers

C± =
∫

BZ

d2k
2π


±(k), (2.15a)
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where we have introduced the Berry curvature


±(k) = i

[
∂

∂k1

(〈
±; k

∣∣∣∣ ∂

∂k2

∣∣∣∣±; k
〉)

− ∂

∂k2

(〈
±; k

∣∣∣∣ ∂

∂k1

∣∣∣∣±; k
〉)]

. (2.15b)

The bands have Chern numbers of unit magnitude when

|M| <
√

3 |t2|. (2.16)

They are vanishing otherwise.
We perform the expansion

ε(K± + k) = m±(M, t2)

∓ 9
√

3 t2
M ∓ M0

4m±(M, t2)
k2

± 3
[
2t2

1 ± √
3 t2 (M ∓ M0)

]
8m±(M, t2)

k3 cos(3θ )

+ O(k4) (2.17a)

of the magnitude (2.11c). Here, we are using the shorthand
notation

M0 ≡ t2
1 − 18 t2

2

2
√

3 t2
, (2.17b)

at which

m±(M0, t2) =

⎧⎪⎨⎪⎩
∣∣∣ t2

1

2
√

3 t2

∣∣∣, if +∣∣∣ t2
1 −36 t2

2

2
√

3 t2

∣∣∣, if −.

(2.17c)

When the staggered potential takes the value M = M0, the
magnitude (2.11c) realizes the monkey saddle

ε(K+ + k) =
∣∣∣∣∣ t2

1

2
√

3 t2

∣∣∣∣∣ + 3
√

3

2
|t2| k3 cos(3θ ) + O(k4),

(2.18a)

centered about K+ at the energy m+(M0, t2), while it realizes
the local extremum

ε(K− + k) =
∣∣∣∣∣ t2

1 − 36 t2
2

2
√

3 t2

∣∣∣∣∣
+ 9

√
3 |t2|

(
t2
1 − 18 t2

2

)
2
∣∣t2

1 − 36 t2
2

∣∣ k2

− 3
√

3 |t2|
(
t2
1 + 18 t2

2

)
4
∣∣t2

1 − 36 t2
2

∣∣ k3 cos(3θ ) + O(k4),

(2.18b)

centered about K− at the energy m−(M0, t2). Choosing the
value M = −M0 centers the monkey saddle at K− and the
local extremum at K+. In either case, it is always possible to
tune the magnitude of the energy of the monkey saddle

μms ≡
∣∣∣∣∣ t2

1

2
√

3 t2

∣∣∣∣∣, (2.19a)

FIG. 1. Under appropriate tuning of the staggered chemical po-
tential [M = ±M0 with M0 defined in Eq. (2.17b) with t1 = 1 and
t2 = 1

4 ], Hamiltonian (2.10) can be made to host a monkey-saddle
singularity at either one of the K± points. While the constant-energy
contours of the monkey-saddle dispersion (2.1) are open, those in
the Haldane model in (a) and (b) are closed due to the correction of
order ∝k4 to the monkey-saddle dispersion (2.1). The monkey saddle
with its singular energy contour that is shaped like the boundary of
a three-leaf clover (bold and black) is here realized at K+, while a
simple maximum is realized at K− higher up in energy.

so that it becomes smaller than the magnitude of the energy of
the local extremum

μle ≡
∣∣∣∣∣ t2

1 − 36 t2
2

2
√

3 t2

∣∣∣∣∣, (2.19b)

provided the condition

36(t2/t1)2 > 2 ⇐⇒ t2
1 − 18 t2

2 < 0 (2.19c)

holds. Combining condition (2.19c) with the definition of M0
in Eq. (2.17b) delivers

|M0| = 18 t2
2 − t2

1

2
√

3 |t2|
. (2.20)

Figure 1 shows the constant-energy contours of the upper dis-
persion of Hamiltonian (2.10) when M = M0 and t2/t1 = 1

4 .
The constant-energy contour shaped like a three-leaf clover
is the Fermi surface when the Fermi energy matches the
monkey-saddle energy.

Assuming that M has been tuned to either M0 or −M0, so
as to obtain the monkey saddle at K+ or K−, respectively, we
examine the sign of |M0| − 3

√
3 |t2|. If it is negative, then we

are in the regime for which the Chern number is nonvanishing
and the band is topological. We have

|M0| − 3
√

3 |t2| = 18 t2
2 − t2

1

2
√

3 |t2|
− 3

√
3 |t2| = −t2

1

2
√

3 |t2|
< 0.

(2.21)

Thus, if we tune the chemical potential to the energy (2.19a)
of the monkey saddle and assume that the energy of the local
extremum (2.19b) is larger, i.e., Eq. (2.19c) holds, then the
two bands necessarily have nonvanishing Chern numbers.

We plot in Fig. 2 the two single-particle dispersions (2.11)
along the cuts �–K+–�–K−–� in the Brillouin zone for
different values of M and t2, holding t1 fixed. Figure 2(a)
corresponds to the case with two inequivalent Dirac points
at which the upper and lower bands touch. Figure 2(b) cor-
responds to a gap at the two Dirac points of Fig. 2(a) induced
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FIG. 2. Dispersions (2.11b) and density of states (DOS) ν(ε) = N−2
∑

±
∑

k δ(ε − ε±(k)) for the single-particle tight-binding Hamil-
tonian (2.10). The choice N = 1001 is made and each delta function entering the DOS is regularized by a normalized Gaussian of variance
σ 2

Gaussian ∼ N−2. Under tuning of parameters, where we set t1 = 1, Hamiltonian (2.10) displays changes in both the band geometry and the band
topology. We seek to obtain a monkey saddle at K+ with an extremum at K−, located higher up in energy, in the upper band of Hamiltonian
(2.10). Such a phase is automatically in the topological regime with nonvanishing Chern numbers for each filled band. This phase can be
reached starting from the gapless, and time-reversal invariant Dirac semimetal in (a). As a staggered chemical potential (M) is turned on, a gap
at both the K± points appears as depicted in (b). The dispersions in the neighborhoods of K+ and K− are symmetric because of time-reversal
symmetry. In (c), a small time-reversal breaking next-nearest-neighbor hopping t2 that causes an asymmetry between the dispersion around K+
and that around K− is turned on. As the strength of t2 is increased to |M|/3

√
3, the gap at K+ closes, as in (d). By increasing t2 further as in (e),

the topological regime with nonvanishing Chern number is entered. Finally, increasing t2 to satisfy the condition M = (t2
1 − 18 t2

2 )/(2
√

3 t2),
we obtain a monkey saddle at K+ and a simple maxima at K−, higher in energy. This is depicted in (f). The van Hove singularities in the DOS
of (a)–(e) have become monkey-saddle singularities at K+ and van Hove singularities at K− in (f).

by the staggered chemical potential M. Figure 2(c) shows the
effect on Fig. 2(b) of a small t2. The spectral valley symmetry
is broken. In Fig. 2(d), the competition between M and t2
results in a gap-closing transition at one of the Dirac points
from Fig. 2(a). In Fig. 2(e) the gap reopens as t2 dominates
over M. The bands now have the Chern numbers ±1. In
Fig. 2(f), K+ realizes a monkey saddle, while K− realizes a
local extremum.

We remark that a nonvanishing Hall conductivity results
from breaking time-reversal symmetry. The anomalous Hall
conductivity contribution from the partially filled band varies
continuously as a function of the band filling. This contribu-
tion can be expressed as an integral over the Brillouin zone of
the (regular) Berry curvature over the filled states. While this
integral is continuous as a function of the chemical potential
as the latter is varied across the monkey-saddle singularity,
derivatives of the Hall conductivity with respect to the chemi-
cal potential will inherit the singularities in the DOS.

III. EFFECTS OF INTERACTIONS ON A
MONKEY SADDLE

We consider a two-dimensional gas of spinful electrons
whose single-particle and spin-degenerate dispersion

εms(k) = −εms(−k) (3.1)

is the monkey-saddle dispersion defined by Eq. (2.1). The
number of energy eigenvalues per unit area in the interval
(ε, ε + dε) defines the monkey-saddle density of states

νms(ε) :=
∫

d2k
(2π )2

δ(ε − ε(k)). (3.2a)

It is given by [9]

νms(ε) = 1

2π3/2

�(1/6)

�(2/3)
E−2/3 |ε|−1/3. (3.2b)

As emphasized in Ref. [9], it displays a power-law singu-
larity at the singular energy ε = 0.

This noninteracting electron gas is perturbed by a contact
density-density interaction for opposite spins. The quantum
dynamics is thus governed by the many-body Hamiltonian

Ĥ := Ĥms + Ĥint, (3.3a)

where the kinetic energy is given by

Ĥms :=
∑

σ=↑,↓

∫
|ε(k)|��

d2k ĉ†
σ (k)[εms(k) − μ]ĉσ (k) (3.3b)

and the interaction is given by

Ĥint := g
∫

d2r ĉ†
↑(r) ĉ↑(r) ĉ†

↓(r) ĉ↓(r). (3.3c)
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Here, we have introduced an ultraviolet energy cutoff �, cor-
responding to the energy scale at which corrections of order
k4 in any lattice regularization of the dispersion (2.1) are
comparable to the k3 contribution, μ denotes the chemical po-
tential, and g measures the strength of the contact interaction
(a positive g penalizes local double occupancy by electrons).
The electronic field operators obey fermionic equal-time anti-
commutation relations, i.e., the only nonvanishing equal-time
anticommutators are

{ĉ
σ

(r), ĉ†
σ ′ (r′)} = δσ,σ ′ δ(r − r′), (3.3d)

{ĉ
σ

(k), ĉ†
σ ′ (k′)} = δσ,σ ′ δ(k − k′). (3.3e)

The chemical potential is fixed by the number Ne of electrons
in the large area A. Henceforth, we set the units such that

h̄ = 1, kB = 1 (3.4a)

for the Planck and Boltzmann constants, respectively. In these
units, temperature T has units of energy and time has units of
inverse energy. The grand-canonical partition function at the
inverse temperature β = 1/T is

Z (β,μ) := Tr e−βĤ , Ne = β−1

(
∂ ln Z

∂ μ

)
(β,μ). (3.4b)

The decay rate �(g, T ) of quasiparticles when μ = 0 aris-
ing from the contact interaction was calculated in Ref. [9] to
the first nontrivial order in perturbation theory. It is given by

�(g, T ) = C g2 ν2(T ) T ∼ T 1/3 (3.5)

with C a positive numerical constant (that is calculated in the
limit � → ∞). For comparison, the decay rate of a Fermi
liquid in two-dimensional space scales with temperature as
T 2 up to a multiplicative logarithmic correction. However,
this non-Fermi-liquid decay rate does not hold all the way
to vanishing temperature as higher-order corrections in per-
turbation theory in powers of g acquire power-law corrections
in the temperature with negative scaling exponents since the
dimensionless expansion parameter is gν(T ).

Renormalization-group techniques can be useful when per-
turbation theory is not converging uniformly. After tracing
over all electrons whose energies are within the energy shell
� − d� � |εms(k)| � � with

d�

�
= d�, (3.6)

infinitesimal, it is possible to preserve the form invariance
of the grand-canonical partition function provided the dimen-
sionless temperature

T := T

�
, (3.7a)

the dimensionless chemical potential

μ := μ

�
, (3.7b)

and the dimensionless interaction strength

g := ν(�) g (3.7c)

obey the renormalization-group (RG) equations

d T

d �
= T , (3.8a)

d μ

d �
=

[
1 − g

2T cosh2
(

1
2T

)]
μ, (3.8b)

d g

d �
= 1

3
g. (3.8c)

These RG equations were derived perturbatively about the
fixed point

T
� = μ� = g� = 0 (3.9)

up to order ḡ3 in Refs. [9,15]. Whereas T and g flow to strong
coupling, i.e., beyond the range of validity of these perturba-
tive RG flows, the beta function of the dimensionless chemical
potential μ undergoes a sign change if and only if the initial
value of g is larger than the initial value of 2T cosh2( 1

2T
). If

the initial conditions correspond to vanishing temperature, the
RG equations (3.8) simplify to

d μ

d �
= μ,

d g

d �
= 1

3
g. (3.10a)

If the initial conditions correspond to vanishing chemical po-
tential the RG equations (3.8) simplify to

d T

d �
= T ,

d g

d �
= 1

3
g. (3.10b)

One possible interpretation of this RG flow to strong cou-
pling is a Stoner instability to an itinerant ferromagnetic
phase, as can be confirmed by a mean-field analysis [15].
Pomeranchuk instabilities (area-preserving deformations of
the three-leaf clover Fermi surface into either a single
Fermi surface enclosing the monkey-saddle singularity at
K+, say, or three disconnected Fermi surfaces that do not
enclose the monkey-saddle singularity) are also possible.
Any superconducting instability must be of the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) type with the characteristic
monkey-saddle wave vector K+, say. More exotic instabilities
such as a fractional Chern insulator when the band hosting the
monkey saddle has a nonvanishing Chern number, the filling
fraction is 1

3 at the monkey saddle, and the interaction strength
is larger than the bandwidth, say, cannot be ruled out owing to
the DOS at the monkey saddle. Nonperturbative techniques
are needed to establish the fate of the monkey saddle when
perturbed by a contact interaction.

We are going to use the mean-field approximation to argue
that the monkey-saddle singularity is unstable when we ele-
vate the spinless fermions in Hamiltonian (2.10) to electrons
with spin 1

2 and add an onsite repulsive Hubbard interaction
with coupling U > 0 and a next-nearest-neighbor repulsive
interaction with coupling V > 0.

For the case of a two-dimensional gas of spinless electrons,
there is no quartic density-density contact interaction as in
Eq. (3.3c). The lowest-order interaction term that we may add
is

∝ [ĉ†(r) ∇ĉ(r)]2. (3.11)

This interaction is irrelevant by power counting and is thus not
expected to destabilize the monkey saddle for small values
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of its coupling. Accordingly, we are going to show that a
monkey-saddle singularity can be stabilized by fine tuning lat-
tice parameters in the presence of repulsive nearest-neighbor
interactions within a mean-field approximation.

IV. MEAN-FIELD ANALYSIS

In this section, we analyze the stability of the monkey-
saddle singularity in the spectrum of the Hamiltonian (2.10)
against short-range interactions at the mean-field level. We
treat the cases of spinful and spinless electrons separately.
For the former case, we consider repulsive onsite Hubbard
and nearest-neighbor interactions. For the latter case, we only
consider a repulsive nearest-neighbor interaction.

A. Spinful case

We presume Hamiltonian (2.10) for spinful electrons fine
tuned to a monkey saddle located at K+ in the upper (+) band
that is perturbed by a repulsive onsite Hubbard interaction
of strength U and a repulsive nearest-neighbor interaction of
strength V , given by

ĤU = U
∑
r∈�

(n̂A,↑,r n̂A,↓,r + n̂B,↑,r+a1
n̂B,↓,r+a1

), (4.1a)

ĤV = V
∑
r∈�

3∑
i=1

n̂A,r n̂B,r+ai
, (4.1b)

respectively. Here, we denote with � the triangular Bravais
lattice hosting the A sites. The honeycomb lattice is made
of |�| unit cells, each one containing two sites labeled by A
and B. The total number of sites in the honeycomb lattice is
thus 2|�|. Hereby, we have introduced the spin and position
resolved fermion-number operators

n̂A,σ,r = ĉ†
A,σ,rĉA,σ,r, n̂B,σ,r+ai

= ĉ†
B,σ,r+ai

ĉB,σ,r+ai
, (4.2a)

n̂A,r =
∑
σ=±

n̂A,σ,r, n̂B,r+ai
=

∑
σ=±

n̂B,σ,r+ai
, (4.2b)

where ĉ†
A,σ,r and ĉ†

B,σ,r+ai
create an electron with spin σ on the

A and B sublattices at positions r and r + ai, respectively.
We employ five mean-field order parameters: the uniform

charge density ne, the uniform magnetization density m, and
the three uniform, directed, nearest-neighbor bond density
order parameters χ i. These five order parameters are defined
as the ground-state expectation values of the local operators

n̂r = n̂A,r + n̂B,r+a1
, (4.3a)

m̂r =
∑
σ=±

σ (n̂A,σ,r + n̂B,σ,r+a1
), (4.3b)

χ̂i,σ,σ ′,r = ĉ†
A,σ,r ĉB,σ ′,r+ai

+ H.c., (4.3c)

respectively. We make the mean-field ansatz

〈n̂r 〉 = ne, (4.4a)

〈m̂r 〉 = m, (4.4b)

〈χ̂i,σ,σ ′,r 〉 = δσ σ ′ (χ + δi,1 χ1), (4.4c)

where 〈. . . 〉 denotes the expectation value over the mean-field
ground state. In the mean-field ansatz (4.4), we assume that

the order parameters are independent of the position r, i.e.,
the ansatz (4.4) does not include charge-density, spin-density,
or bond-density waves. This assumption is justified since (i)
the single-particle energies at K+ and K− are separated in
energy (ii) and there are no momentum-conserving nesting
vectors that connect two points from the Fermi surface when
the chemical potential is tuned close to the monkey-saddle
energy. Consequently, there is no band folding in the Brillouin
zone and the mean-field ground state remains metallic for any
noninteger filling fraction.

The mean-field ansatz (4.4a) for the charge density fixes
the chemical potential such that the filling fraction of the inter-
acting system coincides with that of the noninteracting model.
The mean-field ansatz (4.4b) assumes a ferromagnetic ground
state whenever |m| > 0 for which the spin-rotation symmetry
is spontaneously broken [time-reversal symmetry is explicitly
broken in the Hamiltonian (2.10) by the next-nearest-neighbor
hopping term (2.10d)]. The mean-field ansatz (4.4c) assumes
a uniform bond-density order parameter χ that does not break
the Z3-rotation symmetry that is modulated by χ1 along the
a1 direction. Any nonvanishing |χ1| breaks the Z3-rotation
symmetry spontaneously, while preserving the reflection sym-
metry along the a1 direction.

After performing the mean-field approximation, the disper-
sions (2.11) become

ετ,σ,k = τ εk − 1
2σ U m, (4.5a)

with

εk =
√

M2
k + |�k|2, (4.5b)

Mk = M + 2 t2

3∑
i=1

sin(k · bi ), (4.5c)

�k =
3∑

i=1

t1,i e+ik·ai , (4.5d)

t1,i =
{

t1 − V (χ + χ1), i = 1

t1 − V χ, i = 2, 3
(4.5e)

where τ = ± is the band index and σ = ± is the spin index.
The self-consistent mean-field equations corresponding to the
ansatz (4.4) are

ne = 1

|�|
∑
k,τ,σ

fFD(ετ,σ,k − μ), (4.6a)

m = 1

|�|
∑
k,τ,σ

σ fFD(ετ,σ,k − μ), (4.6b)

χ = 1

2|�|
∑
k,τ,σ

τ Re

{
eik·a2

�∗
k

2 εk

}
fFD(ετ,σ,k − μ), (4.6c)

χ1 = 1

2|�|
∑
k,τ,σ

τ Re

{
eik·a1

�∗
k

2 εk

}
fFD(ετ,σ,k − μ) − χ.

(4.6d)
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FIG. 3. The mean-field phase diagram at zero temperature in the coupling space spanned by the filling fraction ne, the onsite repulsive
interaction U , and the nearest-neighbor repulsive interaction V is obtained from solving numerically the mean-field equations (4.6) (all energies
are measured in units of t1). Dashed red lines show the approximate phase boundaries in (a), (b), and (c). The yellow solid lines shows the
approximate phase boundaries in the thermodynamic limit in (a) and (c). (a) Two-dimensional cut for the values taken by m when V = 0 in
units of t1. A Stoner instability towards itinerant ferromagnetism takes place for any nonvanishing Hubbard interaction U > Uc for given ne.
The minimum value Uc,min taken by Uc occurs for ne = ne,ms. The nonvanishing value of Uc,min above which ferromagnetism is established
when the filling fraction is fine tuned to the monkey saddle, i.e., ne = ne,ms, is due to a finite-size effect that cuts off the diverging DOS. In the
thermodynamic limit, Uc,min → 0 at ne = ne,ms. (b) Two-dimensional cut for the values taken by m when V = 0.1 in units of t1. A nonvanishing
V > 0 has two effects. It increases the minimum value of Uc from (a) to a value that remains nonvanishing in the thermodynamic limit. The
position of the minimum value of Uc from (a) is shifted along the ne axis. (c) Two-dimensional cut for the values taken by m when ne = ne,ms.
The critical value Uc above which ferromagnetism sets in is an increasing function of V . (d) Two-dimensional cut for the values taken by χ

when ne = ne,ms. The value of χ is nonvanishing everywhere.

Here, the Fermi-Dirac distribution is

fFD(ε) :=
{

1
eε/T +1 , T > 0

�(−ε), T = 0
(4.7)

where T is the temperature (in the units with the Boltzmann
constant set to unity), and �(x) is the step function equal
to 1 for positive x and 0 otherwise. The chemical potential
μ is determined by solving self-consistency equation (4.6a)
where the charge density ne is that of the noninteracting
Hamiltonian (2.10). We denote by μe the chemical potential
that delivers the charge density ne for the noninteracting dis-
persion. We note that mean-field ansatz (4.4c) assumes that
the bond-density order parameter is the same for the a2 and a3
directions. Therefore, in the self-consistency equations (4.6c)
and (4.6d), we could have equivalently chosen a3 instead of
a2. One can also generalize ansatz (4.4c) by introducing three
separate bond-density order parameters, one for each direc-
tion ai. Such a more general mean-field ansatz, while being
computationally heavier, does not change our results within
the investigated parameter range.

The self-consistent mean-field equation (4.6) consists of
four unknowns {μ, m, χ, χ1} that are to be determined as
a function of three parameters {ne, U, V }. We have solved
Eq. (4.6) numerically on the Brillouin zone 
BZ discretized on
a 501 × 501 grid of k points. All energy scales are measured
in units of t1. We have set t2 = 0.25 and M = M0 for which
a monkey-saddle singularity appears. We consider repulsive
couplings U � 0 and V � 0. The coupling V is taken to be
smaller than the energy difference in the upper band between
the monkey saddle at K+ and the local extremum μle at K−.
For our choice of parameters, this difference is �μ = μle −
μms ≈ 0.29 in units of t1. For interaction strengths larger than
�μ, a bond-density wave with a nonzero wave vector is a
potential instability that is not contained in the ansatz (4.4).

In Fig. 3, the mean-field solutions for the order parameters
m and χ are shown as functions of the parameters ne, U , and
V . We only find two phases: an itinerant phase supporting
ferromagnetism (m �= 0) and an itinerant phase that is para-
magnetic (m = 0). The phase boundaries are shown by red
dashed lines. Within the parameter space of interest, we do not
find the signature of a Pomeranchuk instability (χ1 �= 0) that
would break spontaneously the lattice Z3-rotation symme-
try. Nevertheless, the monkey-saddle singularity is unstable
against any finite repulsive, nearest-neighbor interaction V as
we shall explain shortly.

For V = 0, we find that the Stoner instability destroys the
monkey-saddle singularity for any repulsive Hubbard interac-
tion strength U > 0 when the filling fraction is tuned to be
at the monkey saddle (ne = ne,ms). This is signaled by (i) the
nonvanishing magnetization density m in Fig. 3(a) for U � Uc
where for any finite lattice size |�| the critical interaction
strength Uc is minimized as a function of ne when ne = ne,ms
(ii) whereby we have verified that this minimum Uc,min of Uc
decreases with increasing lattice size |�| with the extrapolated
limit Uc,min → 0 as |�| → ∞. This mean-field calculation
thus confirms the intuition based on Sec. III that the flow of
the onsite interaction to strong coupling is a diagnostic of a
Stoner instability (an itinerant Fermi-liquid phase supporting
ferromagnetic long-range order) as opposed to a featureless
(without any long-range order) non-Fermi-liquid phase. The
corresponding effect on the mean-field DOS is shown in
Fig. 4(a). The mean-field treatment of the onsite repulsive
interaction only changes the spin-resolved chemical poten-
tials. This will not affect the noninteracting DOS at values
of ne − ne,ms for which the noninteracting DOS is too small to
induce a Stoner instability. However, a Stoner instability must
happen close enough to the monkey-saddle filling fraction
ne,ms for any nonvanishing value of U > 0, thereby cutting
off the monkey-saddle divergence of the noninteracting DOS
at the monkey-saddle filling fraction. Correspondingly, the

205129-8



SINGLE MONKEY-SADDLE SINGULARITY OF A FERMI … PHYSICAL REVIEW B 107, 205129 (2023)

FIG. 4. The regularized mean-field DOS as a function of the
deviation ne − ne,ms of the filling fraction ne from the monkey-saddle
filling fraction ne,ms is plotted for different values of the interac-
tion strengths U � 0 and V � 0. The δ functions in the mean-field
DOS are regularized by normalized Gaussians of variance σ 2

Gaussian ∼
10/N2 with N = 501. In (a), U is increased holding V = 0. The
single regularized peak in the noninteracting DOS is split into two
peaks by a nonvanishing U . Contrary to the height of the monkey-
saddle peak of the regularized noninteracting DOS, the height of
these secondary peaks remains finite in the limit σGaussian → 0. In
(b), V is increased holding U = 0. The single peak in the regularized
noninteracting DOS is translated to the left by a nonvanishing V . This
observation can be explained by V > 0 inducing quadratic perturba-
tions to the monkey-saddle dispersion (2.1) at the mean-field level.
These quadratric perturbations turn the monkey-saddle singularity
into a central local extremum surrounded by three van Hove saddle
singularities.

regularized mean-field DOS shows the double-peak shape
from Fig. 4(a).

Turning on a nonvanishing V has two effects shown in
Figs. 3(b) and 3(c). First, the value of Uc above which fer-
romagnetism takes place is larger for V = 0.1 than for V = 0
(measured in units of t1) and this value remains nonvanishing
in the thermodynamic limit. Second, the minimal value Uc,min
of Uc in Fig. 3(b) is found at a filling fraction ne,min < ne,ms.
Both effects can be understood as the renormalization (4.5e)
of the nearest-neighbor hopping amplitude t1 for any non-
vanishing V . Indeed, the uniform bond density χ defined in
Eq. (4.6c) is nonvanishing for any interaction strengths U and
V , and for any filling fraction except for the completely filled
(ne = 4) or completely empty (ne = 0) bands. Any finite in-
teraction strength V thus results in corrections proportional to
k2 in the expansion (2.17) that had been set to 0 by fine tuning

FIG. 5. Dependencies of the uniform magnetization m, uniform
bond density χ , and chemical potential μ along one-dimensional cuts
in coupling space at zero temperature as is explained in the text.

the value of the staggered chemical potential M to M0 so as to
obtain the bare monkey-saddle dispersion (2.18). Under the
k2 perturbation, the monkey-saddle singularity turns into a
central local extremum surrounded by three van Hove saddle
singularities with dispersions ∼k2

x − k2
y [9]. Consequently, the

monkey-saddle singularity disappears through a Lifshitz tran-
sition by which the topology of the Fermi surface changes.
This renormalization has two effects. It moves the position of
the maximum of the mean-field DOS (i.e., the position of the
minimum Uc,min) to a value ne,min < ne,ms [see Fig. 4(b)]. It
regularizes the diverging monkey-saddle DOS to a large but
finite value at the filling fraction ne = ne,ms [see Fig. 4(b)].
Figure 3(c) shows the suppression of the critical interaction
strength Uc at the monkey-saddle singularity with increasing
V . Figure 3(d) demonstrates that the uniform bond density
χ is nonvanishing in the same field of view as in Fig. 3(c).
In contrast, the nonisotropic bond density χ1 is found to be
vanishing everywhere in coupling space within the numerical
error bars. In other words, we did not find any evidence for a
Pomeranchuk instability.

Figure 5 shows the variations of the uniform magnetiza-
tion m, the uniform bond-density wave χ , and the chemical
potential μ along one-dimensional cuts in coupling space.
Figure 5(a) shows the dependence of m, χ , and μ on the
electronic filling fraction ne when U = 0.56 and V = 0 in
units of t1. All three are discontinuous functions of ne at two
critical values of ne, one below and another above ne,ms, for
which the Stoner instability takes place. Finite-size scaling
is consistent with a discontinuous dependence of m and χ

on ne in the thermodynamic limit upon entering the itinerant
ferromagnetic phase. The overlap of χ and μ is due to the
fact that both are monotonically increasing functions of ne −
ne,ms (except at their discontinuities) and their dependence
can be approximated linearly for small |ne − ne,ms| � ne,ms.
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FIG. 6. Dependency of the uniform magnetization m along
one-dimensional cuts in coupling space at zero temperature as is
explained in the text.

Figure 5(b) shows the dependence of m, χ , and μ on the
nearest-neighbor interaction V when U = 0.56 in units of t1
and ne = ne,ms − 0.034. Hereto, all three are expected from
finite-size scaling to be discontinuous functions of V at the
critical values of V for which the Stoner instability takes place
in the thermodynamic limit. The disappearance of the Stoner
instability for large V is due to the shift of the maximum of the
DOS to ne,min < ne,ms as is implied by Fig. 3(b). Increasing the
values of V holding U and ne fixed with ne < ne,ms is effec-
tively changing the DOS in a nonmonotonic way. The DOS
first increases, reaches a maximum, and then decreases as a
function of V . Correspondingly, if the given values of U and
ne are suitable in that the maximum DOS is large enough for a
Stoner instability to take place, then increasing V first triggers
a Stoner instability followed by a reentrant phase transition
to the paramagnetic state when the DOS has decreased to a
value too far from its maximum. In contrast to Fig. 5(a), μ is
an increasing function of V while χ is a decreasing function
of V (except at their discontinuities). The increase in chemical
potential μ can be understood as follows. The function −V χ

of V is monotonically increasing. Therefore, the renormalized
hopping amplitude (4.5e) is greater than its bare value, i.e.,
t1,i > t1. This results in an increase of both the bandwidths
and the gap between the τ = + and τ = − bands in such a
way that a greater μ is required to keep the filling fraction at
ne = ne,ms − 0.034.

Figure 6(a) shows the dependence of m on the onsite
interaction U when V = 0 for different fixed values of ne.
The critical value Uc for the onset of the Stoner instability
is minimal when ne = ne,ms. It increases with the devia-
tion |ne − ne,ms|. Finite-size scaling is consistent with Uc

vanishing when ne = ne,ms. When ne �= ne,ms, finite-size scal-
ing is consistent with m being a discontinuous function of U
in the thermodynamic limit upon entering the itinerant ferro-
magnetic phase at Uc > 0. Figure 6(b) shows the dependence
of m on the onsite interaction U when ne = ne,ms for different
fixed values of V . The critical value Uc for the onset of the
Stoner instability is minimal when V = 0. It increases with
increasing V . When V > 0, finite-size scaling is consistent
with m being a discontinuous function of U in the thermo-
dynamic limit upon entering the itinerant ferromagnetic phase
at Uc > 0.

B. Spinless case

In Sec. IV A, we showed for spinful electrons that the
monkey-saddle singularity in the noninteracting limit is unsta-
ble against onsite Hubbard interaction at the mean-field level.
We also argued that the disappearance of the monkey-saddle
singularity when a repulsive nearest-neighbor interaction is
present is due to the renormalization (4.5e) of the bare
hopping amplitude t1. A natural question that arises is the
following. Are there fine-tuned values of the couplings t1,
t2, and M entering the noninteracting dispersion (2.11) such
that a monkey-saddle singularity is stabilized by a repulsive
nearest-neighbor interaction treated within mean-field theory?
Here, we will consider the case of spinless electrons for which
the onsite Hubbard term is not present and answer this ques-
tion affirmatively.

To this end, we consider the mean-field dispersion

ετ,k = τ εk, (4.8a)

with

εk =
√

M2
k + |�k|2, (4.8b)

Mk = M + 2 t2

3∑
i=1

sin(k · bi ), (4.8c)

�k =
3∑

i=1

t1 e+ik·ai , (4.8d)

t1 = t1 + δ − V χ, (4.8e)

which is the mean-field dispersion (4.5) where we set U , m,
and χ1 to be zero and removed the spin index σ . Here, δ is
a tunable parameter that encodes the deviations from t1. We
retain the bare values of t2 and M measured in units of t1
in the mean-field dispersion (4.5). Hence, when δ = V = 0,
a monkey-saddle singularity is present in the dispersion at
the filling fraction ne,ms/2. (Here, the division by 2 is due to
the removal of half of the bands for the spinless electrons.)
This is not true anymore for δ �= 0 and V = 0 since t1 differs
from t1 so that the monkey-saddle condition M = M0 is not
met anymore if we substitute t1 with t1 + δ in M0 given by
Eq. (2.17b). Conversely, the mean-field dispersion (4.8) is
identical to the noninteracting dispersion (2.11) but with the
substitution t1 → t1. Because δ is only shifting the value of
t1 while we keep M and t2 fixed, a monkey-saddle singularity
is guaranteed to exist in the spectrum only when t1 = t1 and
at the filling fraction ne,ms/2. With these assumptions for the
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FIG. 7. Renormalized hopping amplitude t1 that is obtained by
solving the self-consistent mean-field equations (4.9) at zero temper-
ature. The red dashed line shows the points in the parameter space
for which the condition (4.9c) is met. For any interaction strength V ,
there is a fine-tuned value δ̄ of δ for which an interacting monkey-
saddle singularity appears in the mean-field spectrum at the filling
ne = ne,ms/2.

mean-field dispersion, we must solve for μ(V ), χ (V ), and
δ(V ) the three coupled and nonlinear mean-field equations

ne,ms = 1

|�|
∑
k,τ

fFD(ετ,k − μ), (4.9a)

χ = 1

2|�|
∑
k,τ

τ Re

{
eik·a2

�∗
k

2 εk

}
fFD(ετ,k − μ), (4.9b)

t1,i = t1 ⇐⇒ δ = V χ, (4.9c)

as a function of the repulsive nearest-neighbor interaction
strength V . Solutions to Eq. (4.9) identify for which fine-tuned
values δ of the parameter δ, a monkey-saddle singularity is sta-
bilized by a repulsive nearest-neighbor interaction V treated
within a mean-field approximation. Notice that for any given
values of the parameters ne, V , and δ, Eqs. (4.9a) and (4.9b)
always have a solution. However, a monkey-saddle singularity
is present in the mean-field dispersion at the energy μ only
when ne = ne,ms/2 and Eq. (4.9c) is satisfied.

In Fig. 7, we fix the filling fraction to ne = ne,ms/2 and
plot the renormalized hopping amplitude t1 that is obtained by
solving the mean-field equations (4.9a) and (4.9b) in parame-
ter space of δ and V . We find that, at the mean-field level and
for any given interaction strength 0 � V � 0.25, there exists a
fine-tuned value δ̄ of δ for which an interacting monkey-saddle
singularity appears at the filling ne = ne,ms/2. Notice that for
fixed t1 at the filling ne = ne,ms/2, the solution to Eq. (4.9b)
fixes the value of χ . Equation (4.8e) then implies a linear
relation between V and δ. In other words, constant t1 contours
in the V − δ plane must necessarily be linear as is the case
in Fig. 7. We show the linear contour for which Eq. (4.9c) is
solved by the red dashed line in Fig. 7.

V. CONCLUSIONS

To recapitulate, for the spinful electrons mean-field theory
predicts that the noninteracting monkey-saddle singularity is
unstable to both the repulsive onsite Hubbard interaction and
the repulsive nearest-neighbor interactions for any nonvanish-
ing values of their coupling strengths.

In the former case, a Stoner instability occurs for any
nonvanishing U at ne = ne,ms, which destroys the monkey-
saddle singularity by a rigid mean-field energy shift of the
spin-up band relative to that of the spin-down band. Because
of the itinerant ferromagnetic order, spin-rotation symmetry is
spontaneously broken.

In the latter case, any finite coupling V > 0 leads to a
renormalization of the hopping amplitude t1 to t1,1 = t1,2 =
t1,3 > t1. This leads to a nonvanishing k2 correction to the
monkey-saddle dispersion (2.11) that removes the higher-
order singularity through a Lifshitz transition of the Fermi
surface.

We then showed that this removal of the monkey-saddle
singularity when V > 0 can be compensated by the fine tuning
of the bare hopping amplitude t1 such that an interacting
monkey-saddle singularity appears in the mean-field disper-
sion. For the spinless electrons, this fine-tuned interacting
monkey-saddle singularity is stable as the onsite Hubbard
interaction is inactive.

VI. SUMMARY

We addressed the question of whether it is possible to
obtain single odd higher-order singularities in the dispersion
of an electronic system. The motivation for this search is that
when singularities appear in pairs, interactions naturally lead
to instabilities towards ordered phases because of the scatter-
ing between each of the members of the pair of singularities.
In contrast, the types of instabilities that can occur for isolated
singularities are limited, and therefore could potentially lead
to non-Fermi-liquid behavior [9,15]. While even singulari-
ties may occur in systems where time-reversal symmetry is
present, this symmetry forbids odd singularities, such as a
monkey saddle, to appear alone inside the Brillouin zone.
Here we showed explicit examples where odd singularities
may appear in isolation once time-reversal symmetry is bro-
ken. The simplest example is perhaps the Haldane model,
where we find that varying a staggered chemical potential
yields a single monkey-saddle singularity at one of the K
points of the hexagonal Brillouin zone, at an energy that sits
within a gap with respect to momenta near the other (opposite)
K point.

We then turned our attention to the effects of interactions
for an isolated odd monkey-saddle singularity. Renormal-
ization group flows inform us that the interactions are
relevant [9], but do not identify the fate of the electronic
state when the chemical potential is placed at the value where
the Fermi surface changes its topology. We carried out a
mean-field calculation, including onsite and nearest-neighbor
interactions, that resolves the fate of the monkey-saddle
singularity.

For the case of spinful electrons, we obtained two phases
as a result of the addition of these interactions. One is a
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paramagnetic phase in which the interactions lead to a de-
formation of the Fermi surface that avoids the singularity.
Basically, the system avoids the divergent DOS through a
renormalization of the nearest-neighbor hopping amplitude
that redraws the shape of the Fermi surface without breaking
any lattice symmetry. The other phase is an itinerant ferromag-
net, i.e., with Fermi surfaces of different topology for the up-
and down-spin species. This case is particularly interesting in
that quantum oscillations of magnetoresistance would reveal
two different periods for Shubnikov–de Haas oscillations as-
sociated with the up and down spins that differ by a factor
close to 3.

In contrast to the spinful case, we have shown for spin-
less electrons that, in the presence of short-range repulsive
interaction that are treated at the mean-field level, a monkey-
saddle singularity can be stabilized by fine tuning the hopping
amplitudes.

As opposed to van Hove singularities, monkey-saddle sin-
gularities do not generically appear. Instead, they require
the fine tuning of at least one parameter in addition to the
chemical potential in noninteracting 2D Hamiltonians. We
have shown that, by fine tuning two parameters in a spin-
less 2D Hamiltonian with nearest-neighbor interactions, one
can obtain a monkey-saddle singularity. Recent experimental
research efforts have been directed at increasing the number
of continuously tunable parameters in 2D materials, most

prominently in van der Waals materials. Such parameters in-
clude magnetic field, displacement field, and twist angles. It
is thus opportune to look for monkey-saddle physics in these
materials.

While these instabilities resolve the fate of the singularity
in the presence of interactions, there is a regime of temper-
atures for which the quasiparticle lifetimes should display
non-Fermi-liquid behavior, up to the low-temperature scale
for which the instabilities occur. In all, both these interme-
diate regimes, as well as the interesting signatures of the
instabilities due to the multiple Fermi-surface topologies and
geometries that result from interactions, make these systems
rather rich, and worthy of further investigations.
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