Suppressing of secondary electron diffusion for high-precision nanofabrication

Qianqian Wang, ${ }^{1 \#}$ Yuting Zhou, ${ }^{2 \#}$ Xiaolin Wang, ${ }^{1}$ Hongqiang Gao, ${ }^{1}$ Zhiwen Shu, ${ }^{2}$ Ziyu Hu, ${ }^{1}$ Peipei Tao, ${ }^{1}$ Yasin Ekinci, ${ }^{3}$ Michaela Vockenhuber, ${ }^{3}$ Yiqin Chen, ${ }^{2}$ Huigao Duan, ${ }^{2,4 *}$ Hong Xu, ${ }^{1 *}$ and Xiangming $\mathrm{He}^{1 *}$
${ }^{1}$ Dr. Q. Wang, Dr. X. Wang, H. Gao, Z. Hu, P. Tao, *Prof. H. Xu, *Prof. X. He Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
${ }^{2}$ Y. Zhou, Z. Shu, Prof. Y. Chen, Prof. H. Duan
National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.
${ }^{3}$ M. Vockenhuber, *Dr. Y. Ekinci
Paul Scherrer Institute, Forschungstrasse 111, Villigen 5232, Switzerland
${ }^{4}$ Prof. H. Duan
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
\#These authors contributed equally.
*E-mail: duanhg@hnu.edu.cn, hongxu@tsinghua.edu.cn, hexm@tsinghua.edu.cn

This PDF file includes:

Supplementary Text (Pages 2-3)
Figures S1 to S15 (Pages 4-18)
Tables S1 to S4 (Pages 19-27)
Supplementary References (Pages 28)

Supplementary Text

Materials.

$70 \mathrm{wt} .-\mathrm{Zr}(\mathrm{OPr})_{4} / 1$-propanol solution, hydroquinone (HQ), methyl methacrylate (MAA), ethyl acetate, toluene, isopropanol (IPA), 2-Chlorohydroquinone (Cl-HQ), 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO), and propylene glycol monomethyl ether acetate (PGMEA) were purchased from Sigma Aldrich Co. and used without further purification.

Single crystal data.

X-ray crystallographic data for ZrO_{2}-MAA MOC (CCDC: 2022033) has been deposited at the Cambridge Crystallographic Data Centre, 12 Union Road, 3 Cambridge CB21EZ, UK; fax: $(+44)$ 1223-336-033. Data can be obtained free of charge from the Cambridge Crystallographic Data Centre via the Internet at www.ccdc.cam.ac.uk/data_request/cif using the CCDC number given above. The crystalline structure of UiO-66 ${ }^{1,2}$ was generated using single crystallographic data from Cambridge Structural Database (CSD entry: SAHYOQ).

Resist films for contrast measurements.

The resist ($10 \mathrm{wt} . \%$ to solution) with different amounts of HQ ($0,8 \mathrm{wt} . \%, 32 \mathrm{wt} . \%$) was spincoated on a Si substrate at 2000 rpm for 60 s . The film thickness measured by the ellipsometry was about 125 nm . A RAITH150 TWO EBL system was used to expose the pad (Dimension: $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$) with accelerating voltages of 30 kV and an aperture size of $30 \mu \mathrm{~m}$ (corresponding to a beam current of $\sim 303.8 \mathrm{pA}$). All the samples were developed in IPA for 60 s.

Resist films for EDS analysis.

The $5 \mathrm{wt} . \%$ solution was prepared by mixing ZrO_{2}-MAA MOCs with $\mathrm{Cl}-\mathrm{HQ}$ ($20 \mathrm{wt} . \%$ to MOCs) or TEMPO ($20 \mathrm{wt} . \%$ to MOCs) in PGMEA, respectively. The filtered solution was spin-coated on a Si substrate at 2000 rpm for 60 s and then soft-baked at $100{ }^{\circ} \mathrm{C}$ for 60 s . The film thickness measured by the ellipsometry was about 50 nm . The films were observed by a ZEISS field emission SEM and energy dispersive X-ray spectroscopy (EDS).

Since HQ contains three elements of $\mathrm{C}, \mathrm{H}, \mathrm{O}$ (the same organic elements as ZrO_{2}-MAA MOCs), we selected two other small molecules (Cl-HQ, 2-Chlorohydroquinone and TEMPO, 2,2,6,6-Tetramethyl-1-piperidinyloxy) containing different elements for EDS analysis. The experimental results (Figure S11) showed that in the photoresist films, the Cl and N elements could be detected to be evenly distributed in the whole field of vision; suggesting the small
molecule radical quenchers could be relatively evenly dispersed in films after sufficient mixing and there should be no aggregation issue.

Resist films for EBL and cross-section data.

The photoresist test formulation contained ZrO_{2}-MAA MOCs as a solute ($2.5 \mathrm{wt} . \%$ to the solution), HQ as a radical quencher ($24 \mathrm{wt} . \%$ to ZrO_{2}-MAA MOCs), and PGMEA as a solvent. The filtered photoresist was spin-coated on a Si substrate at 4000 rpm for 60 s . A RAITH150 TWO EBL system was used to expose the pad (Dimension: $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$) with accelerating voltages of 30 kV and an aperture size of $10 \mu \mathrm{~m}$ (corresponding to a beam current of $\sim 39 \mathrm{pA}$). The exposure dose was $3100 \sim 3500 \mathrm{pC} / \mathrm{cm}$. The designed patterns were $1: 1$ line-space patterns with a half-pitch of 12 nm and 15 nm and the length was $500 \mu \mathrm{~m}$. The exposed samples were developed in IPA for 60 s . The obtained samples were cut and the cross-section view of the line-space patterns was evaluated by a field emission SEM (SIGMA-HD, ZEISS).

Supporting Figures

Figure S1. Preparation of ZrO_{2}-MAA MOC with 12 alkene functionalization under the solvothermal condition of the mono-nuclear Zr -alkoxides $\mathrm{Zr}(\mathrm{OPr})_{4}$ and methacrylic acid (MAA) by a thermodynamically reversible reaction.

Figure S2. Single-crystal structure of ZrO_{2}-MAA MOC.

Figure S3. Top-view SEM images of ZrO_{2}-MAA MOC single-component photoresist patterns exposed by EBL. A, LW $=28 \mathrm{~nm}, 70 \mu \mathrm{C} \mathrm{cm}^{-2} ; \mathbf{B}, \mathrm{LW}=26 \mathrm{~nm}, 70 \mu \mathrm{C} \mathrm{cm}^{-2} ; \mathbf{C}, \mathrm{LW}=23 \mathrm{~nm}, 90$ $\mu \mathrm{C} \mathrm{cm}^{-2}$ and $\mathbf{D}, \mathrm{LW}=21 \mathrm{~nm}, 90 \mu \mathrm{C} \mathrm{cm}^{-2}$. The film thickness was about 50 nm . The samples were developed in toluene for 15 s . The scale bar is 100 nm .

Figure S4. Top-view SEM images of ZrO_{2}-MAA MOC single-component photoresist patterns exposed by EUV lithography. $\mathbf{A}, \mathrm{LW}=50 \mathrm{~nm}, 27.2 \mathrm{~mJ} \mathrm{~cm}^{-2} ; \mathbf{B}, \mathrm{LW}=35 \mathrm{~nm}, 27.2 \mathrm{~mJ} \mathrm{~cm}^{-2}$. The film thickness was about 50 nm . The samples were developed in toluene for 15 s . The scale bar is 200 nm .

e Photoelectron/secondary electron - ZrO_{2}-MAA MOC

Figure S5. The patterning mechanism for ZrO_{2}-MAA MOC photoresist under EUV and electron beam exposure. A, Schematic diagram of radiated photoresist molecules. B, Dissociation of one 2-propenyl group and CO_{2} from ZrO_{2}-MAA MOC. C, The resulting free radical polymerizations.

Figure S6. Illustration and bond dissociation enthalpy (BDE) calculation for dissociation of one 2-propenyl group and CO_{2} from ZrO_{2}-MAA MOC.

Figure S7. Illustration and density functional theory calculated the energy profile for the addition polymerization process of the 2-propenyl group to a MOC.

Figure S8. Top-view SEM images of ZrO_{2}-MAA MOC single-component photoresist patterns exposed by EBL. A, line-space pattern with a feature of 10 nm and period of $150 \mathrm{~nm}, 1200$ $\mathrm{pC} / \mathrm{cm}$; B, Grid pattern with a feature of 12 nm and period of $300 \mathrm{~nm}, 1300 \mathrm{pC} / \mathrm{cm} ; \mathbf{C}, \mathbf{D}$, Grid pattern $\left(3^{*} 3 \mu \mathrm{~m}\right)$ with a feature of 14.5 nm and period of $80 \mathrm{~nm}, 80 \mu \mathrm{C} / \mathrm{cm}^{2} ; \mathbf{E}, \mathbf{F}$, Dot matrix with a feature of 13 nm and period of $60 \mathrm{~nm}, 1.2 \mathrm{fC}$. The exposed films were developed in AD, toluene for 30 s or $\mathbf{E - F}$, IPA for 60 s .

Figure S9. On-set dose and saturation dose of photoresists of ZrO_{2}-MAA MOCs and different amounts of HQ ($\mathrm{wt} . \%$ to ZrO_{2}-MAA MOCs) exposed by EBL.

Figure S10. Sensitivity and contrast of photoresists with different amounts of HQ (wt.\% to ZrO_{2}-MAA MOCs).

Figure S11. Top-view SEM images of PMMA photoresist patterns without and with (7 wt. \% to PMMA) free radical quencher. The electron beam point exposure doses are about $\mathbf{A}, \mathbf{B}, 107$ $\mathrm{fC}, \mathbf{C}, \mathbf{D}, 51 \mathrm{fC}, \mathbf{E}, \mathbf{F}, 18 \mathrm{fC}$, and $\mathbf{G}, \mathbf{H}, 9 \mathrm{fC}$, respectively. D represents hole diameter.

Figure S12. The hole diameter of PMMA photoresist patterns without and with ($7 \mathrm{wt} . \%$ to PMMA) free radical quencher. The electron beam point exposure dose is $107 \mathrm{fC}, 51 \mathrm{fC}, 18 \mathrm{fC}$, and 9 fC , respectively.

Figure S13. SEM images and corresponding EDS mapping of the photoresist films. A, B, Film of photoresist consisting of ZrO_{2}-MAA MOC and HQ ($20 \mathrm{wt} . \%$ to ZrO_{2}-MAA MOC). C, D, Film of photoresist consisting of ZrO_{2}-MAA MOC and CI-HQ ($20 \mathrm{wt} . \%$ to ZrO_{2}-MAA MOC). \mathbf{E}, \mathbf{F}, Film of photoresist consisting of ZrO_{2}-MAA MOC and TEMPO ($20 \mathrm{wt} . \%$ to ZrO_{2}-MAA MOC).

Resolution in 1/1 dense pattern

Figure S14. Top-view SEM images of photoresist patterns with different amounts (wt.- $\%$ to ZrO_{2}-MAA MOCs) of HQ exposed by EBL. Nested-"L" line-space patterns with half-pitch of $15-10 \mathrm{~nm}$. The electron beam doses are about $800 \mathrm{pC} / \mathrm{cm}(0 \mathrm{wt} . \%), 1200 \mathrm{pC} / \mathrm{cm}(4 \mathrm{wt} . \%), 1700$ $\mathrm{pC} / \mathrm{cm}(8 \mathrm{wt} . \%), 2200 \mathrm{pC} / \mathrm{cm}(16 \mathrm{wt} . \%), 3000 \mathrm{pC} / \mathrm{cm}(24 \mathrm{wt} . \%), 3400 \mathrm{pC} / \mathrm{cm}(32 \mathrm{wt} . \%)$, and $4800 \mathrm{pC} / \mathrm{cm}$ (40 wt.\%), respectively.

Figure S15. Top-view and cross-sectional SEM images of lines obtained by EBL (Patterning design: line-space, HP is 15 nm and 12 nm). A, B, Top-view. C, D, Vertical cross-section view. \mathbf{E}, \mathbf{F}, Cross-section view at a tilted angle of 3°. The exposure dose was $3200 \mathrm{pC} / \mathrm{cm}(\mathbf{A}, \mathbf{C}, \mathbf{E})$ and $3500 \mathrm{pC} / \mathrm{cm}(\mathbf{B}, \mathbf{D}, \mathbf{F})$, respectively.

Supporting Tables

Table S1 Atomistic coordinates for ZrO_{2}-MAA MOC, optimized using DFT method in Gaussian 16 package with hybrid exchange-correlation functional B3LYP as functional, and Polarized split-valence def2-SVP as basis set.

Atom	x / a	y/b	z/c
O	-3.60073	1.93381	0.02057
C	-5.57243	3.86510	0.27409
H	-3.12359	5.73853	1.26601
O	-3.59230	-1.99366	-0.09706
C	-5.55498	-3.93242	-0.36245
H	-4.60383	-6.39242	-0.58528
H	0.48239	-3.16045	-5.99639
O	-0.05633	-3.58730	-2.00420
C	-0.29973	-5.54584	-3.94993
H	-0.57231	4.54231	6.35950
O	-0.08717	3.54136	1.95802
C	-0.34884	5.49938	3.90188
H	-5.81060	1.22919	3.04270
O	-2.00178	0.00573	3.54267
C	-3.94601	0.24898	5.50273
H	-6.36369	-0.53598	-4.64723
O	-1.97052	-0.05899	-3.60616
C	-3.89806	-0.30727	-5.58226
H	-5.87306	2.81980	0.17458
O	-2.02126	3.53105	0.05767
C	-3.78946	5.63029	0.39432
O	-2.00672	-3.58509	-0.12050
C	-3.76476	-5.69124	-0.46742
O	-3.58976	0.03264	1.95368
C	-5.70135	0.35824	3.70937
O	-3.57142	-0.09258	-2.03032
C	-5.66735	-0.42501	-3.80320
O	-0.07505	-1.99753	-3.59151

C	-0.40115	-3.75136	-5.70460
O	-0.11347	1.95158	3.54521
C	-0.45623	3.70483	5.65612
H	-0.46202	6.28165	4.65829
Zr	-2.53480	-0.02785	-0.03378
O	-1.06945	1.01063	1.01824
O	-1.05629	-1.06055	-1.07301
C	-0.16751	3.15971	3.16527
C	-0.12913	-3.20579	-3.21197
C	-3.18110	-0.14026	-3.23541
C	-3.20955	0.08246	3.16191
C	-3.22722	3.14335	0.10460
C	-3.21373	-3.20190	-0.17686
O	-1.43248	-1.43932	1.37107
O	-1.42569	1.38800	-1.42908
C	-4.27606	4.21358	0.26065
C	-4.25748	-4.27614	-0.33924
C	-0.27981	-4.24733	-4.29005
C	-0.32766	4.20096	4.24226
C	-4.28681	0.23282	4.20435
C	-4.24934	-0.29378	-4.28665
H	-1.98174	1.94683	-1.98616
H	-1.99104	-2.00011	1.92364
O	3.55552	-1.98067	0.03266
C	5.52487	-3.91476	0.28325
H	3.15562	-5.97525	-0.51046
O	3.54815	1.94814	-0.04737
C	5.51239	3.88870	-0.28676
H	3.05604	5.76046	-1.26255
H	-0.47932	3.16999	-5.96932
O	0.02871	3.56123	-1.96948
C	0.28458	5.53756	-3.89579
H	0.48339	-4.64596	6.32013

O	0.02538	-3.60677	1.92452
C	0.27330	-5.58187	3.85315
H	5.95178	-0.47687	-3.16529
O	1.95737	0.04723	-3.58771
C	3.90120	0.30885	-5.54579
H	5.73946	-1.30375	3.08121
O	1.92658	-0.08542	3.55997
C	3.85560	-0.34085	5.53373
O	1.97564	-3.57792	0.04125
C	3.74053	-5.68024	0.37601
H	5.81700	2.84379	-0.19561
O	1.96270	3.53974	-0.06936
C	3.72276	5.64809	-0.39202
O	3.54522	0.06532	-1.99848
C	5.65621	0.40853	-3.75154
H	4.65759	0.42225	-6.32803
O	3.52743	-0.09809	1.98376
C	5.62490	-0.43771	3.75339
H	2.80916	-0.24950	5.83299
O	0.03875	-2.03125	3.52604
C	0.37137	-3.80246	5.62331
H	0.18293	-5.88051	2.80645
O	0.06176	1.98596	-3.57096
C	0.40151	3.75895	-5.66560
Zr	2.49030	-0.01822	-0.01189
Zr	-0.02720	2.48960	-0.01078
Zr	-0.01747	-2.53550	-0.03481
Zr	-0.03308	-0.03491	2.48971
Zr	-0.01124	-0.01083	-2.53534
O	1.01588	-1.06662	1.01738
O	1.02092	1.02469	-1.05385
C	0.09676	-3.23588	3.13566
C	0.11136	3.19078	-3.18005

C	3.16494	0.12361	-3.20632
C	3.13745	-0.15806	3.18842
C	3.17004	3.15694	-0.12094
C	3.18120	-3.19086	0.10224
O	1.37570	1.37980	1.39696
O	1.39349	-1.42030	-1.43022
C	4.22853	-4.26267	0.25746
C	4.21475	4.23225	-0.26953
C	0.26897	4.24212	-4.24760
C	0.25058	-4.28642	4.20455
C	4.24194	0.28401	-4.24752
C	4.20651	-0.31588	4.23819
H	1.92975	1.93562	1.95902
H	1.95405	-1.97415	-1.98776
H	0.38197	-6.37066	4.60342
H	-0.51359	-3.21645	5.92063
H	1.23879	-3.13233	5.73944
H	-6.33900	-4.68676	-0.47719
H	-5.86011	-2.88809	-0.26644
H	-3.17876	-5.99026	0.41698
H	-4.64789	-0.41556	-6.37151
H	-2.85192	-0.20959	-5.88056
H	-5.96936	0.45498	-3.21211
H	-6.35999	4.61644	0.38419
H	-4.63191	6.32825	0.50702
H	-3.19815	5.93267	-0.48541
H	-2.90193	0.15569	5.80955
H	-4.70258	0.35522	6.28581
H	-6.40488	0.46715	4.54769
H	1.27200	3.09182	-5.77575
H	6.29707	4.64379	-0.39175
H	4.56254	6.35004	-0.49983
H	3.13079	5.94152	0.49027

H	-0.25273	5.80706	2.85831
H	0.42720	3.11644	5.95332
H	-1.32412	3.03359	5.76168
H	-1.27029	-3.08254	-5.81528
H	2.85734	0.21557	-5.85334
H	5.76374	1.27464	-3.07831
H	6.35957	0.52512	-4.58896
H	4.60602	-0.45236	6.32198
H	6.32188	-0.55273	4.59635
H	5.92332	0.44815	3.16930
H	3.06822	-5.79528	1.24188
H	0.51555	4.60300	-6.36141
H	0.18573	5.83565	-2.84970
H	-5.39578	6.32688	-4.64513
H	-5.99523	-1.29685	-3.13802
H	-3.09219	-0.52330	3.11649
H	-0.51065	-5.79823	-1.33411
H	-0.20928	-4.58906	-6.40876
	4.58191	-65339	-2.90582
H	6.31142	-6.32831	-4.70710
	5.82650	-2.86878	0.48928
		0.39298	
		0.19440	

Table S2 Crystal data and structure refinement for ZrO_{2}-MAA MOC.

Bond precision: Cell:	$\mathrm{C}-\mathrm{C}=0.0400 \AA$	Wavelength $=0.71073 \AA$
	$\begin{aligned} & \mathrm{a}=17.3180(8) \AA \\ & \text { alpha}=90 \end{aligned}$	$\begin{array}{cc} \mathrm{b}=17.3180(8) \AA & \mathrm{c}=18.1144(6) \AA \\ \text { beta }=90 & \text { gamma }=120 \end{array}$
Temperature:		173 K
Volume		4704.9 (5) $\AA 3$
Space group		P 63 mc
Hall group		P 6c-2c
Moiety formula		H60 $032 \mathrm{Zr6}$ [+solvent]
Sum formula		H60 $032 \mathrm{Zr6}$ [+solvent]
Mr		1696.28
Dx, g cm-3		1.197
Z		2
$\mathrm{Mu}(\mathrm{mm}-1)$		0.699
F000		1688.0
h, k, 1 (max)		24, 24, 25
Data completeness $=1.84 / 0.95$		heta $(\max)=29.633$

Table S3 Atomistic coordinates for ZrO_{2}-MAA MOC.
Space group: P63MC;
$\mathrm{a}=\mathrm{b}=17.3180 \AA, \mathrm{c}=18.1144 \AA$;
$\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$.

Atom	x / a	y / b	z / c
O	0.81850	0.33360	0.58440
O	0.59440	0.07730	0.36810
O	0.68580	0.11850	0.46710
O	0.64760	0.16990	0.22790
C	0.63820	0.06700	0.40730
C	0.68330	-0.03970	0.47290
H	0.71860	-0.06100	0.44920
H	0.64540	-0.08230	0.50920
H	0.72180	0.01630	0.49650
C	0.63330	0.14400	0.07000
H	0.68650	0.16300	0.09870
H	0.64580	0.18380	0.02940
H	0.61330	0.08470	0.05150
C	0.62770	-0.02770	0.41720
H	0.67010	-0.01770	0.37740
C	0.95100	0.41500	0.70500
O	0.72080	0.13920	0.45960
O	0.63360	0.09070	0.36160
C	0.68460	0.08460	0.41680
C	0.68400	0.00340	0.42340
H	0.72480	0.01880	0.38170
C	0.61300	-0.07560	0.38230
H	0.57390	-0.05930	0.35790
H	0.57910	-0.12320	0.41640
H	0.64040	-0.09480	0.34630
C	0.74600	-0.00500	0.47240
H	0.80230	0.05000	0.47250
H	0.75540	-0.05230	0.45530

H	0.72270	-0.01800	0.52160
C	0.55400	-0.10400	0.37870
H	0.51080	-0.08800	0.36340
H	0.52680	-0.15410	0.41130
H	0.57710	-0.11870	0.33610
C	0.93700	0.38500	0.67700
Zr	0.73464	0.26536	0.49179
O	0.74200	0.25800	0.36150
Zr	0.59928	0.19855	0.33602
O	0.60985	0.21970	0.44900
C	0.57150	0.14300	0.11130
C	0.58070	0.16140	0.19390
O	0.66667	0.33333	0.30630
O	0.66667	0.33333	0.54820
C	0.84400	0.42200	0.60850
C	0.91600	0.45800	0.65630

Table S4 DFT calculated species and relative energies (Hartree) of the reaction path.

Reactions	Species	Gibbs free energy (Hartree)
(1)	2-propenyl	-117.0879485
	ZrO_{2}-MAA	-4554.925658
	TS-1	-4672.000404
	P-1	-4672.060198
(2)	2-propenyl	-117.127299177
	TEMPO	-483.311152523
	P-2	-600.523129185
(3)	2-propenyl	-117.127299177
	HTEMPO	-558.462682352
	P-3	-675.674771807
(4)	2-propenyl	-117.127299177
	DPPH	-1416.73726633
	TS-4	-1533.86026858
	P-4	-1533.96729698
(5)	2-propenyl	-117.127299177
	BQ	-381.138158565
	P-5	-498.344129517
(6)	2-propenyl	-117.127296593
	HQ	-382.374353659
	TS-6	-499.499349259
	P-6	-117.801855865

References

1. Valenzano, L., et al., Chem. Mater. (2011) 23 (7), 1700.
2. Trickett, C. A., et al., Angew. Chem. Int. Ed. Engl. (2015) 54 (38), 11162.
