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Spin-orbit driven superconducting
proximity effects in Pt/Nb thin films

Machiel Flokstra 1, Rhea Stewart1,2, Chi-Ming Yim 1,3, Christopher Trainer1,
Peter Wahl1, David Miller 4, Nathan Satchell 5, Gavin Burnell 5,
Hubertus Luetkens 6, Thomas Prokscha 6, Andreas Suter 6,
Elvezio Morenzoni6, Irina V. Bobkova7,8,9, Alexander M. Bobkov7 &
Stephen Lee 1

Manipulating the spin state of thin layers of superconducting material is a
promising route to generate dissipationless spin currents in spintronic devi-
ces. Approaches typically focus on using thin ferromagnetic elements to per-
turb the spin state of the superconducting condensate to create spin-triplet
correlations. We have investigated simple structures that generate spin-triplet
correlations without using ferromagnetic elements. Scanning tunneling
spectroscopy and muon-spin rotation are used to probe the local electronic
and magnetic properties of our hybrid structures, demonstrating a para-
magnetic contribution to themagnetization that partially cancels theMeissner
screening. This spin-orbit generated magnetization is shown to derive from
the spin of the equal-spin pairs rather than from their orbital motion and is an
important development in the field of superconducting spintronics.

When nonsuperconducting materials are joined to a superconductor
to form hybrid structures, superconducting correlations may leak
into the adjoining materials and a variety of interesting proximity
phenomena can occur, leading to unique functionality1,2. Much work
has focused on the junction between superconducting (S) and fer-
romagnetic (F) layers whereby the ferromagnet induces spin-triplet
correlations by lifting the spin-degeneracy of the superconducting
state3,4. For a homogeneous ferromagnet this leads to the generation
of triplet spin pairs with only zero spin projection, while the creation
of equal spin pairs requires the presence ofmagnetic inhomogeneity.
These equal-spin triplet pairs are highly tolerant of the ferromagnetic
exchange field and due to their ability to propagate through rela-
tively long pathways in ferromagnetic materials are referred to as
long-ranged triplets. Their existence has been well-demonstrated
experimentally5–7. In the diffusive limit, triplet correlations generated
in this way possess the exotic property of having wavefunctions
that are antisymmetric in their time component (they are of

odd-frequency8), leading to unusual properties such as the para-
magnetic Meissner effect9–11.

Recently there has been much consideration of the role of spin-
orbit (SO) coupling in the creation and manipulation of spin-triplet
correlations inhybrid structures12–16. In refs. 12,13 the general condition
for the generation of long-range triplet correlations was considered. In
the diffusive limit for superconducting proximity, a homogeneous
ferromagnet in combination with a source of SO interactions can
generate equal-spin triplets leading to long-range triplet currents12,13.
SO coupling also lifts spin degeneracy and it has long been known
theoretically that for a homogeneous superconductor in the presence
of SO interactions the pair wavefunction can be a mixture of s-wave
singlets and p-wave triplets17. The question thus arises of whether SO
coupling, even in the absence of ferromagnetism, can generate triplet
pair correlations in proximity coupled systems. Using the quasi-
classical approximation usually employed for these systems, Bergeret
and Tokatly 12,13 concluded that SO coupling by itself cannot induce
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triplet pairing. More recently a number of papers using other
approaches have however suggested that triplet superconductivity
can arise in Rashba SO metals and in metals with impurity-
induced SO coupling, when coupled by proximity to a singlet
superconductor14,15,18–21. These conclusions have also been supported
recently by extension of the quasiclassical approach to include terms
to first order in the SO interaction and appropriate modifications to
the boundary condition between a superconductor and a high spin-
orbit metal16. The results were also shown to be robust where the S
layer itself also contains spin-orbit interactions. The triplet correla-
tions generatedwere found to be long-ranged in that their decay in the
normalmetal is on the length scale of the normal state spin correlation
length (and not shortened by the SO mechanism that creates them, in
contrast to the case for short-ranged triplets inside a ferromagnetic
material).

In this paper we use low-energy muon-spin rotation (LE-μSR) and
scanning-tunneling spectroscopy (STS) to investigate the magnetic
and electronic response of aNb/Pt heterostructure. Both Pt andNb are
known to have strong SO interactions22,23 (with Pt considerably stron-
ger than Nb) and Pt is also a Stoner enhanced paramagnet24. We
demonstrate the existence of a strong paramagnetic response of the
superconducting condensate in the vicinity of the interface between
the S and the spin orbit metal (SOM) layer, which has an unusual
dependence on both temperature and magnetic field. Application of
quasi-classical calculations18,19 to model our precise sample layouts
confirms these results and further demonstrates that the dominant
mechanism is the spin associated with the triplet pairs rather than a
modification of the Meissner currents. This is the first experimental
demonstration of this novel effect and of the presence of odd-
frequency triplet pair correlations in a proximity coupled super-
conductor in the absence of a strong exchange field.

Results
The proximity induced superconductivity in the Pt layers was studied
using STS. Figure 1A shows the normalized differential conductance at
the surface of the Pt layer for two samples, Pt(10)/Nb(50)/Si (ST1) and
Pt(2)/Nb(50)/Si (ST2) (numbers indicating the layer thickness in nm

and both samples were capped by 5 nm Au to perform the STS). For
ST2 the gap across a 2 nm Pt layer is almost completely developed,
whereas for ST1 the gap is reduced to around 10%of that in theNb. This
reflects the relatively short normal metal coherence length of around
10 nm inside the Pt (at our typical lowest measurement temperature
for muon experiments of 2.5 K), which is very similar to the super-
conducting coherence length of our sputteredNb itself. The important
result here is that superconducting pairs can pass through a 10 nm
thick Pt layer. Figure 1B shows the temperature dependence of the STS
spectra for ST2, which shows good agreement with predictions
obtained from the microscopic Usadel theory using realistic material
parameters for the layout (see SI formoredetail on the STS, including a
direct comparison with the phenomenological Dynes model).

To further investigate the Pt/Nb interface we used LE-μSR to
measure the local flux density B(x) as function of depth into a Cu(40)/
Pt(10)/Nb(50)/Si (SM2) sample (Fig. 2). In a sister sample Cu(40)/
Nb(50)/Si (SM1) without a Pt spacer layer, the Cu layer is highly prox-
imitized having a ξs ~ 100 nm similar to that in Au25, and due to the long
electronicmean free path in Cu there is significant Meissner screening
of the applied magnetic field B0 = 300 G on both sides of the Cu/Nb
interface (Fig. 2)25. In SM2, the presence of the 10 nm Pt layer between
the Cu andNb causes a significant reduction of theMeissner screening
on both sides of the interface, though superconducting pairs are still
able to cross the 10nmPt layer, aspreviously shownusing the STSdata.
For all our presented muon measurements the typical error in the
obtained flux density is of order 0.1 G. Using the quasiclassical Usadel
equations (see SM for more detail on the quasiclassical modeling) we
are able to produce a good description of the resulting Meissner
profile B(x) (Fig. 2) using only parameters obtained from independent
LE-μSR, STS and transport measurements, and importantly, omitting
any SO interactions. To compare the calculated profile with the muon
results it is necessary to convolute B(x) with the energy-dependent
muon stopping profile, which, for SM2, yields the curve presented in
Fig. 2 that gives a good description of the experimental muon results
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Fig. 1 | Scanning tunneling spectroscopy data on Au(5)/Pt(x)/Nb(50)/Si(subs)
(nm). A The normalized differential conductance dI

dV for x = 2, 10 nm. For x = 2 nm
the Au layer is almost fully proximitized. The reduced gap for x = 10 nm suggest a
coherence length ξs ~ 10 nm. B Temperature evolution of the induced gap for x = 2
nm compared to predictions based on the microscopic Usadel theory (see sup-
plementary materials for more detail).
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Fig. 2 | Low-energy muon-spin rotation data for the average flux density 〈B〉 as
function of average muon implantation depth 〈x〉 relative to the super-
conducting interface forCu(40)/Nb(50) (SM1), Cu(40)/Pt(10)/Nb(50) (SM2) and
Pt(56)/Nb(96) (SM3), with numbers indicating the layer thickness in nm. Flux
densities are presented relative to applied magnetic field B0 (which is observed in
all samples at T = 10 K with Nb in the normal state). In SM1, Cooper pairs diffuse far
into the Cu due to its relatively long coherence length (ξs ~ 100 nm) and flux
screening develops well into the Cu. In SM2, the addition of the 10 nm thin Pt layer
(which has a much shorter ξs ~ 10 nm) shows a significant reduction of the flux
screening. The SM2 data are modeled with a theoretical B(x) (see text) which pre-
dicts the solid line for its corresponding 〈B〉 values. In SM3 the thicker Nb layer
greatly enhances screening inside the Nb layer, however, the absence of screening
near the Pt/Nb interface is unanticipated and is one of the key results presented in
this paper. For all data points, error bars fit within the symbols used.
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(see SM for more detail on the LEM technique and data analysis). The
addition of the 10 nm thin Pt layer thus acts as something approaching
a vacuum interface (i.e., greatly reducing proximity into the Cu and its
contribution to the screening response). The resulting screening cur-
rents now flow mainly in the half space to the right of the Pt/Nb
interface (x > 0).

The main results of this paper concern samples containing much
thicker layers of Pt, such as Pt(56)/Nb(96)/Si (SM3) (Fig. 2). The choice
of a thicker Nb layer, but still shorter than the magnetic penetration
depth of about 150nm25, allows the possibility for larger screening
currents to develop, amplifying subtle effects that scalewith the size of
the screening. The screening behavior of the Nb layer by itself and (in
proximity to Cu and Au) is extremely predictable and has been pre-
viously measured in a variety of thin-film architectures25–27. As one
might expect, for thehighermuonenergies probing inside theNb layer
a significantly larger screening is observed compared to SM2. How-
ever, the flux densities at each average implantation depth 〈x〉 have to
be considered rather carefully in relation to themuon stopping profile
used to sample them. It is instructive for sample SM3 to consider the
point at -2 nm (e.g., 2 nm into the Pt measured from the Pt/Nb inter-
face), which is almost exactly at the boundary between the Pt and Nb
layers. The corresponding muon stopping profile is shown in Fig. 3,
together with the TEM image of the interface. Due to scattering pro-
cesses roughly half the muons for this measurement stop in the Nb
layer, extending some 30 nm (around 3 coherence lengths) into the
superconductor. A significant screening would thus be expected to be
found at that muon energy. However, we find a much reduced value
(see supplementary materials for similar results obtained on two
related Pt/Nb samples with different layer thicknesses).

To model the SM3 data we make a detailed theoretical simulation
for the specific sample layout, including extrinsic spin-orbit coupling
in the dirty limit as discussed in refs. 18,19. More details of the appli-
cation of this theory are presented in supplementary materials. We
address the crucial question of how, in these particular structures, do
the spin-triplet pairs contribute to the measured magnetic flux den-
sity? Two possible origins for additional paramagnetic contributions
are identified: (1) due to the spin splitting of the quasiparticle density
of states, caused by the spin-triplet pairs, and (2) due to (triplet)
Meissner currents. This latter effect, which is typically the pre-
dominant one in F-S systems11, is found in this purely SO coupled
system to be orders of magnitude smaller than the first. The dominant
effect is therefore one that has not been previously observed experi-
mentally, a paramagnetic magnetization due to the local net spin-
angular momentum of the condensate, as distinct from one arising
from the orbital screening motion of the triplet pairs. In Fig. 4A we
show this theoretical prediction for the spatial variation of the SO
induced paramagnetic contribution, calculated as a function of tem-
perature. The paramagnetic contribution is strongest at the Pt/Nb
interface with an amplitude that increases with decreasing

temperature. The paramagnetic contribution also propagates into
both layers and decays over several tens of nm. To compare our
detailed theory model with the experimental data, we convolute the
theory curve at T = 2.5 K with the actual muon stopping profiles. This
gives the theoretically predicted SO contribution to the experimental
muon data. The result is shown in Fig. 4B. Essentially this shows the
additional contribution to the measurement expected from the spin-
triplet pairs (generated by the SO interactions) when compared to a
purely spin-singlet signal measured in the absence of SO interactions.
Figure 4C shows the experimental muon data (filled circles) alongside
the theoretically predicted measurement data (squares) when SO
interactions are omitted. The difference between these curves, shown
in Fig. 4D, allows a good estimate of the experimentally determined
additional paramagnetic contribution. Comparison with Fig. 4B shows
that it is similar both in shape and magnitude, with an expected
maximum between the third and fourth implantation depth.

In order to explore further the development of the paramagnetic
contribution we examine the temperature dependence of the total
magnetic screening close to the interface, which for a singlet super-
conductor below Tcwould be a monotonic dependence that increases
with the size of the gap25. From our theoretical simulations we find this
monotonic behavior from the diamagnetic contribution. However, an
unexpected upturn is found at lower temperatures due to the para-
magnetic contribution. Both results are shown in Fig. 5A for twomuon
implantation energies, one probing predominantly at the Pt/Nb
interface (19 keV) and the other probing deeper inside the Nb layer
(27 keV). The upturn found in the theory model is predominantly due
to the spin-triplet density increasing for lower temperatures. However,
the low-temperature susceptibility of the Pt, which was experimentally
determined as χ =0.104/(T + 0.652) (see SI), also plays an important
part, as does, to a lesser extent, the temperature dependence of the
coherence length inside the Pt. Fig. 5B, C shows the corresponding
measurement result, where for an implantation energy of 19 keV we
indeed find this upturn, albeit with a slightly smaller magnitude of the
effect. We have also measured the low-temperature field dependence
of the expulsion, which even at 〈x〉 = 82 nm has an unusual hBi / H

3
2

dependence as opposed the usual linear dependence25, indicating an
unconventional superconducting state (see Fig. 5D).
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Discussion
The appearance of additional orbital paramagnetic contributions can
arise in systems where odd-frequency spin-triplet correlations are
generated when the spin degeneracy of the superconducting state is
lifted. In an appliedmagnetic field the unusual time reversed response
of the odd-frequency pairs can have a noticeable influence on the
electromagnetic response of the condensate (see refs. 11,28) within a
few coherence lengths of the interface, though deep within the S layer
the singlet response will dominate. This has been observed using LE-
μSR in a normalmetal Au layer near the interface between S and F layer
in Au/Ho/Nb11 and in Au/C60/Cu/Nb

28. Nonetheless, in our present Nb/
Pt system, however, we estimate these orbital contributions to be
practically unresolvable. Recently the existence of spin triplets gen-
erated at Nb/Pt interfaces has been suggested via FMR experiments
with correlations decaying over a similar length scale within the Nb to
those observed here29. In our Pt/Nb system there is no ferromagnetic
exchange field to convert spin-singlet pairs into spin-triplet pairs.
However, by way of the (relatively strong) spin-orbit interaction in the
Pt there is still a mechanism to create such spin-triplet pairs. These
pairs are now in an environment devoid of a strong exchange energy,
whichwouldotherwise limit the coherence length of the opposite-spin
spin-triplet pairs to around 1 nm. From our detailed theoretical mod-
eling we find that the origin of the paramagnetic contribution arising
near the interfacewith the superconductor is not from a paramagnetic
Meissner current, as was the case for the Ho-based samples, but
instead from the net spin of the spin-triplet pairs.

The theoretical expectation that a SOMproximity coupled to an S
is capable of generating odd-frequency triplet correlations14–16, cou-
pled with the existence of triplet spin currents implied by the experi-
ments of reference29 (and intimated by refs. 30,31), provide a natural
explanation of the anomalous screening behavior we observe.

We believe our results are distinct from previous reports of para-
magnetic screening in that theoriginof the contribution is fromthe spin
of the triplet component rather than from their unusual orbital motion.
The direct generation andmanipulation of net spin correlation without
the need for ferromagnetic elements is an important step forward in the
direction to combine superconductivity and conventional spintronics.

Methods
The samples were prepared by dc magnetron sputtering on Si (100)
substrates at ambient temperature and a base pressure of 10−8 mbar.

Growth of all layerswas performed at a typical Ar flowof 24 sccmand a
pressure of 2–3μbar with a typical growth rate of 0.2 nm s−1. Growth
rates for each material were calibrated by low angle X-ray reflectivity
measurements on single material layers. The Nb target had a purity of
99.999% yielding sputtered Nb films with a typical superconducting
transition temperature (Tc) of 8.7 K and a superconducting (Ginzburg-
Landau) coherence length (ξs) of about 11 nm, determined fromcritical
field measurements with field perpendicular to the sample plane. Two
samples were grown for the STS measurements, Au(5)/Pt(10)/Nb(50)/
Si (ST1) and Au(5)/Pt(2)/Nb(50)/Si (ST2), where for all samples thick-
nesses are given in nm and variations in the thickness of the cap layer
are well below 1 nm. For the muon experiments two samples were
grown to investigate the transmission characteristics of a thin Pt
spacer later, Cu(40)/Nb(50)/Si (SM1) and Cu(40)/Pt(10)/Nb(50)/Si
(SM2). A third sample was grown to study the influence of a thick Pt
layer Pt(56)/Nb(96)/Si (SM3).

The quality of the interfaces between the Pt and Nb layers was
investigated using transmission electron spectroscopy (TEM). The
TEM measurements on the same sample show interfaces that are flat
and clean both in terms of contrast (Fig. 3) and chemical specificity
(see SI), with no evidence of interfacial alloying. In order to measure
the density of states at the surface of the Pt layers we made use of two
home-built scanning tunneling spectroscopy (STS) machines32. We
used Pt-Ir tips, cut from a Pt wire and cleaned by in-situ field emission
on a gold single crystal. All presented dI

dV spectra are normalized with
respect to the dI

dV values at the region outside the superconducting gap
where the spectral shape is completely flat. The local magnetic field as
a function of depth into the sample was determined using low-energy
muon-spin rotation (LE-μSR). SQUID magnetometry (M(T,H)) and
standard transport techniques (R(T), Hc2(T)) were also used to test
sample quality and extract material parameters.

Data availability
The data that support the findings of this study are available from
https://doi.org/10.17630/fa092d91-864d-4ae0-911e-7b630e6f0fe8.
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