Franz Conen<sup>1</sup>\*, Nicolas Bukowiecki<sup>2</sup>, Martin Gysel<sup>2</sup>, Martin Steinbacher<sup>3</sup>, Andrea Fischer<sup>3</sup>, Stefan Reimann<sup>3</sup> <sup>1</sup>Department of Environmental Sciences, University of Basel, Switzerland <sup>2</sup>Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Switzerland <sup>3</sup>Laboratory for Air Pollution/Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Switzerland \*Correspondence to: F. Conen, Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland; E-mail: <a href="mailto:franz.conen@unibas.ch">franz.conen@unibas.ch</a> ### Abstract Smoke from forest fires in the western part of North America reached the High Altitude Research Station Jungfraujoch, Switzerland, at the beginning of September 2017. Number concentration of ice nucleating particles (INPs) active at -15 °C or warmer decreased by about half during its passage. This is different to observations of enhanced INP concentrations in fresh plumes from forest fires. We hypothesise that INPs initially present in a smoke plume are lost or deactivated during long range transport, while components of smoke capable to deactivate INP originally present or mixed later into the plume continue to remain active across a longer distance. Key Words: forest fire, smoke plume, ice nucleating particles, coating, deactivation This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/qj.3312 #### 1. Introduction Dozens of forest fires had shrouded large parts of the Pacific Northwest, U.S.A, and Western Canada at the beginning of September 2017 in a cloud of smoke and ash (Stevens, 2017). A large fraction of the smoke cloud detached, crossed North America and the Atlantic, and arrived after about four days in Western Europe, as satellite data have shown (NASA Earth Observatory, 2017). One of the most comprehensive measurement programs of in-situ trace gas and aerosol properties at a mountain site world-wide is run at the High Altitude Research Station Jungfraujoch (3580 m a.s.l.) in Switzerland. While the station is predominantly exposed to pristine lower free troposphere air masses, several parameters clearly indicated the presence of smoke for a period of approximately two days, from September 7<sup>th</sup> in the evening until September 9<sup>th</sup> around noon (Figure 1). We took this rare chance to investigate the long-distance impact of forest fires on ice nucleating particles (INPs). Previous observations in the U.S.A. have shown that forest fires can regionally enhance INP number concentrations above background (McCluskey *et al.*, 2014; Prenni *et al.*, 2012), though not all fuels produce INPs (Petters *et al.*, 2009) and smoldering fires are a negligible source of INP (Prenni *et al.*, 2012). However, flaming fires, such as the ones having caused the plume we sampled, can double or triple INP number concentrations regionally and measurably enhance them even 1600 km downwind (Prenni *et al.*, 2012). Upon further transport, the sign of the impact may change. For example in October 2004, numerous fires in Siberia could have led to the substantial decrease in INP number concentration registered three to four days later above Alaska, where an increase in the fraction of carbonaceous particles was observed simultaneously (Prenni *et al.*, 2009). ## 2. Methodology A comprehensive set of aerosol physical properties and trace gases are continuously measured at Jungfraujoch (07°59'02" E, 46°32'53" N, 3580 m a.s.l.) as part of the Swiss contribution to WMO's Global Atmosphere Watch (GAW) programme and the operation of the Swiss National Air Pollution Monitoring Network (NABEL) (Bukowiecki et al., 2016; Steinbacher et al., 2017). Next to the continuous analysis, integrated samples of particulate matter $< 10 \mu m (PM_{10})$ are collected at a rate of 30 m<sup>-3</sup> h<sup>-1</sup> on quartz-fibre filters (140 mm effective diameter) for 24 hours starting midnight. We analysed sections of these filters for their content of INPs active at -15 °C or warmer (INP-15). From each filter, 54 punches (1 mm diameter) were immersed in the same number of 0.5 ml Eppendorf tubes with 0.1 ml ultrapure water and exposed in a cold bath to a temperature of -7 °C, declining over the course of 25 minutes to -15 °C. The number of frozen tubes was observed visually at -15 °C. The method is described in more detail in Conen et al. (2012, 2015). Apart from the three days with enhanced markers of smoke (September 7<sup>th</sup> to 9<sup>th</sup>, 2017) we also analysed filters of the two preceding days, and of the day following the event. For comparison, we include data from background conditions during summer ( $PM_{10} < 2 \mu g m^{-3}$ ) and two Saharan dust events observed during the summers of 2016 and 2017. Saharan dust events are clearly recognisable at Jungfraujoch in the ochre colouring of PM<sub>10</sub> filters, in back-trajectories and in aerosol parameters (Collaud Coen et al., 2004; Conen et al., 2015). Number concentrations of particles were determined with an optical particle counter (TSI 3330, TSI Incorporated), which measures the number size distribution in 16 size channels between 0.3 and 10 µm (optical diameter), as well as with a scanning mobility particle sizer (SMPS, Wiedensohler et al. 2012) in the size range 16 - 591 nm (mobility diameter). #### 3. Results and discussion The average number concentration of particles larger than 0.5 $\mu$ m in diameter (n<sub>0.5</sub>) increased during the smoke event by about a factor of 20. This increase in n<sub>0.5</sub> was dominated by an increased particle number between 0.5 and 0.6 µm optical diameter as a result of strongly increased upper tail of the accumulation mode. The modal diameter increased from 90 nm to 200 nm (mobility diameter) and the particle number between 100 and 500 nm increased from <100 to 300-600 cm<sup>-3</sup>. In contrast, number concentrations of INP-15 were smaller, only about half as large, during the smoke episode compared to the three days bracketing it. Compared to other background values in summer, INP-15 concentration was not particularly high before and after the event (Figure 2). Observed INP<sub>-15</sub> concentrations during background conditions were between the two empirical parameterisations proposed by DeMott et al. (2010, 2015) for INPs as a function of $n_{0.5}$ and temperature. The earlier parameterisation is based on a large number of field observations from a variety of locations on Earth, the later parameterisation additionally includes laboratory data. The later parameterisation is explicitly for the immersion freezing ability of mineral dust particles. It is in good agreement with our observations of Saharan dust events. However, the smoke event was clearly below the lower prediction (Figure 2). This implies that the upper tail of the accumulation mode size distribution, which dominated n<sub>0.5</sub> during the smoke event, gave an under-proportional contribution to INP-15 compared to INP-15 number fraction relative to $n_{0.5}$ typically observed during background and Saharan dust conditions at Jungfraujoch. Background aerosol particles mixed into the smoke plume probably constituted the majority of INP<sub>-15</sub> at Jungfraujoch during the smoke event, because the number concentration of INP.15 during the event was only half the background value before and after the event. Hence, it is unlikely that the smoke itself contained relevant numbers of INP-15 when it reached Jungfraujoch, unless it was diluted less than 1:1 with background air, which is unlikely after the travelled distance. To the contrary, some INP<sub>-15</sub> in the background aerosol seem to have been deactivated by mixing with smoke. Organic aerosol constitutes the largest mass fraction of aerosol (PM<sub>1</sub>) in forest fire plumes (Kondo et al., 2011) and gas phase diffusion efficiently redistributes its semi-volatile components between aerosol particles in the lower troposphere (Marcolli et al., 2004). Condensation of such compounds onto background particles could have deactivated some of their ice nucleation-active sites (Möhler et al., 2008; Primm et al., 2017). Similarly, secondary organic aerosol particles generated in a smoke plume can coagulate with background particles and cover large parts of their surface (Deboudt et al., 2010). In our observation, the deactivating compounds must have been water-insoluble, otherwise they would have been removed from the ice nucleation active sites during the immersion freezing assay. Alternative explanations for the observed decrease in INP concentrations during the smoke event include their deactivation by compounds that were not emitted by the forest fires, sedimentation of activated INP with ice crystals prior the arrival of the smoke-affected air mass at Jungfraujoch, and initially reduced number concentrations of background INP.15 in the smoke-dominated air masses. Previous observations revealed the potential of forest fires to regionally increase the number concentration of INPs active at temperatures colder than -15 °C (Petters *et al.*, 2009; Prenni *et al.*, 2012; McCluskey *et al.*, 2014), although the ratio of INP to n<sub>0.5</sub> is smaller in fresh smoke than in background air (McCluskey *et al.*, 2014). Our opportunistic study of INP-<sub>15</sub> during the passage of aged smoke also shows a small ratio of INP to n<sub>0.5</sub>, but no increase in INP concentrations. Absolute concentration of INP-<sub>15</sub> was smaller in the smoke-affected air mass than in background air, similar to the observation made by Prenni *et al.* (2009) in Alaska. Based on these initial pieces of evidence we propose the following working hypothesis: INPs initially present in smoke plumes are lost or deactivated during long-range transport, while components of smoke that deactivate INPs, also in background air masses, are transported further. # Acknowledgements We thank the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG), 3012 Bern, Switzerland, for providing the facilities and for the support of our measurements. The Swiss National Air Pollution Monitoring Network (NABEL) is run by Empa in collaboration with the Swiss Federal Office for the Environment (FOEN). The CO measurements at Jungfraujoch are also supported by ICOS-Switzerland. We are grateful to Claudia Zellweger for sections of the PM<sub>10</sub> filters analysed in this study. PM<sub>10</sub> filters of regular background events and of one Saharan dust event (×) in Figure 2 were analysed with great care by Olivia Sartorius as part of her BSc thesis at the University of Basel, 2017. Aerosol data were acquired by Paul Scherrer Institute in the framework of the Global Atmosphere Watch (GAW) programme funded by MeteoSwiss. Further support was received from the ACTRIS2 project funded through the EU H2020-INFRAIA-2014-2015 programme (grant agreement no. 654109) and the Swiss State Secretariat for Education, Research and Innovation (SERI; contract number 15.0159-1). The opinions expressed and arguments employed herein do not necessarily reflect the official views of the Swiss Government. We thank two anonymous reviewers for their constructive and instructive comments. #### References Bukowiecki N, Weingartner E, Collaud Coen M, Zieger P, Herrmann E, Gysel M, Steinbacher M, Gäggeler HW, Baltensperger U. 2016. The essence from more than 20 years of aerosol observation at the high altitude research station Jungfraujoch, Switzerland (3580 m asl) – a review. *Aerosol Air Qual. Res.* 16: 764-788. Cazorla A., Bahadur R, Suski KJ, Cahill JF, Chand D, Schmid B, Ramanathan V, Prather KA. 2013. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. *Atmos. Chem. Phys.* **13**: 9337-9350. Collaud Coen M, Weingartner E, Schaub D, Hüglin C, Corrigan C, Henning S, Schwikowski M, Baltensperger U. 2004. Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis. *Atmos. Chem. Phys.* **4**, 2465-2480. Conen F, Henne S, Morris CE, Alewell C. 2012. Atmospheric ice nucleators active ≥ -12 °C can be quantified on PM<sub>10</sub> filters. *Atmos. Meas. Tech.* **5**: 321-327. - Conen F, Rodriguez S, Hüglin C, Henne S, Herrmann E, Bukowiecki N, Alewell C. 2015. Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland. *Tellus B* 67: 25014. - Deboudt K, Flament P, Choël M, Gloter A, Sobanska S, Colliex C. 2010. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis. J. *Geophys. Res.* **115**: D24207. - DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD, Twohy CH, Richardson MS, Eidhammer T, Rogers DC. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate. *Proc. Natl. Acad. Sci. U.S.A.* 107: 11217-11222. - DeMott PJ, Prenni AJ, McMeeking GR, Sullivan RC, Petters MD, Tobo Y, Niemand M, Möhler O, Snider JR, Wang Z, Kreidenweis SM. 2015. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. *Atmos. Chem. Phys.* **15**: 393-409. - Kondo Y, Matsui H, Moteki N, Sahu L, Takegawa N, Kajino M, Zhao Y, Cubison MJ, Jimenez JL, Vay S, Diskin GS, Anderon B, Wisthaler A, Mikoviny T, Fuelberg HE, Blake DR, Huey G, Weinheimer AJ, Knapp DJ, Brune WH. 2011. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. *J. Geophys. Res.* 116: D08204. - Marcolli C, Luo BP, Peter T, Wienhold FG. 2004. Internal mixing of the organic aerosol by gas phase diffusion of semivolatile organic compounds. *Atmos. Chem. Phys.* **4**: 2593-2599. - McCluskey CS, DeMott PJ, Prenni AJ, Levin EJT, McMeeking GR, Sullivan AP, Hill TCJ, Nakao S, Carrico CM, Kreidenweis SM. 2014. Characteristics of - atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires. *J. Geophys. Res. Atmos.* **119**: 10,458–10,470. - Möhler O, Benz S, Saathoff H, Schnaiter M, Wagner R, Schneider J, Walter S, Ebert V, Wagner S. 2008. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett. 3: 025007. - NASA Earth Observatory. 2017. *An American aerosol in Paris*. Image of the day, 15. September 2017. - Petters MD, Parsons MT, Prenni AJ, DeMott PJ, Kreidenweis SM, Carrico CM, Sullivan AP, McMeeking GR, Levin E, Wold CE, Collett Jr JL, Moosmüller H. 2009. Ice nuclei emissions from biomass burning. *J. Geophys. Res.* **114:** D07209. - Prenni AJ, DeMott PJ, Rogers DC, Kreidenweis SM, McFarquhar GM, Zhang G, Poellot MR. 2009. Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. *Tellus* **61B**: 436-448. - Prenni AJ, DeMott PJ, Sullivan AP, Sullivan RC, Kreidenweis SM, Rogers DC. 2012. Biomass burning as a potential source for atmospheric ice nuclei: Western wildfires and prescribed burns. *Geophys. Res. Lett.* **39**: L11805. - Primm KM, Schill GP, Veghte DP, Freedman MA, Tolbert MA. 2017. Depositional ice nucleation on NX illite and mixtures of NX illite with organic acids. *J. Atmos. Chem.* **74**: 55-69. - Steinbacher M, Wyss S, Emmenegger L, Hüglin C. 2017. *National Air Pollution Monitoring Network (NABEL)*. In: International Foundation High Altitude Research Stations Jungfraujoch + Gornergrat HFSJG Activity Report 2016, 60-64, <a href="https://www.hfsjg.ch/en/publications/activity-reports/">https://www.hfsjg.ch/en/publications/activity-reports/</a> (accessed 14.11.2017). - Stevens M. 2007. Fires Cover Northwest in Smoke and Ash. *New York Times*, 10. Sep. 2017, Page A21. Wiedensohler A, Birmili M, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa AM, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren JA, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings SG, O'Dowd CD, Marinoni A, Horn H-G, Keck L, Jiang J, Scheckman J, McMurry PH, Deng Z, Zhao CS, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S. 2012. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. *Atmos. Meas. Tech.* 5: 657-685. # Figure legends **Figure 1** Upper panel: Six-day time series of PM<sub>10</sub> (thick line), PM<sub>1</sub> (thin line), and CO (dotted line) at Jungfraujoch. Enhanced concentrations of PM from September 7<sup>th</sup> in the evening until September 9<sup>th</sup> around noon were associated with an average Scattering Ångström Exponent (SAE) of 2.0 and an Absorption Ångström Exponent (AAE) of 1.3, indicating an EC/OC mixture (Cazorla et al., 2013). The SAE value clearly distinguishes the event from a Saharan dust episode, where SAE is around 1.0. The ratio of PM<sub>10</sub> to PM<sub>1</sub> would also be much larger for dust episodes. Lower panel: OC concentrations derived from PM<sub>10</sub> filters sampled over 24 hours. **Figure 2** Number concentration of INP<sub>-15</sub> in relation to particles larger than $0.5 \, \Box m$ (n<sub>0.5</sub>) at Jungfraujoch during the passage of smoke from distant forest fires (filled diamonds). The values two days before, and the day after the smoke event, (open diamonds) fall into the cluster of other background values (circles; PM<sub>10</sub> < 2 $\, \Box g \, m^{-3}$ ). Data of two Saharan dust events during summer are added for comparison (×: 2016; +: 2017). The two lines indicate parameterisations of INP<sub>-15</sub> as a function of n<sub>0.5</sub> (continuous line: DeMott *et al.*, 2010; dashed line: DeMott *et al.*, 2015). For control, we analysed from two filters in each cluster (background, Saharan dust events, smoke event) the 5 mm wide fringe, where no air has passed through. These upper estimates of blank values (Conen *et al.*, 2012) were on average 8% of the sample values shown in the plot.