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A B S T R A C T   

The increased diffusion of information and communication technologies (ICTs) impacts daily life and economic 
growth. It introduces new social practices for households and business models for companies that influence 
society and energy infrastructure development. A framework capable of quantifying and analyzing the impact of 
digitalization on achieving energy and climate targets, with a focus on behavioral changes induced by ICT, is 
currently lacking. In this paper, a new framework is developed that is technology-rich and captures the pref
erences and behaviors of households and firms in the energy system to assess sustainable energy system con
figurations that are technically and socially feasible. The framework is designed and demonstrated for 
Switzerland. We find, for example, that teleworking in Switzerland reduces commuting demand by 10%, and the 
savings in transport expenses can favor the investment in efficient and clean residential technologies to 
compensate for the increased residential energy demand due to working at home. This manuscript contributes to 
the growing literature of suitable frameworks and case studies to account for the co-evolution of society and 
energy systems in achieving the transition to low-carbon economies.   

1. Introduction 

Digital transformation implies a continuous process of change, with 
the emergence of new business models, the increase in the use of digital 
technologies, and more prevalence of the Internet of Things [1]. 

The spread of Information and Communication Technologies (ICTs) 
impacts everyday life and the economy, affects society, and enables new 
energy and communication infrastructures [2]. ICTs can mitigate envi
ronmental degradation [3] and support the energy goals identified by 
the Paris Climate Agreement [4]. ICTs can also contribute to achieve 
cost-efficient pathways toward carbon neutrality by providing flexibility 
to energy vectors coupling through cross-sectoral technologies, recog
nized as a prerequisite for accomplishing the goal [5]. However, their 
impact on energy consumption and supply patterns [6] is not trivial to 
assess, increasing the difficulties of implementing targeted policies to 
strengthen the beneficial contribution of ICTs and reduce their negative 
implications to the environment and energy systems [7]. Furthermore, 

the absence of retrospective data [8], the need to capture emerging 
energy behaviors [9], and the unfamiliarity of some consumer groups 
with internet-based services [10] contribute to increasing the challenges 
in assessing the implication of ICT applications over a long time horizon. 
To quantify the effect that the digital transition will have on future 
energy targets, an analysis that is robust in assessing changes in user 
behavior and the implications for the changing behaviors on the energy 
supply and demand sectors, accounting for cross-sectoral in
terdependencies, is needed [11]. 

This paper presents a framework able to represent in detail both 
socio-economic structures and energy systems implications connected to 
ICT applications. The framework couples the Swiss TIMES Energy Sys
tems Model (STEM) [12], based on the TIMES energy systems modelling 
framework of IEA-ETSAP [13], with a new socio-technical-economic 
agent-based model, the so-called Socio-Economic Energy model for 
Digitalization – SEED, which has been specifically designed to interact 
with it. The SEED model is a first-of-its-kind because it adopts a social 
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practice approach to analyze the impact of new lifestyles enabled by 
ICTs (e.g., teleworking, e-learning, e-services) on energy consumption 
patterns by accounting for agents’ heterogeneity. This allows accounting 
for socio-economic and technical aspects affecting the rate of adoption 
of technologies. The SEED-STEM framework assesses long-term energy 
transition pathways, and the resulting energy system configurations 
account for citizens’ preferences, energy supply, resource, and tech
nology constraints, as well as different energy and climate change 
mitigation policies, when calculating energy mixes, investments, and 
prices. 

The new SEED model has a generic design and can be linked with any 
other energy system optimization model based on TIMES or a similar 
energy systems modeling framework, e.g., OSEMOSYS [14], RE3ASON 
[15]. This constitutes a major contribution of this work to the energy 
systems modeling research community. 

The paper is subdivided as follows: section 2 includes the literature 
review and section 3 describes the SEED model and its coupling with 
STEM. Section 4 demonstrates the coupled SEED-STEM framework for 
the case study of teleworking in Switzerland. The results are shown in 
section 5, while the paper concludes in section 6. The detailed mathe
matical formulation is in the Appendix. 

2. Literature review: including the effect of societal changes due 
to ICTs in energy systems analysis 

Due to the diffusion of ICTs into everyday life, new social practices 
and business models have been emerging (e.g., e-banking, e-commerce, 
online shopping, e-learning, etc.). This digitalization of practices [16] 
enables a systemic transformation of society through the utilization of 
new technologies, the acquisition of new competencies, and the devel
opment of new social preferences for these practices [17]. Considering 
that energy is needed and used to accomplish a social practice [18], 
understanding how social practices develop and change over time and 
space also means understanding the evolution in energy demands [19]. 
For example, ICTs impact residential energy consumption and patterns 
due to flexible working patterns [20] and the simultaneous performance 
of different activities [21], which changes the time of the day when they 
are performed [22]. The population’s growing online activities shift the 
peak of internet use to the earlier evening, accentuating the electricity 
peak [23]. The substitution of several end-uses devices with a single ICT 
device, particularly smartphones, can reduce the power demand by a 
factor of 100 [24]. 

The evolution of energy-consuming practices induced by ICT over 
time and their implication on the energy system should be addressed to 
understand the potential role of these practices on energy transition. In 
the IPCC report [25], lifestyle changes and new energy-consuming 
practices are recognized as essential to accelerate the achievement of 
net-zero GHG emissions energy systems compatible with the Paris 
Agreement climate change mitigation targets [4]. 

To assess their impact on energy transition, the evolution of digital 
social practices needs to be supported with a detailed representation of 
the energy system and its complexity. Bottom-up energy system cost- 
optimization models allow for such detailed representation, inte
grating policy goals [26]. They are widely used to inform 
decision-makers about the technical feasibility of decarbonization 
pathways [27]. 

Trutnevyte et al. [28] criticize these models, however, stating that 
they have “limited representations of societal transformations, such as the 
behavior of various actors, transformation dynamics in time, and heteroge
neity across and within societies”. The lack of the representation of societal 
factors in energy systems models leads to the so-called “socio-technical 
optimization gap” [28]. To this end, the suggested cost-optimal solu
tions might not be feasible in their implementation in reality. Besides, 
Trutnevyte [29] concluded that cost-optimal energy system models do 
not approximate the real-world transition due to parametric and struc
tural uncertainty. To bridge the gap, parameters encapsulating the 

influence of key energy system actors need to be included in future 
energy scenarios [30]. Different attempts exist in the literature to 
implement social and behavioral aspects in energy models. For example, 
Bolwig et al. [31] performed a literature review on the social acceptance 
of onshore wind energy and transmission lines. They translated it (from 
low to high) into a multiplier affecting the investment of such technol
ogies, demonstrating how low social acceptance may negatively affect 
the energy transition pathways. Li et al. [32] concluded that 
non-monetary factors strongly affect citizens’ choices, hinder the 
adoption of renewable technologies, and increase the difficulties in 
achieving decarbonization targets. 

Within the large IEA-ETSAP energy modeling community using the 
TIMES framework [13], the TIMES-Households model [33] analyzes the 
heterogeneity of technology choice of households by providing a com
bination of key factors affecting the choice identified by a survey. They 
concluded that the technology diffusion patterns obtained are more 
realistic than those without including such hetetogeneity. In the 
CA-TIMES model, a new parameter for travel time investment is intro
duced to represent modal choice selection between different transport 
modes from individuals [34]. The model allows them to represent the 
real-world drawbacks of public transport, such as the additional time 
associated with such transport mode and the investment needed by the 
government to increase its efficiency and consequently its acceptance by 
the population. 

In the context of Switzerland, in the Swiss TIMES Energy Systems 
Model (STEM) [12,35,36], the consumers’ investment in new technol
ogies results from the cost optimization analysis, where consumer en
ergy behavior and social acceptance are represented by side constraints 
approximating the deployment level of these technologies in society 
[36]. 

All the described examples show the need in the energy systems 
modeling community to link energy system models with approaches 
capturing socio-technical factors to better analyze the role of society in 
the energy transition. In their review, Huckebrink and Bertsch [37] 
concluded that there is a need to integrate behavioral aspects of 
acceptance, adoption and use of energy technologies in energy system 
models to assess the impact on long-term energy projections. In partic
ular, additional attributes other than cost affecting the energy invest
ment of the population should be considered, such as attitudes, opinions, 
lifestyle characteristics, and personal values [38]. 

Due to the ability of ABM to represent heterogeneity in agents’ at
tributes and the interactions between them and their environment [39], 
as well as structural aspects of the system such as policies and infra
structure [40], it is a well-suited approach to analyze complex 
human-technical systems [39]. 

A growing number of quantitative studies are focusing on ABM for 
analyzing energy consumption-related behavioral evolution and het
erogeneous decision-making on energy technologies [41] of the main 
stakeholders of the energy transition. 

Working towards a tighter representation of social aspects within 
energy system models, Sachs et al. [42] integrated the multi-objective 
ABM within the MUSE energy systems model to deviate from rational 
economic investment from individuals, which in turn led to different 
outcomes from the single-objective model, by adopting technologies (e. 
g., heat pumps) not in the least cost solution. Zhang et al. [43] developed 
a coupled framework of ABM with a stochastic mixed integer linear 
programming model energy system model to assess the impact of 
behavioral changes on energy supply demand. 

For studying the effects of ICTs, literature widely uses Agent-Based 
Models (ABM). For example, the use of ABMs has been applied to 
assess the energy and environmental impacts of e-commerce [44], 
rebound effects connected to ICTs [45,46], load shifting [47–49], and 
teleworking [50]. However, the cited models dealing with ICT appli
cations do not consider social interactions and the development of 
personal preferences, do not include the interactions between different 
energy sectors, and do not extend their analysis to the impact these 
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changes will have on society. Analyzing these elements and their evo
lution over time is needed to quantify the impact these changes will have 
on energy transition. 

In this paper, an ABM is presented that can simulate the evolution of 
these elements over time. To the authors’ knowledge, no attempts have 
been made in the literature to develop an ABM able to simulate the 
adoption and spread of different digital practices with related impacts 
on energy consumption by adopting a social practice approach. Two 
examples of a social practice approach connected with ABM were 
conceptualized by Balke et al. [51] and Narasimhan et al. [52]. Based on 
the social practice theory [53], the social practice approach assesses the 
evolution of everyday practices performed by individuals over time and 
space. It allows analyzing the context in which individuals perform their 
actions [15]. It acknowledges the heterogeneity of different social 
groups in performing the same practice [54] and can help design 
tailor-made incentives: for example, for peak demand shaving [55] and 
electricity demand time shift ([56,57]). However, studies applying this 
approach to analyze the impact on energy consumption are mainly 
restricted to qualitative analyses or theoretical frameworks ([52, 
58–62]). Quantitative frameworks using this approach for understand
ing energy consumption patterns are largely lacking [63], especially 
concerning the impacts related to the spread of ICTs. 

The changes in energy consumption related to the adoption of digital 
social practices and the implication of these changes on energy transi
tion are analyzed via coupling with an energy system model. In this 
paper, we argue that due to its fine temporal resolution and high tech
nological details [64], the STEM energy systems model coupled with an 
ABM is well-suited to analyze a socio-technical energy transition. The 
aim is to enrich energy system analysis with actors’ heterogeneity to 
better represent the complexity of energy demand [65], providing a 
detailed representation of society’s future evolution, behavior and 
practices adoption over time. 

The coupled framework allows the combination of each model’s 
strength [66]: it enriches energy systems analysis with actors’ hetero
geneity, allowing the identification of socio-economic and technical 
aspects affecting the rate of adoption of technologies while, at the same 
time, it enriches the ABM with insights of the energy system configu
ration and energy costs provided by the energy system model. 

3. A socio-techno-economic energy system model: a new 
framework 

Fig. 1 shows an overview of the SEED-STEM framework. We first 
describe the decision-process mechanisms in SEED for the adoption of 
new social practices from households and new digital operating modes 
from companies. Then, the coupling method between SEED and an en
ergy system model is explained. The agent-based model was imple
mented in NetLogo [67]. A detailed description of the methodology is 
provided in Appendix. 

3.1. Socio-Economic Energy model for digitalization (SEED) 

The SEED concept is demonstrated by the entity-relationship dia
gram [68] in Fig. 2. The main entities of the model are Households1, 
Firms, practices, technologies, business models, and social networks. 
Household agents, representing an equal number of typical households 
in Switzerland, perform social practices (e.g., cooking) to fulfill essential 
needs (e.g., eating) by utilizing technologies (e.g., stove) that consume 
energy (e.g., electricity). Households base their decisions on comparing 
costs, preferences, and availability of practices and technologies. 

However, preferences can be changed by interactions among House
holds (micro-level interaction) in their social networks. Households 
interact with Firms (macro-level interaction) by working for them 
(employees-employer relationship) or by adopting their services (con
sumer-firms relationship). Firm agents represent the industry and ter
tiary sectors (one Firm agent per tertiary subsector representing schools, 
hospitals, public administration, financial institutions, trade, 
manufacturing, etc.), and their objective is to maximize profit by 
considering the needs of employees and customers. By selecting the most 
profitable business model for their company, Firms can allow or prevent 
Households from performing practices. For example, by adopting the 
e-commerce business model, they allow Households to perform the 
practice of e-shopping. 

3.1.1. Overview of the main features and novelties 
SEED is a time-dynamic recursive model representing the co- 

evolution of the energy and societal systems in Switzerland from 2020 
to 2050. Incorporating the main processes identified in the social 
practice model conceptualized by Balke et al. [69], the relevant features 
of the model are the following:  

1) Heterogeneity of agents: critical in ABM modeling is the incorporation 
of the actors’ heterogeneity into the model’s decision mechanism. As 
described in the next section, different socio-economic attributes 
identify each Household and Firm, resulting in heterogeneous deci
sion processes for practices, technologies, and business models.  

2) Dynamic simulation and update of agents’ attributes over time: SEED 
does not assume that agents are invariable over time. For example, 
agents’ income is updated, and new agents can enter the simulation 
while others are removed from the decision process due to ageing.  

3) Social practices representation: SEED implements the social practice 
approach by allowing Households agents to select social practices to 
fulfill needs: traveling, shopping, working, eating, heating the house, 
and using electrical appliances. Social practices in SEED can be 
subdivided into “Conventional” and “Digital”. Digital social prac
tices, such as teleworking, e-shopping, and e-learning, require the 
use of digital technology in contrast to conventional practices, such 
as going to work, grocery, or going to school. The adoption of a 
digital practice implies a gradual phase-out of a prior onventional 
practice. The speed of this replacement is based on the amount of 
time Households need to perform the digital practice, represented by 
their attribute “intensity of ICT use”. The digital practices depend on 
the business models selected by Firms, which are also distinguished 
into “Conventional” and “Digital”. Digital business models analyzed 
in SEED are remote work with shared desks, e-commerce, and e- 
learning. The growth of digital social practices and business models 
is associated with increased internet data demand that allows SEED 
to consider network infrastructure requirements and data center 
demand.  

4) Spread of digitalization: three indicators, based on the Network 
Readiness Index [70], drive the evolution of digitalization in SEED: 
the intensity of digital practice among the population (representing 
the digital readiness of the population), the budget of companies 
attributed to ICTs investment, the probability of having a digital job 
for the newly-entered Households agent (representing the role that 
government plays in creating more digital-intensive jobs). The 
budget for ICTs investment constrains the decision process of Firms 
investing in digital business models, while the probability of having a 
digital job for the new Household agent impacts the total number of 
Household agents that are allowed to perform digital practices in 
their job. A different growth of these indicators can be assumed in 
SEED to develop digital scenarios.  

5) Detailed sectoral representation: SEED includes major end-use sectors. 
In the residential sector, the model identifies the end-uses of heating 
and electric appliances. SEED represents two building types (multi- 
family and single-family), each characterized by eight building 

1 In the text, the word Household refers to an agent in the model, and it is 
written with a capital H to be distinguished from the real-world entity of a 
household. The word Firm implies an agent in the model, while the word firm 
implies the real-world entity of a firm. 
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periods. The model distinguishes urban and rural archetypes for grid 
infrastructure availability, e.g., natural gas and district heating grids, 
public transport availability, and charging infrastructure. At the 
same time, the model represents the main tertiary sectors of educa
tion, public administration, commerce, IT, real estate, hospitality, 
insurance, and research.  

6) Technology rich: SEED leverages the STEM technology database. 
Several end-use technologies compete to supply energy service de
mands for heating, electricity, and mobility. Each technology is 
characterized by its CAPEX and OPEX, efficiency, lifetime, and dis
count rate (including hurdle rates for the different agents). Besides 
the technical-economic characterization, SEED also includes addi
tional non-technical attributes for each technology, such as 
perceived comfort and environmental labels. The included technol
ogies for transport are internal combustion engines, battery electric, 
plug-in, hybrid and fuel-cell vehicles, as well as public transport. The 
residential heating demand can be satisfied by adopting oil, gas, and 
wood boilers, electric resistance, district heating, gas and electric 
heat pumps. For electricity, agents can install photovoltaic panels 
and/or connect to the electricity grid. Additionally, the heating de
mand can be reduced by adopting insulation measures or lowering 
the heating temperature.  

7) Interaction of agents: The interaction between different typologies of 
agents occurs in different hierarchical levels [75]: a micro and macro 
level. The learning process of Households at the micro-level occurs 
through interactions in “social media” and “face-to-face” networks. 

At the macro-level, Firms collect feedback from Households 
regarding their willingness to perform a social practice and their satis
faction level with the services offered by the Firms. 

The exchange of information between micro and macro levels re
flects one of the disruptive effects of digital transformation: the decision 
processes of institutional decision-makers and private citizens become 
more interconnected. 

3.1.2. Simulation process 
When performing a simulation with SEED (Fig. 3), five phases are 

identified:  

1) Initialization: all the exogenous inputs are provided to the model.  
• Input for scenario analysis: policies and scenario assumptions (see 

section 4.4.)  
• Input for socio-economic structure: synthetic population of agents, 

building stock evolution, population and GDP growth, probability 
distributions for job types, education, age, income, lifestyles and 
values, infrastructure availability  

• Input from coupling with STEM: evolution over the time horizon of 
energy prices, CAPEX, OPEX, and efficiencies of end-use 
technologies. 

The heterogeneity of Households accounts for different socio- 
economic attributes, such as income classes, educational degrees, age 
cohorts, job types, annual travel demand, available budget for lifestyle 
expenses, lifestyle needs and preferences, intensity of ICT use, social and 
virtual interactions, perceptions of risk in investment, trust in informa
tion provided by the government (Table 1). Furthermore, two satisfac
tion attributes (employee satisfaction and customer satisfaction) 
characterize the macro-level interactions. The heterogeneity of Firms is 
based on different job types, gross value added, available budget for ICT 
investment, office space, energy service demand, internet data demand, 

Fig. 1. Schematic representation of the socio-techno-economic energy system model framework. The Socio-Economic Energy model for Digitalization (SEED) is 
based on an agent-based model approach, while the Swiss TIMES Energy system Model (STEM) [35] is based on TIMES framework. The coupling between the two 
models is represented by the green and red arrows. The SEED model is schematized in four boxes: 1. Agents, 2. Activities and consumption aspects, 3. Decisions, and 
4. Interactions. 
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and digitalization level. 
A synthetic population approach [82] is applied to simulate the 

households of Switzerland and ensures statistical equivalence with the 
real Swiss population, similar to the approach of Panos et al. [75]. The 
synthetic population of agents is based on a Latin hypercube sampling 
[83] using joint probability distributions fitted to aggregated 
socio-demographic data. The Swiss Household Energy Demand Survey 
(SHEDS) [74], a useful resource to initialize agents ([84,85]), is used to 
identify lifestyle needs and preferences (Table 2). These qualitative re
sponses are translated into quantitative preferences by converting from 
the Likert scale [86] to the range [0,1]. These attributes are matched 
with socio-demographic attributes (income, age group, education, 
Sinus-Milieus®) to initialize the synthetic population. Furthermore, 
each Household is randomly initialized to a specific age within the 
boundary of its age group. The initial number of Household agents is 441 
and evolves over time based on the assumed demographic growth. 
Additionally, a normal distribution is fitted to the Microcensus 2015 
[78] to attribute to each Household a heterogeneous share of kilometers 
used for commuting, shopping, education, and leisure activities (see 
Appendix D).  

2) Dynamic evolution: the time dynamic components reported in 
Table 1 (Income, Age, Preference values, trust in information, annual 
mileage, expenditure, intensity of usage of ICT technology, social 
link, and residential energy demand) are updated in each simulation 
year. 

Only the Household agents corresponding to the working population 
from 18 to 65 years participate in the decision process as they can also 
participate in the macro-interaction as employees (eq.A.36). New 

Household agents are introduced with statistically similar socio- 
demographic attributes (Age, Income, Education, Job Type, and Sinus- 
Milieus®) as the ones considered in the initialization phase (same dis
tributions and same correlations between them). The new agents’ 
preferences reflect the society’s state when they enter society. Each 
preference is initialized as a random variable following a normal dis
tribution (eq.A.31-A.33). The available income of Household agents 
followed the assumed annual GDP growth. The new Households are 
initialized with the available income at the time of their entrance into 
society (eq.A.37). 

The evolution of the building stock is based on the survival proba
bility assumed for each building (different according to building type 
and period). New buildings are built following the annual growth 
extrapolated by the dataset used for Switzerland [77]. The new 
Households are randomly located at an available building based on their 
preference for a multi-family or single-family house. When a building is 
demolished, the Households living there are randomly re-allocated to 
another available building. Finally, the three parameters driving the 
digitalization of society (see 3.1.1) are updated based on the scenario 
assumptions (eq.A.34, eq.A.35, eq.A.38).  

3) Decision-making process of agents: Household agents have a two- 
level decision mechanism. First, they decide on the social practice, 
and then they decide on echnologies. The decision on which practice 
to adopt is based on the maximization of a weighted utility function 
(eq.A.1) that considers the cost of the performed practice (eq.A.3), 
agents’ preferences for social practices (eq.A.2), infrastructure access 
anxiety (eq.A.4), and market share of the practices (eq.A.5). The 
decision to adopt a suitable technology is also based on the maxi
mization of a weighted utility function (eq.A.8-A.18) with 

Fig. 2. The entity-relationship diagram depicts the main entities of the SEED model with their relationships and attributes. It shows the entities of the SEED model 
(Households, practices, technologies, Firms, and business models as rectangular boxes, the relationships as diamond-shaped boxes, while attributes are represented as 
circular boxes. 
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components similar to the ones explained for the social practice 
function. Firms maximize their expected profit when changing from 
a conventional business model to a digital one. As mentioned above 
(3.1.1), the decision mechanisms of the two agent types in SEED are 
not independent. They are also explained in detail in sections 3.1.3 - 
3.1.4 using the case of teleworking.  

4) Interactions: through interactions in social networks, Household 
agents modify their preferences for practices and technologies over 
time (Fig. 4). In the face-to-face network, Household agents interact 
within their neighborhood and working space. It is a simulation of 
the physical interactions between the agents, which is constrained by 
their spatial proximity. In the social media network, the spatial 
proximity constraint is lifted, but the update of the preferences is 
weaker than in the physical case. The interactions between House
holds follow an opinion dynamics model with asymmetric confi
dence [87] to simulate their learning process (eq.A.30). A Household 
interacts only with the other Households in its social networks whose 
preferences “differ from his own not more than a certain confidence 
level” [87]. The confidence level, ranging from 0 to a positive upper 
bound, depends on the trust of the received information and shapes 
the ability of a Household to change its preferences (Fig. 4). The 

speed of this change (learning speed) and the number of links be
tween Households in both social networks depends on the Sinus-
Milieus® of Households. The links are associated with probabilities 
for their creation and destruction based on [66] (see supplementary 
material).  

5) Output: the output from SEED can be classified into two main 
categories: 
• Energy system related output for coupling with STEM: aggregate en

ergy services demands of residential, transport, and services sec
tors of the country over the time horizon (private cars transport 
demand, public transport demand, light vehicles freight transport 
demand, residential heating demand, residential electricity de
mand, tertiary sector heating demand, tertiary sector electricity 
demand, internet data demand), residential and transport tech
nology adoption. Details on the coupling are provided in section 
3.2.  

• Socio-economic output: share of social practices performed (going to 
work, teleworking, shopping, e-shopping, learning, e-learning, 
heating the house, using electric appliances, heat saving feedback, 
electricity saving feedback, thermostat temperature reduction, 
renovation measures), digitalization intensity of society. 

Fig. 3. Simplified SEED algorithm and nomenclature. The detailed mathematical formulation of the difference phases is reported in the Appendix.  
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3.1.3. Decision process of Household agents 
The two-level decision mechanism of Household agents is further 

explained in this section, focusing on the example of the digital practice 
of “Teleworking”. 

Households can choose between the conventional practice of “Going 
to work” and the digital practice of “Teleworking”. “Going to work” 
requires the use of transport technology to fulfill the demand for 
commuting, while “teleworking” involves the use of a laptop and 
internet access. Households can opt for “Teleworking” only if their job 
can be performed remotely, and it is allowed by the Firms where the 
Households work. 

“Going to work” includes the cost of commuting, based on the cost of 
using a private vehicle or buying a public transport ticket. “Tele
working” allows one to avoid travel expenses for commuting, but 
additional residential costs for heating and electricity demand must be 
considered (eq.A.3). Concerning preferences, “Going to work” nega
tively impacts the working/free time schedule, but it does not require 
any digital skills in contrast to “Teleworking”. Distance is another 
preference criterion as “Going to work” might be less attractive for 
Households living in the countryside due to the long commuting time, 
which can be avoided by adopting “Teleworking”. The preference 
component (eq.A.2) of the utility function (eq.A.1) compares the 
aforementioned Household preferences with the opportunities offered 
by the social practices (Table 2). This approach is based on the con
ceptual framework developed by Holtz [88], which assumes that 
households attribute the highest importance to the practice that closely 
matches their preferences. The infrastructure access anxiety component 

is zero for “Going to work”, while “Teleworking” represents the avail
ability of the internet infrastructures as a function of Household living 
location (eq.A.4). Finally, the market share component represents the 
spread of the practice within the social networks of Households (eq.A.5). 

After selecting the social practice that maximizes its utility function 
(eq.A.6) and updating the energy demand connected to it (eq.A.7), the 
next step for the Household agent is to decide on using the existing or 
investing in new technologies by maximizing the technologies specific 
utility functions (see 3.1.2) subject to its available income (eq.A.8 – eq. 
A.18). Each Household allocates its available income to essential ex
penses (rent, food, taxes, social insurance), savings, and energy ex
penses, further subdivided between transport and residential expenses. 
The budget for residential and transport investment decisions is kept 
constant as a fixed share of the available income for energy expenses 
plus the savings (eq.A.16). 

In the utility function associated with the technology decision, the 
cost component (eq.A.11) represents the selected technology’s annual
ized cost (ANPV), while the infrastructure availability component deters 
the agent from investing in technology if the infrastructure needed by 
the technology is not available (eq.A.13). For example, district heating 
and natural gas boilers can only be selected if the relevant grid is 
available. Similarly, in transport, the infrastructure component of the 
utility function is formulated as an anxiety function regarding the 
availability of charging stations by considering the annual mileage 
covered by the Household agent. 

The decision to invest in new technology can be triggered by the end 
of the lifetime of the current technology or by any changes impacting the 

Table 1 
The socio-economic attributes for Households and Firms are described, together with the reference dataset concerning the application for Switzerland. The last column 
of the table provides information on the evolution over time of the attributes, which can be static or dynamic over the time horizon.  

Socio-economic attribute Heterogeneity of Households dataset Static/ 
dynamic 

Income The distribution income (Lognormal, μ = 1.3, sd = 0.6) is grouped into five groups with average incomes of: 
4000 CHF/m, 4500 CHF/m, 6200 CHF/m, 8300 CHF/m, 13,800 CHF/m 

[71] Dynamic 

Education Degree secondary I, degree secondary II, degree tertiary [72] Static 
Age 18-24,25–44,45-65 [73] Dynamic 
Location Urban/Rural [74] Static 
Sinus-Milieus It represents the heterogeneity of societal values and lifestyles among the population, subdivided into 10 

groups. 
[75] Static 

Job 12 types of jobs in different sectors [76] Static 
List of social parameters e.g., Environment, Comfort, Time saving, Leisure, (Table 2) [74] Static 
Preferences’ value To each social parameter is attributed a value from 0 to 1 [74] Dynamic 
Trust in information Trust in social network and physical network [74] Dynamic 
Building type Multi-family, Single Family [77] Static 
Annual mileage Total kilometers driven per year subdivided into the type of trip (leisure, commuting, education, shopping [78] Dynamic 
Share of expenditure The available income is subdivided into expenditures: transport, residential, savings, and other [79] Dynamic 
Universe Represent the weight of the universe of the agent, the number of real-world households represented by that 

Household agent 
[77] Static 

Practices The set of practices performed by the Household agent assumption Dynamic 
Intensity of usage of ICT 

technology 
Intensity of usage of ICT technology assumption Dynamic 

Technology Set of technology used by the agent assumption Dynamic 
Social network link Number of connections in the social networks throw which Households exchange preferences and ideas [75] Dynamic 
Residential energy demands Heat and electricity demand connected to the building type and period [77] Dynamic 

Socio-economic attribute Heterogeneity of Firms dataset Static/ 
dynamic 

Job type The type of jobs attributed to the specific company and subsector of the tertiary sector [76,80] Static 
Gross Value Added Gross value added is used as a proxy to evaluate the value the sector attributes to ICT technology [81] Dynamic 
Employees The number of employees (Households agent) [76] Dynamic 
Space The office space attributed to the companies in km2 assumption 

[77] 
Dynamic 

Tertiary sector energy demands Heating, Electricity and internet data demand [77] Dynamic 
Digitalization level The digitalization level is modeled as an s-shaped function, it uses as a proxy the intensity of adoption of a 

practice to evaluate the digitalization of a company 
assumption Dynamic 

The intensity of adoption of a 
business model 

The intensity of adoption of practice and related digital business model assumption Dynamic 

Practices Set of practices (business model) adopted by the Firm agent assumption Dynamic 
List of social parameters List of social parameters: satisfaction of employees, satisfaction of customers, policy readiness, digital 

readiness 
assumption Static 

Preference value List of values of social parameters assumption Dynamic  
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utility function. The latter can incur due to changes in energy demand or 
preferences or due to the availability of new technologies that are more 
competitive than the existing ones (provided that the capital payment of 
the existing ones continues to occur until the end of the lifetime of the 
existing technology (eq.A.16)). 

3.1.4. Decision processes of Firms agents 
Firm agents adopt the business model that maximizes their profit. 

Continuing with the example of “Teleworking”, Firms evaluate the 
benefit of adopting the “Remote work” digital business model instead of 
the conventional “Working in the office”. 

First, the Firm considers the number of working days its employees 
would like to perform as “Teleworking”, identified as the average 

Fig. 4. Interactions of Households in their social networks.  
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Table 2 
The social parameters of household agents (first column) are used in the preference component of the utility function of Households to evaluate Households preferences to adopt practices and technologies. The table shows 
the connection between social preferences and the ractice (column named P), Transport technologies (TT), Residential Heating technologies (RHT), Residential Electricity Technologies (RET), and Firms (F) to which they 
refer.   

Social parameter of 
household agents: 
preferences 

P TT RHT RET F 

Teleworking Commuting ICE 
vehicles 

electric 
vehicles 

plug 
in 

hybrids fuel 
cell 

public 
transport 

Natural 
gas boiler 

Oil 
boiler 

Wood 
boiler 

District 
heating 

Electric 
boiler 

Electric 
heat 
pump 

Natural 
gas heat 
pump 

Solar 
thermal 

Photovoltaic 
panel 

Electricity 
grid 

Tertiary 
sector 

Balance between 
work/free time 

x x                  

Free time scheduling x x                  
Commuting distance x x x x x x x x            
Importance of time 

savings   
x x x x x x            

Traveling comfort   x x x x x x            
Time for leisure 

activities   
x x x x x x            

Environmental 
awareness   

x x x x x x x x x x x x x x x x  

Thermal comfort         x x x x x x x x    
Available space         x x x x x x x x x x  
Noise intensity         x x x x x x x x    
Preference for self- 

consumption 
technologies                 

x x  

Digital skills x                  x 
Infrastructure 

anxiety 
x  x x x x x x x x x x x x x x    

Satisfaction as 
employee                   

x 

Satisfaction as 
costumer                   

x  
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“intensity of ICT use” among its employees (eq.A.23). Then, it performs 
a cost-benefit analysis associated with the heat and electricity saved due 
to not using the offices and the increase in the electricity related to the 
usage of ICTs (eq.A.22). 

The decision to adopt the “Remote work” business model (eq.A.19) is 
calculated as the difference between the budget available to invest in 
ICT technology, energy savings benefit, and the cost of moving to the 
digital business (eq.A.20). The latter are expressed as new ICT in
frastructures cost, educational cost for training employees to the new 
business [89], and internet data cost. The internet data demand is 
translated into an electricity demand (0.42 kWh/GB [90]) used by the 
internet infrastructure and data center. If the Firm adopts the “Remote 
work” business model, it allows teleworking among its employees for the 
desired number of working days (eq.A.25), increasing their satisfaction 
level (eq.A.27). The digital level of the Firm, represented as a logistic 
function using the average “intensity of ICT use” by employees as the 
input variable, will increase (eq.A.24). The more teleworking, the higher 
the “digital level” of a company is. A digital level of 1 means that tele
working is performed for 100% of the working hours. 

In the opposite case, employees are not allowed to adopt “Tele
working”, and the digital level of the Firm will not increase (A.28). This 
results in a reduction in the satisfaction level of its employees (eq.A.29), 
which is connected to an economic loss for the company, affecting the 
decision process of Firm in the next iteration. In particular, Firms agents 
are interested in keeping a high level of satisfaction among their em
ployees to avoid absenteeism [75] or quitting, which will require 
additional cost to replace those who quit (eq.A.21). They are also 
interested in having a high level of consumer satisfaction for their output 
product or service to be competitive in the market to avoid a reduction 
in sales that would result in a loss of profit. 

3.2. The complete socio-techno-economic framework: coupling SEED and 
STEM 

The Swiss TIMES Energy Systems Model (STEM) is a well-established 
energy system model in Switzerland, widely used to assess net-zero 
carbon dioxide emissions scenarios ([12,35,36]). 

STEM is a technology-rich bottom-up optimization model repre
senting the whole Swiss energy system, from resource extraction and 
imports to energy conversion and end-use (industrial, residential, 
commercial, and transport). The energy uses in the residential sectors 
include space heating, water heating, air conditioning, electronic 
equipment, appliances, cooking, lighting, washing, and refrigeration. 
The transport sector in STEM includes passenger and freight transport. 
The model distinguishes between different modes of transport, such as 
private transport (cars and two-wheelers), public passenger road 
transport, freight road transport, passenger and freight rail transport, 
domestic and international aviation [12,35]. The energy used in the 
industry and services sectors are subdivided into electricity and heating 
process demands. 

STEM assesses the least cost energy system configuration to achieve 
energy targets when accounting for energy mixes, investments, prices, 
trading with surrounding countries, and other constraints related to 
energy technology deployment or policies and targets. The full model 
documentation can be found in [12,35,36]. 

Coupling different modeling frameworks presents several challenges, 
such as identifying connection points, a convergent solution, and 
compatible mathematical formulations, depending on the linking 
approach [64]. These challenges can be mitigated with a soft-linking 
approach [91]. 

Soft-linking SEED and STEM requires identifying appropriate 
connection points to exchange information (see Appendix B for the 
mathematical formulation of the coupling). The main differences be
tween them must be addressed to create a framework that can benefit 
from combining each model’s strengths. First, SEED is a socio-economic 
model aiming to analyze the heterogeneity of decision processes and the 

factors that lead to the adoption of social practices, while STEM is a 
technology-rich optimization model aiming to identify the least cost 
energy system configuration. Second, the models have a different scope 
in terms of knowledge of the energy system. The narrow view of 
households that do not know about the whole energy system and make 
decisions based on their limited knowledge is represented in SEED, 
which analyzes only the choices related to the transport and residential 
sectors. Instead, the social planner view of STEM reflects overarching 
informed decisions thanks to its broad overview of the country’s energy 
system. 

STEM starts the iterations to provide a first proxy of energy prices 
and energy supply infrastructure development as it captures all energy 
system implications (such as trading with other countries, resources’ 
availability, and available power generation technologies). STEM eval
uates the cost-optimal technology mix for the whole energy system and 
provides energy cost as input for the decision process of agents in SEED 
(eq.B.7-B.10). Once SEED completes its simulation, it provides as 
exogenous input to STEM demands and technology shares (eq.B.1-B.6). 
Tertiary sector technologies are not included in SEED. The decision 
process of Firms provides the energy services demand as input to STEM, 
which decides on the technology to invest in to satisfy the energy ser
vices demand. 

During this interaction, the choices from SEED can result in energy 
system configurations in STEM that are infeasible. In such cases, the 
iterations would fail. To avoid this, expensive backstop technologies are 
introduced in STEM. STEM can select these technologies to continue the 
iterations and passes high energy prices and technology costs to SEED, 
which adjusts the choices of agents regarding practices and technologies 
in the subsequent iteration. 

The connection points, namely the information passed from SEED to 
STEM via the soft-linking approach, are: end-use energy demands, 
transport technology, and residential technology for single-family and 
multi-family houses. Each connection point is a vector of three values 
(one for each milestone year), for a total of 87 points. 

A convergence criterion is applied to each of these 87 connection 
points to determine when there is a convergence of results between the 
two models, and the iteration process can be stopped (eq.B.11). 

In SEED-STEM, the convergence of results is reached when, for each 
of the 87 points between the current iteration and the previous ones, the 
relative error is lower than the defined convergence criterion (the ab
solute error is considered for the transport and residential technology 
information as the value is passed as a share of activity or capacity), set 
to 2%. The iteration process is then stopped, and the outcome of the 
SEED-STEM framework can be analyzed. 

The convergence criterion of 2% is taken to avoid wasted iterations 
and help achieve a good computational time based on the parameteri
zation of the model used to perform the scenario analysis. 

The resulting energy system configuration of the coupled framework 
is feasible from both technical and societal points of view. 

4. Application of the framework: a case study of teleworking 

The practice of “Teleworking”, enabled by the diffusion of informa
tion and communication technologies and widely adopted during the 
Covid-19 pandemic, is used to demonstrate the SEED-STEM coupled 
framework for Switzerland and highlights its key features, such as: the 
relevance of social interactions for the spread of practices over the time 
horizon; the relationship between social practices, energy consumption, 
and technology adoption; the importance of considering cross-sectoral 
interdependencies when analyzing technology adoptions by users; the 
impact of consumers behavior on the energy system configuration of a 
country. The main inputs needed to initialize the SEED model for 
Switzerland are provided in the supplementary material together with 
their sources. 
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4.1. Calibration and validation of SEED 

The SEED model’s calibration was performed using the Behavior
Space software tool provided in NetLogo [67], which allows for varying 
the input parameters over several simulation runs systematically and 
recording each run’s results. Two different calibrations are performed. 

The first calibration step concerns the parameters driving the social 
network interactions (eq. A.30) of Households: the speed of adaptation 
and the upper bound of the confidence level (threshold value). 

To calibrate these parameters, three waves of the SHEDS survey 
(2016–2018) were used. The question regarding the “environmental 
awareness” of respondents was used because it is the only one available 
as a time series in SHEDS. The “environmental awareness” is one of the 
preferences used by Households to decide on the adoption of practices 
and technologies, as explained in Table 2. The distribution of the an
swers (ranked between 0 and 1) was extrapolated for the three waves of 
SHEDS. 

The distribution of this preference among Households agents of SEED 
for the period 2016–2018 is recorded for different combinations of the 
two parameters, and it was compared with the distribution identified by 
the respondents of the SHEDS survey over the same period. The com
bination of values resulting in a distribution that best fits the SHEDS 
over three years was selected. This leads to a value of 0.1 for the speed of 
adoption and 0.17 for the threshold value. 

The second calibration step concerns the parameters of the different 
utility functions for Households for technology adoption. A similar 
approach as the one described in the first step has been followed to 
calibrate the weight parameters, but in this case, eight years are used 
(2010–2018). In particular, the weights of the cost, preference, infra
structure, and market components were systematically varied from 0.05 
to 1 in steps of 0.05. The adoption rate of each transport and residential 
technology for 2010–2018 identified in SEED was then compared with 
the official statistics of Switzerland. The Root Mean Squared Error 
(RMSE) is calculated for each technology, and the combinations of pa
rameters with the lowest RMSE are selected to initialize the weights (see 
Table 3). The years 2019–2021 are used to validate the model, 
comparing the technology adoption of SEED with the Swiss new sales 
dataset. The error between the real data and SEED simulation is lower 
than 10% (see Appendix C). 

Concerning the utility function for the adoption of teleworking, its 
weights are calibrated and validated using the official statistic for tele
working in Switzerland, where the number of employees performing the 
social practice “Teleworking” increased to 23.8% in 2018 (compared to 
18.2% in 2013) [92]. 

4.2. Scenario definitions 

Two scenarios are compared to analyze the implications of the social 
practice of “Teleworking” on Switzerland’s energy consumption and 
energy system configuration by assuming a different growth of the 
digital indicators described in section 3.1.1. (Table 4). 

Baseline scenario: represents a “business as usual” situation for the 
spread and evolution of teleworking by following the observed trends of 
the last decade [92]. 

Digital scenario: it assumes that the “intensity of ICT use” grows by 
10% per year, following the growth experienced during the COVID-19 
pandemic [92]. 

Table 4 shows the assumptions used to model teleworking and its 
energy savings potential. The evolution of digitalization in SEED is 
driven by three parameters, as explained in paragraph 3.1.1. These three 
parameters, representing the essential elements to drive the digital 
evolution of a country, are assumed based on the observed trends of the 
last decade for the Baseline scenario, while the Digital scenario follows 
the growth experienced during the COVID-19 pandemic. Assumptions 
on the impact of teleworking on energy consumption include the in
crease in heating and electricity demand induced by one day of 

Table 3 
Calibration of utility function parameters for Household agents.  

Decision 
process 

Nomenclature Description Calibration 
value (RMSE =
0.0669) 

Residential Behz Calibration value of the 
component preference in the 
utility function for 
residential technology 
adoption 

0.75 

Behz Calibration value of the 
component cost in the utility 
function for residential 
technology adoption 

0.15 

Behz Calibration value of the 
component infrastructure in 
the utility function for 
residential technology 
adoption 

0.8 

Behz Calibration value of the 
component market in the 
utility function for 
residential technology 
adoption 

0.4 

Transport Behz Calibration value of the 
component preference in the 
utility function for transport 
technology adoption 

0.75 

Behz Calibration value of the 
component cost in the utility 
function for transport 
technology adoption 

0.2 

Behz Calibration value of the 
component infrastructure in 
the utility function for 
transport technology 
adoption 

0.8 

Behz Calibration value of the 
component market in the 
utility function for transport 
technology adoption 

0.1 

Electricity Behz Calibration value of the 
component preference in the 
utility function for electricity 
technology adoption 

1 

Behz Calibration value of the 
component cost in the utility 
function for electricity 
technology adoption 

0.15 

Behz Calibration value of the 
component infrastructure in 
the utility function for 
electricity technology 
adoption 

0.8 

Behz Calibration value of the 
component market in the 
utility function for 
teleworking adoption 

0.4 

Teleworking Aipu Calibration value of the 
component preference in the 
utility function for 
teleworking adoption 

0.8 

Aipu Calibration value of the 
component cost in the utility 
function for teleworking 
adoption 

1 

Aiup Calibration value of the 
component infrastructure in 
the utility function for 
teleworking adoption 

0.5 

Aiup Calibration value of the 
component market in the 
utility function for 
teleworking adoption 

0.2  
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teleworking (+4% of heating and +2% of electricity per each remote 
working day), the internet data demand intensity in terms of Giga Bytes 
for hours of videoconference meetings. For each Firm, the adoption of 
digital business as remote working is connected with potential savings in 
heating and electricity demands due to the reduction of office space 
[93]. Finally, both scenarios are normative and achieve net-zero CO2 
emissions in 2050 from the fuel combustion and industrial processes 
([94,95]). 

Social aspects affecting households’ decision processes, such as at
titudes, opinions, lifestyle characteristics, and personal values, are 
introduced into SEED in terms of components of the multi-criteria 
functions of Households to analyze lifestyle changes induced by digita
lization. However, the sociological implication of these lifestyle changes 

cannot be derived from the model. Implications on health, satisfaction, 
and career opportunities related to teleworking, for example, are not 
analyzed, as they are out-of-scope for the model. Similarly, rebound 
effects that are not energy-related (e.g., different use of personal time for 
households, relocation to rural areas enabled by virtualization of ser
vices, etc.) are not captured in this application. 

5. Results and discussion 

5.1. Social network interactions 

The adoption of teleworking in the tertiary sector for the two sce
narios is shown in Fig. 5. The number of people performing teleworking 
in the Baseline scenario will slightly increase over time, in contrast to the 
Digital scenario. In the Digital scenario, the share of teleworkers in 
digital jobs will increase up to 75% in 2050, while in the Baseline, it 
stabilizes at 60% (Fig. 6). This result can be explained by the decision 
mechanism in SEED. The utility function for adopting a social practice is 
influenced by the preferences and the market share components. The 
market component considers the spread of social practice in the social 
networks of the Household agent, while the preference component is 
updated by interacting with Households performing the practice in the 
social networks. Suppose a small number of Households are allowed to 
perform the practice, as in the Baseline scenario. In that case, the 
practice of teleworking does not gain a critical mass in society, and the 
diffusion process stagnates. In the Digital scenario, the higher number of 
digital jobs increases the opportunity for Households to exchange ideas 
and preferences with teleworkers. As shown in Fig. 6, the adoption of 
teleworking gains higher spread into society, and it is not related 
anymore to the number of people with digital jobs, becoming an 
accepted practice coexisting with the conventional practice of going to 
work. 

By considering social interactions and the role of social networks in 
the spread of teleworking in society, SEED demonstrates that the 
adoption of teleworking by more than 40% of the population is needed 
to sustain its spread over time. This adoption level can only be achieved 
if digital job opportunities increase over time, underlining the need for a 
digital evolution of society in terms of job types and opportunities. 

The yellow line of Fig. 5 shows the endogenous evolution of tele
working days over time. The average share of working days performed 
as teleworking is stable at 20% in Baseline (1 day per week), while it 
increases to 80% in Digital (4 days per week). The energy savings that 
teleworking can bring to Firms depend on the number of teleworkers 
and the number of days they are willing to perform teleworking. While 
in the Baseline scenario, teleworking stagnates as a business model for 
Firms, in Digital, it constantly gains share when at least 60% of the 
employees perform teleworking for two days per week. The attractive
ness of teleworking for Firms increases further when at least 70% of the 
employees are willing to perform teleworking for three days. 

The results from SEED show that future teleworking scenarios need 
to consider the benefits and losses a company will have to face to exploit 
digital business and its interdependencies with its employees. 

5.2. The role of non-cost-related decision factors 

Two Household agents are compared for the two scenarios to 
demonstrate the role of social values and interactions on the adoption 
mechanism for social practices. They belong to the same income group 
and have digital jobs, but they differ in other socio-demographic attri
butes, such as lifestyle and values, average commuting distance, and 
building period of their houses. Each agent has a different social network 
where it can gather information and change preferences about a specific 
practice and a different trust in the information it receives. The first 
Household is identified as a “High-Achiever” living in a historical 
building, interested in new digital opportunities and new technologies 
independently of their diffusion into society, while the second one is a 

Table 4 
Summary of the assumptions to perform a "What-If?" Analysis with the SEED- 
STEM framework for Baseline and Digital scenarios. Sources:1. [92],2 [56],3 

[93],4 [35].   

Baseline Digital Impact on the 
endogenous mechanism 
of SEED 

Digital evolution assumptions 
Growth in “intensity of 

ICT use” of 
teleworking1 

2% per 
year 

10% per 
year 

Impact on the number of 
hours worked as 
teleworking 

Growth of ICT budget of 
companies 

0.2% per 
year 

1% per 
year 

Impact on the number of 
people performing 
teleworking and on the 
hours worked as 
teleworking 

Growth in the 
probability of having a 
digital job 

2% per 
year 

10% per 
year 

Impact on the number of 
people that can perform 
teleworking (digital job) 

Assumptions on teleworking 
Number of hours as 

videoconferencing 
2 h per 
remote 
working 
day 

4 h per 
remote 
working 
day 

Impact on internet data 
demand and electricity 
consumption 

Change in residential 
heating demand2 

Increase of 4% per remote 
working day 

Impact on the cost 
component of the utility 
function of Households 
for technology 
investment 

Change in residential 
electricity demand2 

Increase of 2% per remote 
working day 

Impact on the cost 
component of the utility 
function of Households 
for technology 
investment 

Reduction of office space 
for companies3 

Up to 25% Impact on the cost 
component of the utility 
function of Firms, 
impact on the energy 
services demand 

Policies and target assumptions 
CO2 emissions target4 2030: 24 Mt/CO2 

2040: 14 Mt/CO2 

2050: 0 Mt/CO2 

Impact on exogenous 
energy prices over time 
(input from coupling 
with STEM). 
Impact on the decision 
process of Households 
and Firms (impact on 
cost component) 

Building emissions 
standards and 
transport emissions 
standards 

Not Implemented / 

Oil boilers and electric 
boilers 

No new installations for 
new houses (houses built 
after 2010) 

Impact on the 
infrastructure 
component of the utility 
function of Households 
for technology 
investments. It deters 
Households from 
investing in oil boilers 
and electric boilers  
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“Middle-Class” living in a building constructed in the 2000s, influenced 
in its choices by the choices of its social network. The High-Achiever 
adopts teleworking in 2023 in both scenarios, showing a utility func
tion for teleworking higher than the utility function for going to work, 
with an increase in the value of the utility function in the Digital sce
nario (Fig. 7a). Fig. 7c shows that in the Digital scenario, the market 

component of the utility function of the High-Achiever increases over 
time, despite the economic loss captured by the cost component, driving 
the diffusion process. The situation is different for the Middle-Class 
agent. Fig. 7d shows that the utility function enables the adoption of 
teleworking in 2039 in the Digital scenario. The year of adoption is 
identified when the utility function for teleworking is higher than the 
utility function for going to work. For this agent, Fig. 7f shows that in the 
Digital scenario, the increase in both preference and market components 
enables teleworking. The cost component in the digital scenario is pos
itive, showing the economic benefit of the teleworking practice. 

To satisfy the heating demand, the High-Achiever replaces the oil 
boiler with a natural gas boiler as soon as possible (Fig. 8b). The limi
tation of living in a historical building prevents the agent from investing 
in new technology, such as heat pumps, despite the increasing cost of 
natural gas due to the rising CO2 taxes needed for the carbon neutrality 
target. This external limitation leads to increasing residential expendi
tures for the High-Achiever agent, which offsets the savings obtained by 
the reduction in commuting. 

In contrast, the Middle-Class agent invests in an electric heat pump in 
2035 as it does not face any infrastructure limitations. The highly effi
cient technology offsets the increased heating costs, leading to a positive 
cost component in the utility function when opting for teleworking 
(Fig. 8d). 

Considering not only the reduction in commuting resulting from 
teleworking but also the increase in residential heating and electricity 
demands, the SEED-STEM framework provides a complete overview of 
the implications of teleworking for households and the energy system. 

5.3. Energy system implications: the coupled framework 

As previously discussed, teleworking reduces commuting and gen
erates savings for Households. The extent to which the additional sav
ings are used to reinvest in cleaner and more efficient technologies 
depends on agents’ decision process. Overall, the Digital scenario shows 
an increase in the adoption of electric heat pumps by the population 
compared to the Baseline, while no difference is observed in the in
vestment in transport technologies between scenarios. Compared to the 

Fig. 5. The adoption of teleworking for employees of the tertiary sector is shown for the two scenarios. The yellow line (right axis) represent the number of tel
eworking days per week allowed on average by Firms in the tertiary sector. 

Fig. 6. Share of teleworking adoption compared to the number of digital jobs in 
the two scenarios. 
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Baseline scenario, the teleworking practice in Digital decreases the final 
energy demand in 2050 by 3 PJ in tertiary sectors and by 3 PJ in 
transport. However, it increases the final energy demand in residential 
by 6 PJ. 

These changes impact the configuration of the energy system, 
changing the energy supply and imports. The main changes occur in the 
transition period 2025–2035. The increased electrification in the resi
dential sector lowers the consumption of biomass and gas used by the 

system to satisfy the heating demand. Visible in the increase in oil im
ports is the rebound effect of telecommuting in the residential sector, 
reflecting the limitation of some agents in installing more efficient 
technologies to counter the increase in heating demand, discussed in the 
previous section. The reduced energy demand lowers hydrogen pro
duction and imports, reducing the production of biodiesel and syngas, 
and impacting the electricity supply (Fig. 9). 

The cumulative undiscounted cost of the energy system reduces by 9 

Fig. 7. Panels a and d show the utility functions for practice adoptions for the two Households for different scenarios. The radar graphs of panels b and e show the 
utility function components of each Household in 2050 for the Baseline scenario, while panels c and f show the values of the utility components for the Digi
tal scenario. 
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Billion CHF, mainly achieved between 2025 and 2035 (Table 5). 

6. Conclusions 

In this manuscript, a novel socio-techno-economic energy model is 
demonstrated for the case study of teleworking in Switzerland. The 
coupled SEED-STEM framework shows that the economic benefit of 
teleworking is dependent on the possibility of investing in efficient 
technologies in the transport and residential sectors. Combining 
Households’ heterogeneity with a cross-sectoral decision process, the 
SEED model alone allows for an in-depth analysis of limitations and 
incentives to strengthen the positive implications of this practice for the 
clean energy transition. However, the coupled framework SEED-STEM 
shows that in the long run, any gains in emissions attained by the 
reduction of commuting and energy demand for transport and the en
ergy savings achieved in the tertiary sector are offset by the increase in 
the residential heating demand. This highlights the need for a holistic 
assessment of teleworking. For example, an increase in teleworking days 
should be complemented by incentives for investing in new technologies 

and renovation practices in old buildings. Hence, the SEED-STEM 
framework enables long-term studies with a comprehensive focus 
covering the interdependencies between employees, employers, and 
policymaking in the discussion on the energy savings potential of tele
working, a research gap also identified by O’Brien et al. [96]. 

The coupling results show how an energy system model like STEM 
can benefit from including the transition pathways analyzed by SEED. It 
shows how the transition pathways toward 2050 can change according 
to the investment decisions of the population. SEED-STEM assures that a 
carbon-free energy system configuration is feasible from a technical and 
societal perspective. 

The coupled framework provides insights into scenarios where the 
upfront cost for energy-efficient technology is not affordable by the 
population, providing suggestions on the incentives needed. This is 
because SEED can simulate different types of policies on energy tech
nology adoption, such as financial incentives (subsidies, soft loans), 
financial disincentives (penalties), bans, and mandates, as well as pol
icies to raise awareness on the population about the energy transition 
(information campaigns, educational training). For example, a ban can 

Fig. 8. Heating demand, residential technology adoption, and annualized cost for different agents and different scenarios. The residential heating demand is stable 
over time in the Baseline scenario for the High-Achiever agents (8a), while it increases over time in the Digital scenario (8b). In the Digital scenario, it is possible to 
observe the increase in the teleworking days represented by the rise in the heating demand in 2026, 2032, and 2045. The Middle-class agent adopts teleworking in 
2034 in the Digital scenario (8d), moving to three days per week of teleworking in 2045. 
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be translated into a negative coefficient for the infrastructure compo
nent in Households’ utility function that constitutes the banned tech
nology less likely to be selected. 

While the results highlight the main features of the SEED model and 
the coupled framework, limitations related to the methodology must 
also be noted. The SEED model has national spatial resolution with no 
intra-annual detail. This design was selected to facilitate the coupling 
with STEM and reflects the data availability. However, it does not favor 
a detailed representation of technologies or social practices requiring 
hourly resolution. Furthermore, the aggregation to a national scale 
bounds the focus of the model. International energy trade is exogenously 
provided together with the interaction of cross-border energy supply 
infrastructure, while the influence of international trends affecting the 

digitalization spread on the Swiss society is neglected in the current 
version of the model. 

SEED relies on surveys for its parametrization, which are not always 
available and generate the need for further assumptions concerning 
preferences and users’ behavior. The limitation of the data availability is 
recognized as the most significant source of uncertainties for ABM 
models concerning their validation. A connection with a living lab could 
allow for better validation, also providing insight into possible rebound 
effects and the emergence of new behaviors. Neglecting rebound effects 
increases the uncertainties on the quantification of impacts the practice 
can have on the energy system. Still, living labs cannot provide infor
mation on the changes in the ABM parameters over time. A collaboration 
between social scientists and energy system modelers can be pursued to 
improve the framework regarding the evolution of these parameters 
over time. 

Finally, the selection of the convergence criterion is based on the 
current parametrization of the model used to analyze net-zero scenarios. 
An in-depth analysis is needed to understand the model’s behavior with 
different parametrizations. Such complex analysis, which requires high 
computational power, is difficult to perform with the current NetLogo 
software used to develop SEED, which, although well-suited [97] to 
develop a model from scratch, presents computational limitations [98]. 

The impact of new lifestyles enabled by ICTs (e.g., teleworking, e- 
learning, e-services) on energy consumption patterns for a long time 
period will be addressed with future application of the framework pre
sented in this paper. 
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[3] V.C. Coroamă, F. Mattern, Digital rebound – Why digitalization will not redeem us 
our environmental sins, in: CEUR Workshop Proceedings 2382, 2019. 

[4] United Nations Framework, Convention on Climate Change (UNFCCC), The Paris 
Agreement, 2016. 
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