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ABSTRACT

Context. Stochastically occurring flares provide a possible mechanism of coronal heating in magnetically active stars such as T Tauri

objects in star-forming regions.

Aims. We investigate the statistics of stellar X-ray light curves from the XMM-Newton Extended Survey of the Taurus Molecular

Cloud (XEST).

Methods. To this end, the light curve is modeled as superimposed flares occurring at random times and with random amplitudes. The
flare shape is estimated non-parametrically from the observations, while the flare amplitude distribution is modeled as a truncated
power law, and the flare times are assumed as uniformly distributed. From these model assumptions, predictions on the binned counts

are derived and compared with the observations.

Results. From a sample of 22 XEST observations matching the above model assumptions we find that the majority of cases have flare
amplitude distributions with slopes steeper than two. This favours the role of small flares in coronal heating for 5 targets, of which,

however, 4 are foreground or background main-sequence stars.
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1. Introduction

Stellar flares are violent manifestations of structural instabili-
ties in stellar atmospheres, and often dwarf solar flares in terms
of energy output and variability (Gtidel 2004). Observationally,
they are most pronounced in soft X-rays, where the luminos-
ity may increase by many orders of magnitude during the flare.
Stellar flares are believed to be related to magnetic fields, and
are frequently observed in T Tauri stars and protostars (typical
flare decay times are hours, and there may be several — observ-
able — flares per day). Such objects have been the target of the
XMM-Newton Extended Survey of the Taurus Molecular Cloud
(XEST; Giidel et al. 2007) to which the present series of articles
is devoted.

Some stars produce sporadic large flares which are easily
recognized as such, but others are apparently in a state of con-
tinuous flaring activity, where most flares are too small to be re-
solved by photon counting observations. In the latter situation,
numerous small flares are superimposed, resulting in fluctua-
tions that cannot be explained by a Poisson process of constant
intensity. The suggestion that a large population of randomly oc-
curring small flares is producing much or all of the observed
high-energy radiation from a corona was initially made for the
solar corona based on observations (e.g., Lin et al. 1984; Hudson
1991) and theoretical concepts (Parker 1988). Observationally,
the distribution of the radiative energy (or flare-peak power)
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released in (hard or soft) X-rays has been found to obey a power
law,

— = kE™ ey

where dN is the number of flares per unit time with a total energy
in the interval [E, E + dE], and k is a constant. If @ > 2, then
the energy integration (for a given time interval) diverges for
the lower integration limit Ey,;, — 0, that is, by extrapolating
the power law to sufficiently small flare energies, any energy
release power can be attained. This is not the case for @ < 2.
Solar studies have repeatedly resulted in « values of 1.6—1.8 for
ordinary solar flares (Crosby et al. 1993), but some more recent
studies of low-level flaring suggest @ = 2.0-2.6 (Krucker &
Benz 1998; Parnell & Jupp 2000).

The concept of stochastic flares heating coronae has found
appeal also in the stellar case, in particular for magnetically ac-
tive stars. The latter show properties that are difficult to explain
with steady heating mechanisms but follow naturally from flare
concepts: 1) many magnetically active stars show coronal elec-
tron temperatures in excess of 10 MK, reminiscent of flaring
plasma, with an emission measure distribution that can natu-
rally be explained by the sum of emission measure distributions
of randomly occurring flares (Giidel et al. 2003); ii) measured
electron densities in active stars are elevated, often reaching val-
ues of several times 10'° cm™ (Ness et al. 2004); iii) magnet-
ically active stars are continuous sources of non-thermal radio
emission, ascribed to gyrosynchrotron emission from acceler-
ated electrons (Giidel 2002).

Interpretations of stellar X-ray emission in terms of stochas-
tic flaring date back to the late eighties but have found renewed
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interest in particular with more recent satellite observations that
allow for longer or more sensitive observations than hitherto pos-
sible. A summary of all previous observations has been given by
Giidel (2004); we briefly summarize the results. A new method-
ology in flare identification was applied by Audard et al. (1999,
2000) to magnetically active, nearby main-sequence stars. They
found a predominance of relatively steep power laws including
a > 2. Full forward modeling of a superposition of stochastic
flares was applied to EUV and X-ray light curves by Kashyap
et al. (2002) and Giidel et al. (2003) based on Monte Carlo sim-
ulations, and by Arzner & Gtiidel (2004) based on an analytical
formulation. These investigations converged to @ ~ 2.0-2.5 for
M dwarfs. If the power-law flare energy distribution extends by
about 1-2 orders of magnitude below the actual detection limit
in the light curves, then the entire emission could be explained
by stochastic flares.

Generally, larger flares are found to be harder than smaller
flares (Giidel 2004), and the latter are harder than the quies-
cent emission; this leaves the possibility that the softest, qui-
escent emission could be due to a large number of small, un-
resolved superimposed flares. We shall, indeed, adopt here the
working hypothesis that quiescent emission could be due to un-
resolved superimposed flares, and these would produce overall
softer emission, as observed during “quiescence”.

Young stellar objects such as T Tauri stars are extremely ac-
tive X-ray sources, showing the same characteristics also found
in active main-sequence stars. An extension of the stochastic-
flare studies to T Tauri stars is warranted, but the larger dis-
tances of these stars and consequently their lower fluxes have
made such investigations much more difficult. Two studies have
been undertaken, one by Wolk et al. (2005) on a sample of
T Tauri stars in the Orion region observed by Chandra, and
one by Stelzer et al. (2007) on a sample of T Tauri stars in the
Taurus Molecular Cloud; the latter study includes a reconsidera-
tion of the sample presented by Wolk et al. The results of these
investigations are not fully conclusive, with « values of 1.9 + 0.2
and 2.4 + 0.5 for the Orion and the Taurus sample, respectively
(Stelzer et al. 2007).

The present work attempts to extend theoretical and nu-
merical work presented by Arzner & Giidel (2004) for main-
sequence stars to a sample of T Tauri stars in the Taurus region.

2. Methods

Scargle (1998) has proposed a method to find changes in the
count rates and thus decompose the observed light curve into
Bayesian blocks of piecewise constant count rate. The Bayesian
block method is applied to XEST data in an accompanying arti-
cle (Stelzer et al. 2007).

While the Bayesian blocks are successful in detecting abrupt
changes in the count rate, the assumption of piecewise constant
flux is somewhat artificial and not well adapted to stellar flares,
which typically have a rapid rise followed by a slow decay. In
order to investigate the occurrence of flares down to very low
levels, we now study an alternative model in which a constant
flare shape £(7) is assumed, and suppose that a flaring light curve
is a superposition of many similar events. Mathematically, the
flare times #;, are assumed to be uniformly distributed with rate A
[flares/s], and the light curve is modeled by a stationary random
process of the form

f = agt—n)  leys] @)

k
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where the a; > 0 are flare amplitudes [cts/flare] drawn from
some probability density P(ax). By definition, the flare ampli-
tudes a; have units of counts (per flare), and the flare shape &(r)
has units s™!. All a; and f; are assumed to be statistically in-
dependent, and the observed photon arrival times are assumed
to form a non-homogeneous Poisson process with intensity f(z).
The flare profile is normalized to one ( f &(r)ydr = 1) and we also
require that

f 1£(1) dt < oo. 3)

The condition (Eq. (3)) is a technicality which will facilitate the
estimation of the flare shape. It is valid in the frequently observed
case of approximately exponentially decaying flares.

The assumptions of independence and linear superposition
expressed by Eq. (2) not only lead to a simple expression! for
the power spectral density (or two-time function)

2

N
f@b = E@P]Y e
k=1

5 )P [ays(w) + M), )

but also admit a closed-form representation of the single-time
distribution of f(7) in terms of characteristic functions (i.e., the
Fourier transforms of probability densities, see Lukacs 1970).
In particular, Arzner & Giidel (2004) have shown that given the
characteristic function ¢,(s) of the flare amplitudes a; and the
characteristic function ¢z (s, Ar) of the bin content (Poisson pa-

rameter) F(t) = ft e f(¥')dt are related by

dr(s, Af) = exp (—/1 fw dt(l — palsE(t, At)])), )]

oo

where Z(t, Af) = e &(¢)dt’ is the flare shape convolved with

the observational time bin. The derivation of Eq. (5) is discussed
in detail in Arzner & Giidel (2004) and exploits the indepen-
dence of flare times and -amplitudes, which allows the factoriza-
tion of the characteristic function, and a decomposition into the
possible (Poisson distributed) numbers of flares occurring dur-
ing the observation. Notice that in Eq. (4) it is tacitly assumed
that both (a) and (a?) exist.

Several observational predictions can be derived from
Eq. (5), such as the distribution P(n) of counts in bins of given
duration Az (i.e., the distribution of the values of the light curve).
The detailed calculations are given in Arzner & Giidel (2004),
and result in

27
Pa(n) = 2n)~! f dse ™ pp(i — ie', Ar). (6)
0

An additive constant background b [ct s~'] is easily included,
as it amounts to replacing ¢z (s, At) by e**A¢r(s, Ar). In prin-
ciple, part of the “quiescent” emission could be truly constant,
i.e., not due to superimposed flares. Our analysis method cannot
determine such a contribution separately. However, as outlined
in the introduction, our assumption is that there is no separate
quiescent contribution to the light curve, but that “quiescent”
emission is due to small, unresolved, superimposed flares. In

! This follows from f() being the convolution product of &(f) and
Yraro(t — tr). The limit in Eq. (4) applies to sums over infinitely
many flares. See Bondesson (1988) for a general introduction and
Mitra-Kraev & Benz (2001) for a solar application.
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Arzner & Giidel (2004), Eq. (6) (and a similar result for the pho-
ton waiting time distribution) have been applied to EUVE data
of AD Leo. In this article, we apply Eq. (6) to XMM-Newton
data, and introduce an important methodical refinement. In the
original work, the flare shape was taken ad-hoc as a one-sided
exponential, with a decay constant chosen by eye. Here we esti-
mate the flare shape empirically using Eq. (4).

It should be pointed out that the application of Eq. (6) rep-
resents a rather drastic form of data reduction, since it projects
away the time ordering of the observed light curve. The pres-
ence of the flares manifests only in the deviation of the binned
count histograms from pure Poisson distributions. The advan-
tage is that the method is insensitive to data gaps and does not
require the flares to be resolved within the counting statistics. It
is, in fact, especially adapted to faint but flaring sources.

3. Observations and data reduction
3.1. Data

The data used for our investigation are part of XEST (Giidel et al.
2007), a project that investigates X-ray emission of a large sam-
ple of T Tauri stars and protostars in the Taurus star-forming
region using the XMM-Newton X-ray observatory (Jansen et al.
2001). The survey comprises 27 different fields across the cloud,
and most of them used exposure time of approximately 30 ks al-
though a few were exposed up to ~130 ks. The survey makes use
of the European Photon Imaging Cameras (EPIC) of the MOS
(Turner et al. 2001) and the PN type (Striider et al. 2001).

The XMM-Newton observatory uses grazing incidence mir-
rors for X-ray imaging in the range of 0.2 to 10 keV. The X-
ray photons are detected by two MOS-type CCD arrays and a
pn-type CCD array. The time resolution of these arrays depends
on their type and also on the operation mode. For the observa-
tions considered here, the MOS-type arrays (Turner et al. 2001)
have a time resolution of 2.6 s whereas the pn array has a time
resolution 0.07 s. In order to improve the statistics we have co-
added all available MOS and pn data. In order to avoid artificial
fluctuations, all detectors are required to be simultaneously op-
erational. Since we are interested in light curves, we accept all
energies between 0.5 and 7.3 keV. This choice of energies is mo-
tivated by instrumental considerations and by the uniformity of
data treatment.

From all XEST observations we have selected a set where
the model assumption of Eq. (2) is plausible by inspection of the
light curves and where >1000 counts are available (but pile-up
can be neglected), and have determined the maximum-likelihood
parameters of the flare amplitude distribution. In the rest of this
section, we discuss the detailed procedure considering as an ex-
ample the observation HD 31305 (XEST-26-051), which is a
A0 V background star, the X-ray emission of which probably
comes from an unseen companion. The raw data of this obser-
vation are presented in Fig. 1. The top panel shows the photon
arrival time versus energy (one dot represents one count). The
bottom panel shows the energy-integrated, time-binned counts.
The time bins At are 27"-th fractions of the total observing time,
as needed for the Fourier analysis of the pulse shape (Sect. 3.2),
and are chosen such that the bins contain of order 10 counts.
Different observations use different time bins. A background es-
timate has been obtained from ~10 times larger source-free ex-
traction regions, giving a (scaled, constant) background rate of
b = 0.0027 ct s~! (this value refers to HD 31305). Since the
relative error of b is only about 0.2%, we consider b as exactly
known.
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Fig. 1. Top: photon arrival time versus energy of HD 31305 the (XEST
observation 26-051). Bottom: energy-integrated light curve. The time
bin size is 124 s.

3.2. Estimation of the flare profile

In order to estimate the flare profile £(f) from the observations,
we work with the power spectrum (or, equivalently, the auto-
correlation), thus making use of the assumption of stationarity.
Consider Eq. (4). The factor in curly brackets, representing the
random flare pulses, is constant except at w = 0. On the other
hand, the factor |£(w)|, representing the flare shape, is continu-
ous at w = 0 and satisfies |£(0)] = 1 (both by virtue of Eq. (3)).
Therefore, |&(w)| can be obtained from |f(w)| by continuous in-
terpolation to w = 0 and appropriate scaling. This is the basic
idea used here to estimate the flare profile; however, the actual
implementation requires two additional steps.

First, | f (w)| must be estimated from the observed counts. To
this end we consider the power spectrum |71;| of the binned light
curve, assuming that the bins are sufficiently fine to resolve the
flare shape. (In practice, the power spectrum |#;] is computed by
a fast Fourier transform and we use a discrete frequency index to
indicate the actual numerical implementation. The Fourier nor-
malization convention is that 7ip equals the total number of ob-
served counts.) |7;| represents a noisy version of | ﬁl, involving
two kinds of noise. The first type is photon counting noise. Since
the counts n; in bins of content F; satisfy (n;n;) = FiF; + F;0;;
(see, e.g., Feller 1968 and Reiss 1993), the power spectral den-
sities of the binned events and of the bin contents are related
by |? = |Fi* + N, where N is the expected total number of
counts. The photon counting noise thus manifests in a constant
additive contribution to the power spectrum. The second type of
noise stems from the finite number of observed flares, and will
be referred to as flare shot noise. As a consequence, the term
in curly brackets in Eq. (4) becomes a fluctuating function of
frequency. For the discrete Fourier representation, the fluctua-
tions are approximately exponentially distributed with variance
N{a?) (this was found numerically). Thus, the flare shot noise
is a multiplicative noise in frequency space with a relative am-
plitude of unity. Both the flare-shot and photon counting noise
can be suppressed by filtering. The flare-shot noise, which is
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multiplicative in the frequency domain, is removed by filter-
ing In|#;|>. The photon counting noise, which is white in the
time domain, is removed by filtering &(f) once this is obtained
from a Fourier back transform (see below). Our filters are im-
plemented as Lee filters (Lee 1986) with sizes adapted to the ex-
pected noise, and the results are tested by eye for compatibility
with the observed light curve.

Secondly, and more fundamentally, the spectrum |£(w)| does
not contain the phase information needed to Fourier-invert
I€(w)[e®®@ into the flare shape &(f). We shall not address here
the general phase retrieval problem (Klibanov et al. 1995) but
make the minimal phase assumption (Burge et al. 1974)

H(w) = lf‘” i@y,
T -

o W—S§

)

which is equivalent to requiring £(f) = 0 for # < 0. Such causal
flare shapes apply to flares with a rapid (unresolved) rise phase,
followed by a slower decay. The integral in Eq. (7) is understood
in the principal value sense and can be computed by a discrete
Hilbert transform (Henery 1984).

The full procedure of estimating £(7) from the observations
is illustrated in Fig. 2. The gray crosses in the top panel repre-
sent the modulus of the fast Fourier transform of the light curve
of Fig. 1 (bottom), using 1024 equal time bins of duration 124 s.
The zero frequency signal clearly peaks out, as expected from
Eq. (4). The Poisson noise level is indicated by white dashed
line. The solid curve in Fig. 2 (top) represents our filtered esti-
mate for | f(a))l. This is then scaled to |&(w)|, endowed with the
minimal phase of Eq. (7), and transformed back into time do-
main to obtain the estimate for the flare shape (Fig. 2 bottom,
black line). For comparison, the result of using ¢(w) = 0 is also
shown (gray line); it represents the convolution square root of
the autocorrelation.

When treating the full set of observations (Table 1 below),
the flare shape is estimated individually for each observation.
Different observations have thus flare shapes of different decay
time. Within a given observation, the flare shape is assumed to
be constant.

3.3. Determination of the flare rate and amplitude distribution

Once the flare profile is known, we numerically evaluate
Equation (6) for a power-law flare amplitude distribution of the
form

A<a.<B
else

-
cak

P(ay) ={ 0

where A and B (in units of counts per flare) are lower and up-
per cutoffs, respectively, and ¢ is a normalization constant. The
cutoffs A and B must in general be applied in order to ensure
that P(a;) can be normalized and that the first moments exist,
as assumed in Eq. (4). For probabilistic normalization, a lower
cutoff is needed if @ > 1 and an upper cutoff is needed if a < 1.
Furthermore, the existence of moments up to second order re-
quires an upper cutoff if @ < 3. In order to be free of theo-
retical restrictions on @ we assume that both lower and upper
cutoffs exist, which we parameterize technically by A and B/A.
We then determine the parameters («, A, B) so that they maxi-
mize the Poisson likelihood of the observed distribution of the
binned counts. The flare rate A is determined by the normaliza-
tion constraint 5(0) = 1, implying that A{a) + b = f(O). The
power law index and dynamical range of the flare amplitudes
are limited to 0.5 < @ < 5 and 10?> < B/A < 109; this choice

®)
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Fig. 2. Estimation of the flare shape of Fig. 1. Top: observed (crosses)
and filtered (solid line) spectral densities. The Poisson noise level N is
indicated by white dashed line. Bottom: flare shape obtained from the
minimum-phase (black) and zero-phase (gray) assumptions. It is the
minimum-phase solution which is used in all further analysis.

covers the physically expected and observationally distinguish-
able situations. The lower cutoff A is not constrained since ar-
bitrarily small flares are possible. The best-fit solution for Px(n)
for the data of Figs. 1 and 2 (HD 31305) is shown in Fig. 3,
where the black histogram represents the data, and the red his-
togram represents the best-fit model. The insets represent projec-
tions of the likelihood surfaces at (0.68, 0.90, 0.99) confidence
levels, obtained by thresholding the (Poisson) likelihood ratio
of the predicted histograms relative the the maximum-likelihood
solution. The best-fit solution is marked by crosses, and equals
A = 0.0058 counts/flare and @ = 2.05. The (projected) 68% con-
fidence errors of the power law index is 1.99 < @ < 2.23. It
should be noticed that the choice of 68% confidence is ad hoc,
and favours small error bars. If we had used 95% confidence lev-
els (between the light gray and medium gray regions in the inlets
of Fig. 3), the corresponding error of the power law index was
found to be 1.93 < a < 2.32. Note from Fig. 3 that the limits
of o and A are not constrained by the data but limited by the
explored range of A. The most likely flare rate, derived from the
most likely (a, A, B), is 4 = 0.98 flares/s. We recall that it is
the deviation of the observed curve in Fig. 3 from a purely
Poisson shape which reflects the presence of the flares, and is
detected by our method. The case of quiescent emission, where
the Poisson intensity f(f) is constant, can be obtained as a special
limit of Eq. (4) when 4 — oo (Sect. 3.5).

3.4. Monte-Carlo exploration

In order to speed up the parameter space exploration and to ex-
tend the explored parameter range, we use a combination of



K. Arzner et al.: Superimposed flares

481

Table 1. Maximum-likelihood parameters with (projected) 68% confidence intervals. Asterisks denotes error bars which are so large that they

could not be determined. N, is the number of observed counts; Npg

is their expected background contribution. The parameters (@, A, B) are

defined in Eq. (8); A is in units of counts/flare. A is the flare rate [flares/s] and is derived from (e, A, B) and the observed average count rate. The
values of this table refer to Figs. 4 and A.1 to A.3. The stellar type is: type 1 =protostar, type 2 = accreting T Tau star (classical T Tauri star),
type 3 =non-accreting T Tau star (weak line T Tauri star; we note that the classification can be ambiguous in some cases, see Giidel et al. 2007);
“MS” refers to main sequence stars that are not recognized members of the Taurus Molecular Cloud. The last column shows the best-fit reduced
chi square; observations with y%, > 2 represent bad fits; observations with y2, < 1 hint at noisy data where the statistics is not sufficient to

discriminate between different model parameters.

Source name type  XEST# Nent Nog A [cts/flare] a B/A A [flares/s] Xfc 4
test - UNIFOR 9996  1000.0 57x 107" 3.37 3.6x 10?2, 8.8x 1072, 0.58
V807 Tau 2 04012 2672  38.1 114010 0.7* 58x10'  37x1073)L 05 115
GK Tau 2 04035 2471 2467  9.1x102% 307 12x105"  41x107" 5.0 051
L1489 IRS 1 06059 3027 3034 12x102% 470 15x10* 62x 1071919 116
IMASS J04345693+2258 MS  08-003 3215 1689 7.Ix10%M . 0597  52x10°°  6.1x10°9%0% 51
DMASS J04351316+2259 MS  08-014 1199  163.0  12x 1029 445, 40x102"  1.5x 1072517 208
HD 29050 MS  08-017 1299 663  18x10XM0 501 41x10% .0 13x10720097 178
HQ Tau 308037 6616 2757  16x 1022 50:. 19x10°T  98x 10710007 369
HP Tau 2 08048 4263 11639 17x10770 240 71x10°7  20x 10710 148
HP Tau G2 3 08-051 19521  34.6 12x107 7" 300 40x10') 3.1774%, 1.67
CoKu LkHa 332 G2 3 10-017 5373  87.0 25110t 3.3: 13x10']  46x1072] 5,02 154
DN Tau 2 12:040 7464 1491 3.0x107'Y°  30°  9.0x10°T  43x107; - 045
CoKu Tau/3 3 12059 18640 6193  17x107')°  29*  16x10' 197, o 1.15
DI Tau 3 15042 3305 12810 262210 300 21x10'T 21x102%, 05 0.60
IT Tau 2 18030 15736 3120 3.6x107'% 290 20x10'7  83x107 0. 101
Anon 1 320005 8041 4733  21x1072*% 18r  s50x1020 13x1073% . 172
V773 Tau 320042 37324 1344 L1x107'” 357 90x10'; 6.6 10 0.76
1AXG J041453+2805 MS 20071 3026 2422  37x1022% 317 18x10°) 125 10 0.79
JH 188 MS  22-006 1818  205.0 7.419x10! 360 37x10°T  24x1077I00 233
HD 285845 MS 22024 52074 8647 38x 102700 461 94x10'T  19x 10225007 304
HL Tau 1 22043 2956 2524  9.6x102° 30 25x102.  28x107' .2 0.81
V710 Tau 2 22070 4701 4427 40x102' 067 24x10°T  24x102%5,5 3.85
HD 31305 MS  26-051 7049 4363 1.0x10735,04 203 64x10% 0 3753 s 0.85

Monte-Carlo exploration and interactive search for an initial
guess using a graphical user interface. Four representative re-
sults are illustrated in Fig. 4. The first line shows the same ob-
servation as Figs. 1 to 3, and is repeated here in order to clar-
ify the presentation of Monte-Carlo results. The left column
shows the light curve in the same binning as used in Eq. (6).
Red dashed lines indicate the range of binned counts used for
parameter estimation. Low counts are rejected when they in-
terfere with data gaps due to increased background. The mid-
dle column shows the observed (black) and best-fit (red) his-
tograms of binned counts. The y-axis represents the square root
of the counts rather than the counts themselves; by this trick,
the Poisson error becomes approximately 0.5 for all bins, so that
the agreement between observation and model can be judged by
visual inspection. The right column shows the Monte Carlo sam-
ples in (A, @)-space (projection). Black dots denote samples that
are accepted within 68% confidence; gray dots represents sam-
ples that are rejected. The best-fit solution is marked by large
crosses. Different data sets use different time bins Ar. Note that
since we show projected acceptance regions, black and gray dots
may co-exist at a given location.

3.5. Benchmark with non-flaring data

As a benchmark, we have applied the method of Sect. 2 to a
non-flaring data simulated from constant f(¢). The outcome is
shown in the last line of Fig. 4. The distribution of binned counts
follows a Poisson distribution (middle panel), whereas the flare
shape, estimated by the procedure of Sect. 3.2 is approximately
o-peaked (not shown). As can be seen from the right panel, the
spectrum parameters (A, @) are not well constrained by the (sim-
ulated) observation. The same holds for the dynamic range B/A.
The shape of the acceptance region in (A, @, B/A)-space (Fig. 4
bottom right shows the 68% region) is determined by the flare
amplitude distribution (Eq. (8)) and the procedure of Sect. 3.2.
Since the mean count rate is adjusted by the choice of A, the
acceptance of models is determined by the higher order statis-
tics, in particular by the variance of the expected bin contents,
which becomes noticeable when it exceeds the Poisson (count-
ing) noise of individual bins. As a result, models predicting few
large flares (large A, small @) are excluded and models predict-
ing many small flares (small A, large «) are accepted. In fact, a
constant Poisson intensity f(#) may be obtained from Eqgs. (2)
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and (8) as the limit of infinitely many (1 — oo) infinitely small
({ar) — 0) flares, such that A{a;) equals the observed average
(source) count rate. The boundary of the acceptance region in
Fig. 4 (bottom right panel) is roughly given by the condition
that the variance of the expected bin content, (F 2y —(F)?, equals
the Poisson variance (F). To summarize, quiescent light curves
(f(¢) =const) allow only one parameter to be determined (the
average count rate A{a)) and do not constrain the individual pa-
rameters (A, a, A/B) as long as the predicted fluctuations of f(7)
are within the Poisson noise of the observation; the resulting ac-
ceptance region in (A, @)-projection is open toward large o and
small A.

4. Results and discussion

We have applied the procedure of Section 3 to a set of 22 XEST
observations chosen to meet the model assumptions of a statis-
tically homogeneous superposition of random-amplitude flares.
The results are listed in Table 1 and illustrated in Fig. 4 and in the
Appendix. All Monte Carlo explorations shown in these Figures
involve about 5000 samples. The first line of Fig. 4 has already
been discussed in Sect. 3.

The second and third lines of Fig. 4 show examples
(2MASS J04351316+2259; XEST-08-014) of a strongly vari-
able but photon-starved light curve, as well as an example where
no visible flares are present (CoKu Tau/3; XEST-12-059). In
both cases, the observed histogram (middle column, black) can
be well reasonably represented by the model (middle column,
red). In the case of 2MASS J04351316+2259 we may conclude
that @ > 3. In the case of CoKu Tau/3, no such conclusion is pos-
sible, and the data are compatible with pure Poisson noise (as ap-
parent from the light curve). Among the remaining Monte-Carlo
results (Appendix, Figs. A.1 to A.3) we emphasize the following
ones:

— GK Tau (XEST-04-035): Although the flare amplitude dis-
tribution cannot be tightly constrained by the data, good fits
(middle column) are possible.

— XEST-08-003: this figure is shown as an example that can-
not be fitted with the present model (the reduced chi square
being 5.11), and is shown for comparison only. In fact,
the light curve is not statistically homogeneous but shows
enhanced activity for times r+ < 15 ks. Equally bad fits
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were found in two further investigated observations (XEST-
22-097 and XEST-22-100) which are thus not included
in Table 1. Among the observations retained in Table 1,
HQ Tau, HD 285845, and V710 Tau have large reduced chi
squares as well, which reflect in systematic deviations be-
tween observed and predicted binned count histograms.

— HP Tau G2 (XEST-08-051): this is a relatively quiet observa-
tion with many data gaps and low background. Although the
power law index is not constrained by the data, we may visu-
ally distinguish two “branches” of solutions: A > 1 cts/flare
and @ > 3 or A < 1 cts/flare and @ < 3. Thus, based on the
data we can make statements of the form: if the flares yield
at least one count (A > 1 cts/flare) then @ > 3.

— HD 285845 (XEST-22-024): Here, the power law index «
and the lower cutoff A can be constrained by the data ac-
cording to @ > 3.7 and A > 26 cts/flare.

— JH 188 (XEST-22-006): similar to HP Tau G2, in that « val-
ues above 3 require lower flare amplitude cutoffs A below a
few counts per flare. A more detailed analysis shows that an
a value below 3 requires a dynamic range B/A < 10°.

As a general trend, one can see from Figs. 4 to A.3 that A is
correlated with a. This correlation reflects the fact that the to-
tal number of counts (the integral under the power law distribu-
tion) should agree with the observed number of counts within
Poisson errors. Thus, steep power laws (a large) correspond to
large lower cutoffs (A large).

The results of the other observations are summarized in
Table 1. The targets we are studying in the present work are
predominantly T Tauri stars identified in the Taurus Molecular
Cloud (TMC), although two objects are classified as protostars,
and we also include a few favorable X-ray targets found in the
XEST survey that appear to be foreground or background stars.
The TMC members have been classified according to the equiv-
alent width of the Ha line (an accretion signature) and based on
the presence of an infrared excess (a disk signature). We used
the classification as tabulated in Giidel et al. (2007), i.e., type 1
objects are protostars, type 2 objects are accreting T Tauri stars
(“classical T Tauri stars”), and type 3 objects are non-accreting
T Tauri stars (“weak-line T Tauri stars”). The classification into
accretors and non-accretors is, for this article, motivated by po-
tential differences in their magnetic configurations. In Table 1,
Nene is the total number of counts present in the observation;
this includes an estimated background contribution Nye. Note
that A values below one count per flare imply that the smallest
postulated flares cannot be individually observed. The dynamic
ranges B/A cover usually between 2 and 4 orders of magnitude.
The (derived) flare rates A are mostly in the order of one flare per
kilosecond. In order to decide on whether confidence limits can
be given on parameters, we use the criterion that there should
be at least v Nyc rejected solutions (dots) outside the accepted
parameter interval in a Monte-Carlo simulation of Nyic samples.
Otherwise, we conclude that the confidence boundary is outside
the explored parameter range, or that the parameter cannot be
bound at all. In cases where the above criterion is not fulfilled,
confidence limits are not given in Table 1 but the presence of
large error bars is marked by asterisks. Inspection of Figs. A.1
to A.3 and of Table 1 shows that from all observations, @ and A
can only be constrained in a few cases. For HD 31305, both up-
per and lower limits can be given, and « is tightly constrained
between 1.9 and 2.5. The reduced chi square (1.03) indicates that
the fit is acceptable. For XEST-08-014, only a lower limit on &
can be given, @ > 2.9. A similar finding holds for HD 29050,
where @ > 3.8, and HQ Tau, where @ > 3.5, although in these
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cases the goodness-of-fit is questionable. A much safer result is
possible for HD 285845, where @ > 3.5 can firmly be estab-
lished. In all other cases, « is unconstrained, or only constrained
in combination with A or A/B. The comparison with the pure
Poisson noise example (Fig. 3 bottom) suggests that the observa-
tions from GK Tau, CoKu LkHa 332 G2, DN Tau, CoKu Tau/3,
DI Tau, IT Tau, V773 Tau, XEST- 20-071, HL Tau, and V710
Tau are compatible with quiescent emission — a result which is
also obvious from inspection of the light curves.

What can we conclude from the present study? Inspecting
Table 1 and Figs. 4-A.3, we find the following:

— Most light curves studied here are compatible with a power-
law distribution of the flare amplitudes (counts per flare in a
fixed energy range). This confirms previous studies that have
found such distributions for solar and stellar flares.

— In those cases where « could be constrained, its value ex-
ceeds 2. This is the case for 2MASS J04351316+2259,
HD 29050, HQ Tau, HD 285845, and HD 31395.

— No clear distinction of accretors and non-accretors is
possible.

— About half of the studied observations are compatible with
a constant count rate at the given sensitivity, which may be
due to their limited observing time of some 40 ks.

From those targets where @ and A could be constrained, the
following implications may be drawn. The observed values
a > 2 suggest the dominance of many small flares over few
large flares in the coronal heating process, if we assume that
the corona is heated by flares. Hence, our results support a
stellar analog of the solar micro (or even nano-) flare heating
scenario (Krucker & Benz 1998), although at much higher
flare energies than those of solar microflares. However, a
clear statement can be made only for 4 main-sequence stars
and one T Tauri star.

This present study complements a XEST investigation of
individually detected flares by Stelzer et al. (2007), but uses
a different approach because we are, in the present work,
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predominantly concerned with stochastic flaring and therefore
with flare events that may not be detected individually in the
light curves. Our conclusions are, however, compatible with the
findings by Stelzer et al. (2007): They reported @ = 2.4 + 0.5
for a TMC sample of T Tauri stars that showed detectable flares.
The larger samples that can be accessed by our method is com-
promised by the weaker constraints in the statistical results. We
also re-emphasize that a significant conclusion on @ has been
obtained for only one T Tauri star.

This result is analogous to findings from nearby active stars
where a dominance of @ values in the range of 2-3 has been
found (Audard et al. 2000; Kashyap et al. 2002; Giidel et al.
2003; Arzner & Giidel 2004). Although this points at important
contributions of stochastic flares to coronal heating, this hypoth-
esis cannot be fully proven using this methodology because our
analysis requires the power-law distribution of the flare occur-
rence rate to continue to flares that cannot be individually de-
tected in the light curves. The analogy of our findings with pre-
viously reported results for magnetically active stars suggests
that X-ray sources in T Tauri stars, at least as far as the CCD
detectors used here can record their X-ray emission, are compat-
ible with a coronal model in which small flares play an important
role.

We conclude with a few methodological remarks. In this
work, we have assumed that the flare shape is constant. The de-
pendence of the decay time on the flare size has been discussed
in Giidel et al. (2003). Observations suggest that the decay time 7
varies with the total number N of counts according to T o« N?,
where 8 is no more than 0.25 (our current assumption of con-
stant flare shapes amounts to setting 8 = 0, an assumption also
supported by Giidel et al. 2003). These authors found that « in-
creases with increasing . They interpreted this as being due to a
larger time occupation by relatively large count rates. The light
curve appears “softer”, requiring a higher a. As a consequence,
also for our work, @ can only increase if we allow larger flares
to decay less rapidly.

For parametric flare amplitude distributions with few
parameters, the parameters could also be estimated by form-
ing intermediate statistics such as A{a) (average count rate)
and A(a®) (variance of the light curve), and then function-
ally relate these statistics to the model parameters. Such
an approach is less optimal since it does not use the full
shape of single-time distributions such as Ps(n) and Ps(x).
Moreover, the intermediate statistics might not be sufficient
and the computation of parameter errors is not as straight-
forward as from the Poisson likelihood. Since the evaluation
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of Eq. (6) is computationally not demanding, we argue that it
should be used rather than some intermediate statistics in order
to fully exploit the observed single-time statistics.
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Appendix A: A gallery of Monte-Carlo results

Figures A.1 to A.3 provide an overview of all observations used
in this study. These graphics represent the database for Table 1.
The arrangement of the graphics as identical to Fig. 4.
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Fig. A.1. Continuation of Fig. 4.
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